Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202401856, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39163007

RESUMO

This study explores the electrochemical properties of the carbonaceous Allende CV3 meteorite, focusing on its potential as a Fe-based catalyst derived from Mackinawite iron sulfide for electrocatalytic reactions facilitating nitrogen (N2) fixation into ammonia. Through comprehensive analysis, we not only monitored the evolution of key compounds such as CN-, sulfur/H2S, H2 and carbonyl compounds, but also identified potential reagent carriers, indicating significant implications for the Strecker synthesis of amino acids in space environments. Initial examination revealed the presence of polypeptides, notably sequences including trimer Gly3, pentamer Gly3-Ala2, and hexamer Gly4-(HO-Gly)2. These discoveries greatly enhance our understanding of astrobiological chemistry, offering valuable insights into prebiotic processes and the potential presence of life-building blocks throughout the universe.

2.
Molecules ; 29(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930853

RESUMO

Ion-molecular reactions play a significant role in molecular evolution within the interstellar medium. In this study, the entrance channel reaction, H3+ + C2H4 → H2 + C2H5+, was investigated using classical molecular dynamic (classical MD) and ring polymer molecular dynamic (RPMD) simulation techniques. We developed an analytical potential energy surface function with a permutationally invariant polynomial basis, specifically employing the monomial symmetrized approach. Our dynamic simulations reproduced the rate coefficient of 300 K for H3+ + C2H4 → H2 + C2H5+, aligning reasonably well with the values in the kinetic database commonly utilized in astrochemistry. The thermal rate coefficients obtained using both the classical MD and RPMD techniques exhibited an increase from 100 K to 300 K as the temperature rose. Additionally, we analyzed the excess energy distribution of the C2H5+ fragment with respect to temperature to investigate the indirect reaction pathway of C2H5+ → H2 + C2H3+. This result suggests that the indirect reaction pathway of C2H5+ → H2 + C2H3+ holds minor significance, although the distribution highly depends on the collisional temperature.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124637, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38878722

RESUMO

We theoretically investigate the photoionization scenarios of molecular complexes involving cyclopentadiene and cyanocyclopentadiene bound to water dimers. Using electronic structure calculations within density-functional theory (DFT) and time dependent DFT (TD-DFT), we explore the potential photochemical pathways following ionization, and determine the charge transfer excitations related to the possible subsequent reactions. Our findings suggest that the investigated photochemical pathways of the hydrated complexes take place in two well-defined ultraviolet regions: (i) 8.2-9.5 eV for the cyclic compounds and (ii) 11.2-11.4 eV for the bound water dimer. We quantify how H-bonding effects can influence the photoionization channels. Before forming possible photoproducts, we also examine the regiospecificity of OH addition to 1,3-cyclopentadiene and its cyano derivatives We analyze our results in light of photoionization studies of jet-cooled molecular complexes and possible implications in astrochemical environments.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124567, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843614

RESUMO

The positive identification of the molecular components of interstellar icy grain mantles is critically reliant upon the availability of laboratory-generated mid-infrared absorption spectra which can be compared against data acquired by ground- and space-borne telescopes. However, one molecule which remains thus far undetected in interstellar ices is H2S, despite its important roles in astrochemical and geophysical processes. Such a lack of a detection is surprising, particularly in light of its relative abundance in cometary ices which are believed to be the most pristine remnants of pre-solar interstellar ices available for study. In this paper, we present the results of an extensive and quantitative mid-infrared spectroscopic characterisation of H2S ices deposited at 20, 40, and 70 K and thermally processed to sublimation in an ultrahigh-vacuum system. We anticipate our results to be useful in confirming the detection of interstellar H2S ice using high-resolution and high-sensitivity instruments such as the James Webb Space Telescope, as well as in the identification of solid H2S in icy environments in the outer Solar System, such as comets and moons.

5.
Sensors (Basel) ; 24(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38931582

RESUMO

Synchronous fluorescence spectroscopy (SFS) is a technique that involves the simultaneous detection of fluorescence excitation and emission at a constant wavelength difference. The spectrum yields bands that are narrower and less complex than the original excitation and emission bands. The SFS bands correspond uniquely to the fluorescing molecule. Our investigation focuses on evaluating the sensitivity of the SFS technique for the detection and quantitation of PAHs relevant to astrochemistry. Results are presented for naphthalene, anthracene, and pyrene in three different solvents: n-hexane, water, and ethanol. SF bands are obtained with a constant wavelength difference between the peak excitation and emission wavelength (Δλ = λex - λem) at a concentration ranging from 10-4 to 10-10 M. Limit of detection (LOD) and limit of quantitation (LOQ) calculations are based on integrated SF band areas at different concentrations. Spectra of 23 pg/g of anthracene, 16 pg/g, and 2.6 pg/g of pyrene are recorded using ethanol as the solvent. The PAHs exhibit detection limits in the fractions of parts-per-billion (ng/g) range. Through comparison with similar prior studies employing fluorescence emission, our findings reveal a better detectability limit, demonstrating the effectiveness and applicability of the SFS technique.

6.
Chemphyschem ; 25(16): e202300915, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38758018

RESUMO

Infrared (IR) emission bands by interstellar polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic nitrogen heterocycles (PANHs) are observed towards a large variety of interstellar objects and offer detailed insights into the chemistry and physics of the interstellar medium. The analysis of the emission bands, and thus the interpretation of the molecular characteristics of the carriers, heavily relies on the use of density functional theory (DFT) calculated IR spectra. However, there are significant challenges in accurately predicting the experimental IR band positions, particularly for PANH emission vibrational modes around 6 µm. In this work, we present gas-phase mid-infrared (mid-IR) spectra of cationic 3-azafluoranthene (3AF⋅+) and protonated 3-azafluoranthene (3AFH+) to investigate their experimental IR band positions in relation to DFT calculated bands. The experimental spectra are compared to DFT simulated spectra, where different approaches were followed to correct for anharmonicities. The best agreement is achieved by scaling frequencies of modes with large nitrogen displacements with a different factor. Even though our findings might be limited to a small number of PANH structures, they indicate, that nitrogen atom incorporation needs to be accounted for by carefully adjusting the corresponding scaling factors while computing IR spectra of PANHs on DFT level.

7.
Chemphyschem ; 25(17): e202400272, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38805153

RESUMO

Chemical reactions in the gas phase of the interstellar medium face significant challenges due to its extreme conditions (i. e., low gas densities and temperatures), necessitating the presence of dust grains to facilitate the synthesis of molecules inaccessible in the gas phase. While interstellar grains are known to enhance encounter rates and dissipate energy from exothermic reactions, their potential as chemical catalysts remain less explored. Here, we present mechanistic insights into the Fischer-Tropsch-type methanol (FTT-CH3OH) synthesis by reactivity of CO with H2 and using cosmic FeS surfaces as heterogeneous catalysts. Periodic quantum chemical calculations were employed to characterize the potential energy surface of the reactions on the (011) and (001) FeS surfaces, considering different Fe coordination environments and S vacancies. Kinetic calculations were also conducted to assess catalytic capacity and allocate reaction processes within the astrochemical framework. Our findings demonstrate the feasibility of FeS-based astrocatalysis in the FTT-CH3OH synthesis. The reactions and their energetics were elucidated from a mechanistic standpoint. Kinetic analysis demonstrates the temperature dependency of the simulated processes, underscoring the compulsory need of energy sources considering the astrophysical scenario. Our results provide insights into the presence of CH3OH in diverse regions where current models struggle to explain its observational quantity.

8.
Chemphyschem ; 25(17): e202400479, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38801234

RESUMO

While magnesium is astronomically observed in small molecules, it largely serves as a contributor to silicate grains, though how these grains form is not well-understood. The smallest hypermagnesium oxide compounds (Mg 2 ${{}_{2}}$ O/Mg 2 ${{}_{2}}$ O + ${{}^{+}}$ ) may play a role in silicate formation, but little vibrational reference data exist. As such, anharmonic spectroscopic data are computed for X ˜ 1 Σ g + ${{{\tilde{\rm {X}}}}^1 {\rm{\Sigma }}_g^+ }$ Mg 2 ${{}_{2}}$ O, a ˜ 1 Σ u + ${{{\tilde{\rm {a}}}}^1 {\rm{\Sigma }}_u^+ }$ Mg 2 ${{}_{2}}$ O, and X ˜ 2 Σ g + ${{{\tilde{\rm {X}}}}^2 {\rm{\Sigma }}_g^+ }$ Mg 2 ${{}_{2}}$ O + ${{}^{+}}$ using quartic force fields (QFFs). Explicitly-correlated coupled-cluster QFFs for the neutral species perform well, implying that full multireference treatment may not be necessary for such systems if enough electron correlation is included. Equation-of-motion ionization potential (EOMIP) methods for X ˜ 2 Σ g + ${{{\tilde{\rm {X}}}}^2 {\rm{\Sigma }}_g^+ }$ Mg 2 ${{}_{2}}$ O + ${{}^{+}}$ QFFs circumvent previous symmetry breaking issues even in explicitly-correlated coupled-cluster results, motivating the need for EOMIP treatments at minimum for such systems. All three species are found to have high-intensity vibrational frequencies. Even so, the highly intense frequency ( X ˜ 1 Σ g + ${{{\tilde{\rm {X}}}}^1 {\rm{\Sigma }}_g^+ }$ Mg 2 ${{}_{2}}$ O: 894.7 cm-1/11.18 µm; a ˜ 1 Σ u + ${{{\tilde{\rm {a}}}}^1 {\rm{\Sigma }}_u^+ }$ Mg 2 ${{}_{2}}$ O: 915.0 cm-1/10.91 µm) for either neutral state may be astronomically obscured by the polycyclic aromatic hydrocarbon 11.2 µm band. Mg 2 ${{}_{2}}$ O + ${{}^{+}}$ may be less susceptible to such obfuscation, and its ν 1 ${{\nu }_{1}}$ intensity is computed to be a massive 4793 km mol-1.

9.
Chemphyschem ; 25(14): e202400151, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38635959

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) imply the missing link between resonantly stabilized free radicals and carbonaceous nanoparticles, commonly referred to as soot particles in combustion systems and interstellar grains in deep space. Whereas gas phase formation pathways to the simplest PAH - naphthalene (C10H8) - are beginning to emerge, reaction pathways leading to the synthesis of the 14π Hückel aromatic PAHs anthracene and phenanthrene (C14H10) are still incomplete. Here, by utilizing a chemical microreactor in conjunction with vacuum ultraviolet (VUV) photoionization (PI) of the products followed by detection of the ions in a reflectron time-of-flight mass spectrometer (ReTOF-MS), the reaction between the 1'- and 2'-methylnaphthyl radicals (C11H9⋅) with the propargyl radical (C3H3⋅) accesses anthracene (C14H10) and phenanthrene (C14H10) via the Propargyl Addition-BenzAnnulation (PABA) mechanism in conjunction with a hydrogen assisted isomerization. The preferential formation of the thermodynamically less stable anthracene isomer compared to phenanthrene suggests a kinetic, rather than a thermodynamics control of the reaction.

10.
Life (Basel) ; 14(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38672708

RESUMO

The RNA world hypothesis suggests that early cellular ancestors relied solely on RNA molecules for both genetic information storage and cellular functions. RNA, composed of four nucleosides-adenosine, guanosine, cytidine, and uridine-forms the basis of this theory. These nucleosides consist of purine nucleobases, adenine and guanine, and pyrimidine nucleobases, cytosine and uracil, bonded to ribose sugar. Notably, carbonaceous chondrite meteorites have revealed the presence of these bases and sugar, hinting at the potential existence of nucleosides in space. This study aims to present the infrared spectra of four RNA nucleosides commonly found in terrestrial biochemistry, facilitating their detection in space, especially in astrobiological and astrochemical contexts. Laboratory measurements involved obtaining mid- and far-IR spectra at three temperatures (-180 °C, room temperature, and +180 °C), followed by calculating molar extinction coefficients (ε) and integrated molar absorptivities (ψ) for corresponding bands. These spectral data, along with ε and ψ values, serve to provide quantitative insights into the presence and relative abundance of nucleosides in space and aid in their detection.

11.
Angew Chem Int Ed Engl ; 63(22): e202403953, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536217

RESUMO

Carbon dioxide (CO2) is widespread in astrochemically relevant environments, often coexisting with water (H2O) ices and thus triggering a great interest regarding the possible formation of their adducts under various thermodynamic conditions. Amongst them, solid carbonic acid (H2CO3) remains elusive, yet being widely studied. Synthetic routes followed for its production have always been characterised by drastic irradiation on solid ice mixtures or complex procedures on fluid samples (such as laser heating at moderate to high pressures). Here we report about a simpler yet effective synthetic route to obtain two diverse carbonic acid crystal structures from the fast, cold compression of pristine clathrate hydrate samples. The two distinct polymorphs we obtained, differing in the water content, have been deeply characterised via spectroscopic and structural techniques to assess their composition and their astonishing pressure stability, checked up to half a megabar, also highlighting the complex correlations between them so to compile a detailed phase diagram of this system. These results may have a profound impact on the prediction and modelisation of the complex chemistry which characterises many icy bodies of our Solar System.

12.
Annu Rev Phys Chem ; 75(1): 307-327, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38382568

RESUMO

The discovery of more than 200 gas-phase chemical compounds in interstellar space has led to the speculation that this nonterrestrial synthesis may play a role in the origin of life. These identifications were possible because of laboratory spectroscopy, which provides the molecular fingerprints for astronomical observations. Interstellar chemistry produces a wide range of small, organic molecules in dense clouds, such as NH2COCH3, CH3OCH3, CH3COOCH3, and CH2(OH)CHO. Carbon (C) is also carried in the fullerenes C60 and C70, which can preserve C-C bonds from circumstellar environments for future synthesis. Elusive phosphorus has now been found in molecular clouds, the sites of star formation, in the molecules PO and PN. Such clouds can collapse into solar systems, although the chemical/physical processing of the emerging planetary disk is uncertain. The presence of molecule-rich interstellar starting material, as well as the link to planetary bodies such as meteorites and comets, suggests that astrochemical processes set a prebiotic foundation.

13.
Molecules ; 29(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338409

RESUMO

Two fundamental halocarbon ions, CH2Cl+ and CH3ClH+, were studied in the gas phase using the FELion 22-pole ion trap apparatus and the Free Electron Laser for Infrared eXperiments (FELIX) at Radboud University, Nijmegen (the Netherlands). The vibrational bands of a total of four isotopologs, CH235,37Cl+ and CH335,37ClH+, were observed in selected wavenumber regions between 500 and 2900 cm-1 and then spectroscopically assigned based on the results of anharmonic force field calculations performed at the CCSD(T) level of theory. As the infrared photodissociation spectroscopy scheme employed probes singly Ne-tagged weakly bound complexes, complementary quantum-chemical calculations of selected species were also performed. The impact of tagging on the vibrational spectra of CH2Cl+ and CH3ClH+ is found to be virtually negligible for most bands; for CH3ClH+-Ne, the observations suggest a proton-bound structural arrangement. The experimental band positions as well as the best estimate rotational molecular parameters given in this work provide a solid basis for future spectroscopic studies at high spectral resolutions.

14.
Chemphyschem ; 25(2): e202300698, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37988180

RESUMO

We extend our recent theoretical work on the bending relaxation of H2 O in collisions with H2 by including the three water modes of vibration coupled with rotation, as well as the rotation of H2 . Our full quantum close-coupling method (excluding the H2 vibration) is combined with a high-accuracy nine-dimensional potential energy surface. The collisions of para-H2 O and ortho-H2 O with the two spin modifications of H2 are considered and compared for several initial states of H2 O. The convergence of the results as a function of the size of the rotational basis set of the two colliders is discussed. In particular, near-resonant energy transfer between H2 O and H2 is found to control the vibrational relaxation process, with a dominant contribution of transitions with Δ j 2 = j 2 f - j 2 i ${{\rm{\Delta }}j_2 = j_2^f - j_2^i }$ = + 2 , + 4 ${ + 2, + 4}$ , j 2 i ${j_2^i }$ and j 2 f ${j_2^f }$ being respectively the H2 initial and final rotational quantum numbers. Finally, the calculated value of the H2 O bending relaxation rate coefficient at 295 K is found to be in excellent agreement with its experimental estimate.

15.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069147

RESUMO

Several organic chemical compounds (the so-called interstellar complex organic molecules, iCOMs) have been identified in the interstellar medium (ISM). Examples of iCOMs are formamide (HCONH2), acetaldehyde (CH3CHO), methyl formate (CH3OCHO), or formic acid (HCOOH). iCOMs can serve as precursors of other organic molecules of enhanced complexity, and hence they are key species in chemical evolution in the ISM. The formation of iCOMs is still a subject of a vivid debate, in which gas-phase or grain-surface syntheses have been postulated. In this study, we investigate the grain-surface-formation pathways for the four above-mentioned iCOMs by transferring their primary gas-phase synthetic routes onto water ice surfaces. Our objective is twofold: (i) to identify potential grain-surface-reaction mechanisms leading to the formation of these iCOMs, and (ii) to decipher either parallelisms or disparities between the gas-phase and the grain-surface reactions. Results obtained indicate that the presence of the icy surface modifies the energetic features of the reactions compared to the gas-phase scenario, by increasing some of the energy barriers. Therefore, the investigated gas-phase mechanisms seem unlikely to occur on the icy grains, highlighting the distinctiveness between the gas-phase and the grain-surface chemistry.


Assuntos
Gelo , Compostos Orgânicos , Compostos Orgânicos/química , Evolução Química
16.
Life (Basel) ; 13(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38004348

RESUMO

The purine nucleobases adenine and guanine are complex organic molecules that are essential for life. Despite their ubiquitous presence on Earth, purines have yet to be detected in observations of astronomical environments. This work therefore proposes to study the infrared spectra of purines linked to terrestrial biochemical processes under conditions analogous to those found in the interstellar medium. The infrared spectra of adenine and guanine, both in neat form and embedded within an ice made of H2O:NH3:CH4:CO:CH3OH (10:1:1:1:1), were analysed with the aim of determining which bands attributable to adenine and/or guanine can be observed in the infrared spectrum of an astrophysical ice analogue rich in other volatile species known to be abundant in dense molecular clouds. The spectrum of adenine and guanine mixed together was also analysed. This study has identified three purine nucleobase infrared absorption bands that do not overlap with bands attributable to the volatiles that are ubiquitous in the dense interstellar medium. Therefore, these three bands, which are located at 1255, 940, and 878 cm-1, are proposed as an infrared spectral signature for adenine, guanine, or a mixture of these molecules in astrophysical ices. All three bands have integrated molar absorptivity values (ψ) greater than 4 km mol-1, meaning that they should be readily observable in astronomical targets. Therefore, if these three bands were to be observed together in the same target, then it is possible to propose the presence of a purine molecule (i.e., adenine or guanine) there.

17.
Molecules ; 28(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37959873

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous interstellar molecules. However, the formation mechanisms of PAHs and even the simplest cyclic aromatic hydrocarbon, benzene, are not yet fully understood. Recently, we reported the statistical and dynamical properties in the reaction mechanism of Fe+-catalyzed acetylene cyclotrimerization, whereby three acetylene molecules are directly converted to benzene. In this study, we extended our previous work and explored the possible role of the complex of other 3d transition metal cations, TM+ (TM = Sc, Ti, Mn, Co, and Ni), as a catalyst in acetylene cyclotrimerization. Potential energy profiles for bare TM+-catalyst (TM = Sc and Ti), for TM+NC--catalyst (TM = Sc, Ti, Mn, Co, and Ni), and for TM+-(H2O)8-catalyst (TM = Sc and Ti) systems were obtained using quantum chemistry calculations, including the density functional theory levels. The calculation results show that the scandium and titanium cations act as efficient catalysts in acetylene cyclotrimerization and that reactants, which contain an isolated acetylene and (C2H2)2 bound to a bare (ligated) TM cation (TM = Sc and Ti), can be converted into a benzene-metal-cation product complex without an entrance barrier. We found that the number of electrons in the 3d orbitals of the transition metal cation significantly contributes to the catalytic efficiency in the acetylene cyclotrimerization process. On-the-fly Born-Oppenheimer molecular dynamics (BOMD) simulations of the Ti+-NC- and Ti+-(H2O)8 complexes were also performed to comprehensively understand the nuclear dynamics of the reactions. The computational results suggest that interstellar benzene can be produced via acetylene cyclotrimerization reactions catalyzed by transition metal cation complexes.

18.
Int J Mol Sci ; 24(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37833965

RESUMO

The reactive open-shell species play a very important role in the radiation-induced molecular evolution occurring in the cold areas of space and presumably leading to the formation of biologically relevant molecules. This review presents an insight into the mechanism of such processes coming from matrix isolation studies with a main focus on the experimental and theoretical studies performed in the author's laboratory during the past decade. The radicals and radical cations produced from astrochemically relevant molecules were characterized by Fourier transform infrared (FTIR) and electron paramagnetic resonance (EPR) spectroscopy. Small organic radicals containing C, O, and N atoms are considered in view of their possible role in the formation of complex organic molecules (COMs) in space, and a comparison with earlier results is given. In addition, the radical-molecule complexes generated from isolated intermolecular complexes in matrices are discussed in connection with their model significance as the building blocks for COMs formed under the conditions of extremely restricted molecular mobility at cryogenic temperatures.


Assuntos
Radicais Livres , Radicais Livres/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos
19.
Molecules ; 28(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37764314

RESUMO

We evaluate the accuracy of CCSD(T) and density functional theory (DFT) methods for the calculation of equilibrium rotational constants (Ae, Be, and Ce) for four experimentally detected low-lying C5H2 isomers (ethynylcyclopropenylidene (2), pentatetraenylidene (3), ethynylpropadienylidene (5), and 2-cyclopropen-1-ylidenethenylidene (8)). The calculated rotational constants are compared to semi-experimental rotational constants obtained by converting the vibrationally averaged experimental rotational constants (A0, B0, and C0) to equilibrium values by subtracting the vibrational contributions (calculated at the B3LYP/jun-cc-pVTZ level of the theory). The considered isomers are closed-shell carbenes, with cumulene, acetylene, or strained cyclopropene moieties, and are therefore highly challenging from an electronic structure point of view. We consider both frozen-core and all-electron CCSD(T) calculations, as well as a range of DFT methods. We find that calculating the equilibrium rotational constants of these C5H2 isomers is a difficult task, even at the CCSD(T) level. For example, at the all-electron CCSD(T)/cc-pwCVTZ level of the theory, we obtain percentage errors ≤0.4% (Ce of isomer 3, Be and Ce of isomer 5, and Be of isomer 8) and 0.9-1.5% (Be and Ce of isomer 2, Ae of isomer 5, and Ce of isomer 8), whereas for the Ae rotational constant of isomers 2 and 8 and Be rotational constant of isomer 3, high percentage errors above 3% are obtained. These results highlight the challenges associated with calculating accurate rotational constants for isomers with highly challenging electronic structures, which is further complicated by the need to convert vibrationally averaged experimental rotational constants to equilibrium values. We use our best CCSD(T) rotational constants (namely, ae-CCSD(T)/cc-pwCVTZ for isomers 2 and 5, and ae-CCSD(T)/cc-pCVQZ for isomers 3 and 8) to evaluate the performance of DFT methods across the rungs of Jacob's Ladder. We find that the considered pure functionals (BLYP-D3BJ, PBE-D3BJ, and TPSS-D3BJ) perform significantly better than the global and range-separated hybrid functionals. The double-hybrid DSD-PBEP86-D3BJ method shows the best overall performance, with percentage errors below 0.5% in nearly all cases.

20.
Chemphyschem ; 24(22): e202300248, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37585236

RESUMO

We present results of quantum structure calculations aimed at demonstrating the possible existence of dipole-bound states (DBS) for the anion C 5 N - ${{\rm{C}}_5 {\rm{N}}^ - }$ , a species already detected in the Interstellar medium (ISM). The positive demonstration of DBS existence using ab initio studies is an important step toward elucidating possible pathways for the formation of the more tightly bound valence bound states (VBS) in environments where free electrons from starlight ionization processes are known to be available to interact with the radical partner of the title molecule. Our current calculations show that such excited DBS states can exist in C 5 N - ${{\rm{C}}_5 {\rm{N}}^ - }$ , in agreement with what we had previously found for the smallercyanopolyyne in the series: the C 3 N - ${{\rm{C}}_3 {\rm{N}}^ - }$ anion. This system has a very weakly bound anion with binding energies of about 3 and 9 cm-1 for the 1 Σ + ${^1 \Sigma ^ + }$ and 3 Σ + ${^3 \Sigma ^ + }$ DBS, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA