Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Cell Neurosci ; 18: 1402479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962511

RESUMO

Wound healing of the central nervous system (CNS) is characterized by the classical phases of 'hemostasis', 'inflammation', 'proliferation', and 'remodeling'. Uncontrolled wound healing results in pathological scar formation hindering tissue remodeling and functional recovery in the CNS. Initial blood protein extravasation and activation of the coagulation cascade secure hemostasis in CNS diseases featuring openings in the blood-brain barrier. However, the relevance of blood-derived coagulation factors was overlooked for some time in CNS wound healing and scarring. Recent advancements in animal models and human tissue analysis implicate the blood-derived coagulation factor fibrinogen as a molecular link between vascular permeability and scar formation. In this perspective, we summarize the current understanding of how fibrinogen orchestrates scar formation and highlight fibrinogen-induced signaling pathways in diverse neural and non-neural cells that may contribute to scarring in CNS disease. We particularly highlight a role of fibrinogen in the formation of the lesion border between the healthy neural tissue and the fibrotic scar. Finally, we suggest novel therapeutic strategies via manipulating the fibrinogen-scar-forming cell interaction to improve functional outcomes.

2.
Res Sq ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562908

RESUMO

Background: The G2019S mutation of LRRK2, which enhances kinase activity of the protein, confers a substantial risk of developing Parkinson's disease (PD). However, the mutation demonstrates incomplete penetrance, suggesting the involvement of other genetic or environmental modulating factors. Here, we investigated whether LRRK2 G2019S knock-in (KI) mice treated with the inflammogen lipopolysaccharide (LPS) could model LRRK2 PD. Results: We found that short-term (2 weeks) treatment with LPS did not result in the loss of dopaminergic neurons in either LRRK2 G2019S KI or wild-type (WT) mice. Compared with WT mice, LRRK2 G2019S-KI mice showed incomplete recovery from LPS-induced weight loss. In LRRK2 G2019S KI mice, LPS treatment led to upregulated phosphorylation of LRRK2 at the autophosphorylation site Serine 1292, which is known as a direct readout of LRRK2 kinase activity. LPS treatment caused a greater increase in the activated astrocyte marker glial fibrillary acidic protein (GFAP) in the striatum and substantia nigra of LRRK2 G2019S mice than in those of WT mice. The administration of caffeine, which was recently identified as a biomarker of resistance to developing PD in individuals with LRRK2 mutations, attenuated LPS-induced astrocyte activation specifically in LRRK2 G2019S KI mice. Conclusions: Our findings suggest that 2 weeks of exposure to LPS is not sufficient to cause dopaminergic neuronal loss in LRRK2 G2019S KI mice but rather results in increased astrocyte activation, which can be ameliorated by caffeine.

3.
Int J Dev Neurosci ; 84(3): 177-189, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38327108

RESUMO

Alcohol consumption during adolescence causes negative structural changes in the cerebellum and can lead to cognitive and motor skill disorders. Unfortunately, the age at which individuals begin drinking alcohol has decreased in recent years, which has drawn attention to the effects of alcohol on neurological changes during preadolescence. In this study, we investigated the effects of adolescent intermittent ethanol (AIE) exposure on the cellular composition of the cerebellum in male rats, particularly when alcohol consumption begins early. The male rats received eight doses of intermittent intraperitoneal injection of 25% (v/v) ethanol (3 g/kg) or saline from postnatal days (PND) 25 to PND 38. In rats, 28-42 days old corresponds to 10-18 years old in humans. Two hours after the last injection, the cells, neurons, and non-neuronal cells in the cerebellum were immunocytochemically labeled and the total numbers of related cells were calculated using the Isotropic Fractionator method. We found that AIE exposure does not change the cell numbers of the cerebellum in the short term, but it does activate astrocytes in the white matter of the cerebellum. These findings suggest that alcohol use during adolescence impairs the innate immune system and negatively affects brain plasticity.


Assuntos
Astrócitos , Cerebelo , Etanol , Animais , Masculino , Cerebelo/efeitos dos fármacos , Etanol/toxicidade , Ratos , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Contagem de Células , Depressores do Sistema Nervoso Central/toxicidade , Depressores do Sistema Nervoso Central/farmacologia , Animais Recém-Nascidos , Proteína Glial Fibrilar Ácida/metabolismo , Neurônios/efeitos dos fármacos , Ratos Wistar , Consumo de Bebidas Alcoólicas/efeitos adversos
4.
Neurotherapeutics ; 21(2): e00306, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237380

RESUMO

The mechanisms of central neuropathic pain (CNP) caused by spinal cord injury have not been sufficiently studied. We have found that the upregulation of astrocytic aquaporin-4 (AQP4) aggravated peripheral neuropathic pain after spinal nerve ligation in rats. Using a T13 spinal cord hemisection model, we showed that spinal AQP4 was markedly upregulated after SCI and mainly expressed in astrocytes in the spinal dorsal horn (SDH). Inhibition of AQP4 with TGN020 suppressed astrocyte activation, attenuated the development and maintenance of below-level CNP and promoted motor function recovery in vivo. In primary astrocyte cultures, TGN020 also changed cell morphology, diminished cell proliferation and suppressed astrocyte activation. Moreover, T13 spinal cord hemisection induced cell-surface abundance of the AQP4 channel and perivascular localization in the SDH. Targeted inhibition of AQP4 subcellular localization with trifluoperazine effectively diminished astrocyte activation in vitro and further ablated astrocyte activation, attenuated the development and maintenance of below-level CNP, and accelerated functional recovery in vivo. Together, these results provide mechanistic insights into the roles of AQP4 in the development and maintenance of below-level CNP. Intervening with AQP4, including targeting AQP4 subcellular localization, might emerge as a promising agent to prevent chronic CNP after SCI.


Assuntos
Aquaporina 4 , Neuralgia , Niacinamida , Traumatismos da Medula Espinal , Tiadiazóis , Animais , Ratos , Aquaporina 4/metabolismo , Astrócitos , Neuralgia/etiologia , Niacinamida/análogos & derivados , Ratos Sprague-Dawley , Medula Espinal , Corno Dorsal da Medula Espinal , Traumatismos da Medula Espinal/complicações
5.
CNS Neurosci Ther ; 30(4): e14508, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37864452

RESUMO

AIMS: Exposure to crystalline silica (CS) in occupational settings induces chronic inflammation in the respiratory system and, potentially, the brain. Some workers are frequently concurrently exposed to both CS and nicotine. Here, we explored the impact of nicotine on CS-induced neuroinflammation in the mouse hippocampus. METHODS: In this study, we established double-exposed models of CS and nicotine in C57BL/6 mice. To assess depression-like behavior, experiments were conducted at 3, 6, and 9 weeks. Serum inflammatory factors were analyzed by ELISA. Hippocampus was collected for RNA sequencing analysis and examining the gene expression patterns linked to inflammation and cell death. Microglia and astrocyte activation and hippocampal neuronal death were assessed using immunohistochemistry and immunofluorescence staining. Western blotting was used to analyze the NF-κB expression level. RESULTS: Mice exposed to CS for 3 weeks showed signs of depression. This was accompanied by elevated IL-6 in blood, destruction of the blood-brain barrier, and activation of astrocytes caused by an increased NF-κB expression in the CA1 area of the hippocampus. The elevated levels of astrocyte-derived Lcn2 and upregulated genes related to inflammation led to higher neuronal mortality. Moreover, nicotine mitigated the NF-κB expression, astrocyte activation, and neuronal death, thereby ameliorating the associated symptoms. CONCLUSION: Silica exposure induces neuroinflammation and neuronal death in the mouse hippocampal CA1 region and depressive behavior. However, nicotine inhibits CS-induced neuroinflammation and neuronal apoptosis, alleviating depressive-like behaviors in mice.


Assuntos
NF-kappa B , Nicotina , Camundongos , Animais , NF-kappa B/metabolismo , Nicotina/farmacologia , Nicotina/metabolismo , Astrócitos/metabolismo , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Região CA1 Hipocampal/metabolismo , Inflamação/metabolismo , Apoptose , Microglia/metabolismo
6.
Life Sci ; 333: 122139, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37783266

RESUMO

AIMS: Pain is a profoundly debilitating symptom in cancer patients, leading to disability, immobility, and a marked decline in their quality of life. This study aimed to investigate the potential roles of miR-199a-3p in a murine model of bone cancer pain induced by tumor cell implantation in the medullary cavity of the femur. MATERIALS AND METHODS: We assessed pain-related behaviors, including the paw withdrawal mechanical threshold (PWMT) and the number of spontaneous flinches (NSF). To investigate miRNA expression and its targets in astrocytes, we employed a combination of RNA-seq analysis, qRT-PCR, Western blotting, EdU, TUNEL, ChIP, ELISA, and luciferase reporter assays in mice (C3H/HeJ) with bone cancer pain and control groups. KEY FINDINGS: On days 10, 14, 21, and 28 post-surgery, we observed significant differences in PWTL, PWMT, and NSF when compared to the sham group (P < 0.001). qRT-PCR assays and miRNA sequencing results confirmed reduced miR-199a-3p expression in astrocytes of mice with bone cancer pain. Gain- and loss-of-function experiments demonstrated that miR-199a-3p suppressed astrocyte activation and the expression of inflammatory cytokines. In vitro investigations revealed that miR-199a-3p mimics reduced the levels of inflammatory factors in astrocytes and MyD88/NF-κB proteins. Furthermore, treatment with a miR-199a-3p agonist resulted in reduced expression of MyD88, TAK1, p-p65, and inflammatory mediators, along with decreased astrocyte activation in the spinal cord. SIGNIFICANCE: Collectively, these findings demonstrate that upregulation of miR-199a-3p may offer a therapeutic avenue for mitigating bone cancer pain in mice by suppressing neuroinflammation and inhibiting the MyD88/NF-κB signaling pathway.


Assuntos
Neoplasias Ósseas , Dor do Câncer , MicroRNAs , Osteossarcoma , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Ósseas/complicações , Neoplasias Ósseas/genética , Dor do Câncer/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos C3H , MicroRNAs/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Osteossarcoma/genética , Qualidade de Vida
7.
Res Sq ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37841847

RESUMO

Background: Auditory dysfunction, including central auditory hyperactivity, hearing loss and hearing in noise deficits, has been reported in 5xFAD Alzheimer's disease (AD) mice, suggesting a causal relationship between amyloidosis and auditory dysfunction. Central auditory hyperactivity correlated in time with small amounts of plaque deposition in the inferior colliculus and medial geniculate body, which are the auditory midbrain and thalamus, respectively. Neuroinflammation has been associated with excitation to inhibition imbalance in the central nervous system, and therefore has been proposed as a link between central auditory hyperactivity and AD in our previous report. However, neuroinflammation in the auditory pathway has not been investigated in mouse amyloidosis models. Methods: Machine learning was used to classify the previously obtained auditory brainstem responses (ABRs) from 5xFAD mice and their wild type (WT) littermates. Neuroinflammation was assessed in six auditory-related regions of the cortex, thalamus, and brainstem. Cochlear pathology was assessed in cryosection and whole mount. Behavioral changes were assessed with fear conditioning, open field testing and novel objection recognition. Results: Reliable machine learning classification of 5xFAD and WT littermate ABRs were achieved for 6M and 12M, but not 3M. The top features for accurate classification at 6 months of age were characteristics of Waves IV and V. Microglial and astrocytic activation were pronounced in 5xFAD inferior colliculus and medial geniculate body at 6 months, two neural centers that are thought to contribute to these waves. Lower regions of the brainstem were unaffected, and cortical auditory centers also displayed inflammation beginning at 6 months. No losses were seen in numbers of spiral ganglion neurons (SGNs), auditory synapses, or efferent synapses in the cochlea. 5xFAD mice had reduced responses to tones in fear conditioning compared to WT littermates beginning at 6 months. Conclusions: Serial use of ABR in early AD patients represents a promising approach for early and inexpensive detection of neuroinflammation in higher auditory brainstem processing centers. As changes in auditory processing are strongly linked to AD progression, central auditory hyperactivity may serve as a biomarker for AD progression and/or stratify AD patients into distinct populations.

8.
Clin Hemorheol Microcirc ; 84(4): 425-434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334586

RESUMO

OBJECTIVE: This study was designed to summarize the changes of cerebral blood flow (CBF) in the bilateral hippocampal CA1 region of the hemorrhagic shock reperfusion (HSR) model of rats and their correlation with anxiety-like behavior and inflammation. METHODS: Rats were randomly divided into the HSR group and the Sham group. 30 rats in each group were subdivided into 5 time points (1 w, 2 w, 4 w, 8 w, and 12 w) for examination. 3D-arterial spin labeling (3D-ASL) was performed. Long period anxiety-like behaviors were analyzed through the open field test. Histopathology was used to detect astrocytic activation in bilateral hippocampus. The concentrations of pro-inflammatory cytokines were analyzed by ELISA. RESULTS: At 1, 2, 4, and 8 weeks, CBF in bilateral hippocampus CA1 area of the rats in the Sham group was significantly higher than the rats in the HSR group. The rats in the HSR group had significantly shorter total traveled distance, lower velocity, and less rearing counts than those in the Sham group at 1, 2, 4, 8, and 12 weeks after the surgery. The CBF at 1, 2, 4, 8, and 12 weeks after the surgery had positive correlation with the total traveled distance, velocity, and rearing counts in the open field test. The rats in the HSR group had significantly higher GFAP intensity and the concentrations of IL-6, IL-1ß, and TNF-α than those in the Sham group at 1, 2, 4, 8, and 12 weeks after the surgery. The CBF at 1, 2, 4, 8 and 12 weeks after the surgery had significantly negative correlation with the GFAP intensity and the concentrations of IL-6, IL-1ß, and TNF-α. CONCLUSION: In conclusion, CBF in bilateral hippocampus CA1 area, spatial exploration ability in rats with HSR were decreased while the astrocyte activation was enhanced. During the long period after the induction of HSR, the value of CBF in bilateral hippocampus CA1 area was proved to have significant correlation with anxiety-like behaviors and astrocyte activation.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , Hipocampo/metabolismo , Reperfusão , Infarto Cerebral , Circulação Cerebrovascular , Inflamação
9.
Prog Neurobiol ; 224: 102436, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931588

RESUMO

Astrocyte activation in the spinal dorsal horn may play an important role in the development of chronic neuropathic pain, but the mechanisms involved in astrocyte activation and their modulatory effects remain unknown. The inward rectifying potassium channel protein 4.1 (Kir4.1) is the most important background K+ channel in astrocytes. However, how Kir4.1 is regulated and contributes to behavioral hyperalgesia in chronic pain is unknown. In this study, single-cell RNA sequencing analysis indicated that the expression levels of both Kir4.1 and Methyl-CpG-binding protein 2 (MeCP2) were decreased in spinal astrocytes after chronic constriction injury (CCI) in a mouse model. Conditional knockout of the Kir4.1 channel in spinal astrocytes led to hyperalgesia, and overexpression of the Kir4.1 channel in spinal cord relieved CCI-induced hyperalgesia. Expression of spinal Kir4.1 after CCI was regulated by MeCP2. Electrophysiological recording in spinal slices showed that knockdown of Kir4.1 significantly up-regulated the excitability of astrocytes and then functionally changed the firing patterns of neurons in dorsal spinal cord. Therefore, targeting spinal Kir4.1 may be a therapeutic approach for hyperalgesia in chronic neuropathic pain.


Assuntos
Astrócitos , Neuralgia , Animais , Camundongos , Astrócitos/metabolismo , Hiperalgesia/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Neuralgia/genética , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal
10.
Biomedicines ; 11(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979952

RESUMO

Astrocyte inflammation activation is an important cause that hinders the recovery of motor function after cerebral ischemia. However, its molecular mechanism has not yet been clearly clarified. The peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated nuclear transcriptional factor. This study aims to further clarify the role of PPARα in astrocyte inflammation activation after cerebral ischemia and to explore the underlying mechanism. Astrocyte activation was induced in an in vivo model by transient middle cerebral artery occlusion (tMCAO) in mice. The in vitro model was induced by an oxygen-glucose deprivation/reoxygenation (OGD/R) in a primary culture of mouse astrocyte. PPARα-deficient mice were used to observe the effects of PPARα on astrocyte activation and autophagic flux. Our results showed that PPARα was mainly expressed in activated astrocytes during the chronic phase of brain ischemia and PPARα dysfunction promoted astrocyte inflammatory activation. After cerebral ischemia, the expressions of LC3-II/I and p62 both increased. Autophagic vesicle accumulation was observed by electron microscopy in astrocytes, and the block of autophagic flux was indicated by an mRFP-GFP-LC3 adenovirus infection assay. A PPARα deficit aggravated the autophagic flux block, while PPARα activation preserved the lysosome function and restored autophagic flux in astrocytes after OGD/R. The autophagic flux blocker bafilomycin A1 and chloroquine antagonized the effect of the PPARα agonist on astrocyte activation inhibition. This study identifies a potentially novel function of PPARα in astrocyte autophagic flux and suggests a therapeutic target for the prevention and treatment of chronic brain ischemic injury.

11.
Neurochem Res ; 48(6): 1912-1924, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36750528

RESUMO

Central nervous injury and regeneration repair have always been a hot and difficult scientific questions in neuroscience, such as spinal cord injury (SCI) caused by a traffic accident, fall injury, and war. After SCI, astrocytes further migrate to the injured area and form dense glial scar through proliferation, which not only limits the infiltration of inflammatory cells but also affects axon regeneration. We aim to explore the effect and underlying mechanism of miR-155-5p overexpression promoted astrocyte activation and glial scarring in an SCI model. MiR-155-5p mimic (50 or 100 nm) was used to transfect CTX-TNA2 rat brain primary astrocyte cell line. MiR-155-5p antagonist and miR-155-5p agomir were performed to treat SCI rats. MiR-155-5p mimic dose-dependently promoted astrocyte proliferation, and inhibited cell apoptosis. MiR-155-5p overexpression inhibited nuclear PTEN expression by targeting Nedd4 family interacting protein 1 (Ndfip1). Ndfip1 overexpression reversed astrocyte activation which was induced by miR-155-5p mimic. Meanwhile, Ndfip1 overexpression abolished the inhibition effect of miR-155-5p mimic on PTEN nuclear translocation. In vivo, miR-155-5p silencing improved SCI rat locomotor function and promoted astrocyte activation and glial scar formation. And miR-155-5p overexpression showed the opposite results. MiR-155-5p aggravated astrocyte activation and glial scarring in a SCI model by targeting Ndfip1 expression and inhibiting PTEN nuclear translocation. These findings have ramifications for the development of miRNAs as SCI therapeutics.


Assuntos
MicroRNAs , Traumatismos da Medula Espinal , Ratos , Animais , Astrócitos/metabolismo , Ratos Sprague-Dawley , Gliose/metabolismo , Axônios/metabolismo , Cicatriz/metabolismo , Cicatriz/patologia , Regeneração Nervosa , Traumatismos da Medula Espinal/metabolismo , MicroRNAs/metabolismo , Medula Espinal/metabolismo , PTEN Fosfo-Hidrolase/metabolismo
12.
Brain Sci ; 13(1)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36672133

RESUMO

Chronic pain burdens patients and healthcare systems worldwide. Pain control remains urgently required. IL-17 (interleukin-17)-mediated neuroinflammation is of unique importance in spinal nociceptive transduction in pathological pain development. Recently, resolvin D2 (RvD2), as a bioactive, specialized pro-resolving mediator derived from docosahexaenoic acid, exhibits potent resolution of inflammation in several neurological disorders. This preclinical study evaluates the therapeutic potential and underlying targets of RvD2 in two mouse models of chronic pain, including sciatic nerve ligation-caused neuropathic pain and sarcoma-caused bone cancer pain. Herein, we report that repetitive injections of RvD2 (intrathecal, 500 ng) reduce the initiation of mechanical allodynia and heat hyperalgesia following sciatic nerve damage and bone cancer. Single exposure to RvD2 (intrathecal, 500 ng) attenuates the established neuropathic pain and bone cancer pain. Furthermore, systemic RvD2 (intravenous, 5 µg) therapy is effective in attenuating chronic pain behaviors. Strikingly, RvD2 treatment suppresses spinal IL-17 overexpression, chemokine CXCL1 release and astrocyte activation in mice undergoing sciatic nerve trauma and bone cancer. Pharmacological neutralization of IL-17 ameliorates chronic neuropathic pain and persistent bone cancer pain, as well as reducing spinal CXCL1 release. Recombinant IL-17-evoked acute pain behaviors and spinal CXCL1 release are mitigated after RvD2 administration. In addition, RvD2 treatment dampens exogenous CXCL1-caused transient pain phenotypes. Overall, these current findings identify that RvD2 therapy is effective against the initiation and persistence of long-lasting neuropathic pain and bone cancer pain, which may be through spinal down-modulation of IL-17 secretion, CXCL1 release and astrocyte activation.

13.
Alzheimers Dement ; 19(5): 1888-1900, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335579

RESUMO

INTRODUCTION: Sleep disruption is associated with astrocyte activation and impaired cognition in model organisms. However, the relationship among sleep, astrocyte activation, and cognition in humans is uncertain. METHODS: We used RNA-seq to quantify the prefrontal cortex expression of a panel of human activated astrocyte marker genes in 1076 older adults in the Religious Orders Study and Rush Memory and Aging Project, 411 of whom had multi-day actigraphy prior to death. We related this to rest fragmentation, a proxy for sleep fragmentation, and to longitudinal cognitive function. RESULTS: Fragmentation of rest periods was associated with higher expression of activated astrocyte marker genes, which was associated with a lower level and faster decline of cognitive function. DISCUSSION: Astrocyte activation and fragmented rest are associated with each other and with accelerated cognitive decline. If experimental studies confirm a causal relationship, targeting sleep fragmentation and astrocyte activation may benefit cognition in older adults. HIGHLIGHTS: Greater fragmentation of rest periods, a proxy for sleep fragmentation, is associated with higher composite expression of a panel of genes characteristic of activated astrocytes. Increased expression of genes characteristic of activated astrocytes was associated with a lower level and more rapid decline of cognitive function, beyond that accounted for by the burden of amyloid and neurofibrillary tangle pathology. Longitudinal and experimental studies are needed to delineate the causal relationships among sleep, astrocyte activation, and cognition.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Doença de Alzheimer/patologia , Privação do Sono , Astrócitos/patologia , Sono/fisiologia , Disfunção Cognitiva/genética , Cognição/fisiologia
14.
Neurochem Int ; 162: 105463, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36513311

RESUMO

NLRP3 inflammasome activation is implicated in irradiation-induced cognitive dysfunction. Alternate-day fasting (ADF) has been demonstrated to improve neuroinflammation as a non-pharmacological intervention. However, the exact mechanism and the anti-inflammatory effect in irradiation-induced cognitive dysfunction still need further in-depth study. The present study examined the effects of eight-week ADF on the cognitive functions of mice as well as inflammasome-mediated hippocampal neuronal loss following irradiation in mouse models of irradiation-induced cognitive deficits using seven-week-old male C57BL/6J mice. The behavioral results of novel place recognition and object recognition tasks revealed that ADF ameliorated cognitive functions in irradiation-induced cognitive dysfunction mice. ADF inhibited the expression of components of the NLRP3 inflammasome (NLRP3, ASC, and Cl.caspase-1), the downstream inflammatory factor (IL-1ß and IL-18), and apoptosis-related proteins (caspase-3) via western blotting. Furthermore, an increased number of neurons and activated astrocytes were observed in the hippocampus using immunohistochemistry and Sholl analysis, which was jointly confirmed by western blotting. According to our study, this is the first time we found that ADF improved cognitive dysfunction induced by irradiation, and the anti-inflammatory effect of ADF could be due to inhibition in NLRP3-mediated hippocampal neuronal loss by suppressing astrocyte activation.


Assuntos
Disfunção Cognitiva , Hipocampo , Jejum Intermitente , Lesões por Radiação , Animais , Masculino , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Hipocampo/patologia , Hipocampo/efeitos da radiação , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lesões por Radiação/etiologia , Lesões por Radiação/prevenção & controle , Doenças Neuroinflamatórias/terapia , Neurônios/patologia , Neurônios/efeitos da radiação , Radioterapia/efeitos adversos
15.
Chem Biol Interact ; 370: 110310, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36539177

RESUMO

Lead (Pb), as a heavy metal, is used in batteries, ceramics, paint, pipes, certain ceramics, e-waste recycling, etc. Chronic Pb exposure can result in the inflammation of the central nervous system, as well as neurobehavioral changes. Both glial cells and neurons are involved in central nervous injury following Pb exposure. However, significant cellular events and their key regulators following Pb exposure remain to be elucidated. In this study, rats were randomly exposed to 250 or 500 mg/L PbAc for 9 weeks. Hippocampal proteomics was performed using isobaric tags for relative absolute quantification. Bioinformatics analysis was used to identify 301 and 267 differentially expressed proteins-which were involved in biological processes, including glial cell activation, neural nucleus development, and mRNA processing-in the low and high Pb exposure groups, respectively. Gene Set Enrichment Analysis showed that astrocyte activation was identified as a significant cellular event occurring in the low- or high-dose Pb exposure group. Subsequently, in vivo and in vitro models of Pb exposure were established to confirm astrocyte activation. As a result, glial fibrillary acidic protein expression in astrocytes was much higher in the Pb exposure group. Moreover, the mRNA expression of neurotoxic reactive astrocyte genes was much higher than that of the control group. The analysis of transcription factors indicated that NF-κB was screened as the top transcription factor, which might regulate astrocyte activation following Pb exposure in the rat hippocampus. The data also showed that the inhibition of NF-κB transcription suppressed astrocyte activation following Pb exposure. Overall, astrocyte activation was one of the significant cellular events following Pb exposure in the rat hippocampus, which was regulated by the NF-κB transcription factor, suggesting that inhibiting astrocyte activation may be a potential target for the prevention of Pb neurotoxicity.


Assuntos
Chumbo , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Chumbo/toxicidade , Astrócitos/metabolismo , Proteômica , Hipocampo/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Neurosci Bull ; 39(3): 479-490, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36229715

RESUMO

The accumulation of pathological α-synuclein (α-syn) in the central nervous system and the progressive loss of dopaminergic neurons in the substantia nigra pars compacta are the neuropathological features of Parkinson's disease (PD). Recently, the findings of prion-like transmission of α-syn pathology have expanded our understanding of the region-specific distribution of α-syn in PD patients. Accumulating evidence suggests that α-syn aggregates are released from neurons and endocytosed by glial cells, which contributes to the clearance of α-syn. However, the activation of glial cells by α-syn species produces pro-inflammatory factors that decrease the uptake of α-syn aggregates by glial cells and promote the transmission of α-syn between neurons, which promotes the spread of α-syn pathology. In this article, we provide an overview of current knowledge on the role of glia and α-syn pathology in PD pathogenesis, highlighting the relationships between glial responses and the spread of α-syn pathology.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos/metabolismo , Parte Compacta da Substância Negra/metabolismo
17.
Chinese Pharmacological Bulletin ; (12): 739-744, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1013940

RESUMO

Aim To observe cellular damage and astrocyte activation at different time points of cerebral ischemia and reperfusion. Methods The middle cerebral artery of male SpragueDawley rats was occluded for 90 min followed by different time points of reperfusion. Eighty-five SPF male SD rats were randomly divided into control group (Sham), IR3, 6, 12, 24 and IR48h (MCAO followed by 48 h of reperfusion) group. Cerebral ischemia and reperfusion injury was observed by HE staining, and the structure of astrocytes was estimated with transmission electron microscopy (TEM). GFAP expression was detected by immunofluorescence staining and Western blot. Results Cerebral ischemia following by different time points of reperfusion led to different degrees of cellular damage, which was the most serious at 24 h of reperfusion. TEM showed destruction of astrocytes structure, swollen organelles and broken mitochondrial ridge. After cerebral ischemia-reperfusion, the expression levels of GFAP were significant up-regulated in the ischemic penumbra cortex and the highest was at 48 h of reperfusion, indicating astrocytes were activated. In addition, the results showed the gradual decrease in GFAP expression in the infarct core. Conclusions After cerebral ischemia-reperfusion, cellular damage is aggravated, and astrocytes are gradually activated in the ischemic penumbra. With the extension of reperfusion time, the boundaries of infarct area and ischemic area are gradually clear, and scarring may occur.

18.
Neuroscience Bulletin ; (6): 479-490, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-971566

RESUMO

The accumulation of pathological α-synuclein (α-syn) in the central nervous system and the progressive loss of dopaminergic neurons in the substantia nigra pars compacta are the neuropathological features of Parkinson's disease (PD). Recently, the findings of prion-like transmission of α-syn pathology have expanded our understanding of the region-specific distribution of α-syn in PD patients. Accumulating evidence suggests that α-syn aggregates are released from neurons and endocytosed by glial cells, which contributes to the clearance of α-syn. However, the activation of glial cells by α-syn species produces pro-inflammatory factors that decrease the uptake of α-syn aggregates by glial cells and promote the transmission of α-syn between neurons, which promotes the spread of α-syn pathology. In this article, we provide an overview of current knowledge on the role of glia and α-syn pathology in PD pathogenesis, highlighting the relationships between glial responses and the spread of α-syn pathology.


Assuntos
Humanos , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos/metabolismo , Parte Compacta da Substância Negra/metabolismo
19.
Front Pharmacol ; 13: 1008249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506556

RESUMO

Background: Depression is a common and potentially life-threatening mental illness, and currently, there is a lack of effective treatment. It has been reported that dehydrocorydaline (DHC) can inhibit monoamine transporter uptake in depressed CUMS mice, but more possible mechanisms of action remain to be further studied. Methods: C57BL/6 mice were exposed to chronic unpredictable mild stress (CUMS) for five consecutive weeks. The mice were administrated with dehydrocorydaline or fluoxetine (FLU) for four consecutive weeks. Behavioral tests including sucrose preference test (SPT), tail suspension test (TST), and forced swimming test (FST) were applied. In parallel, hematoxylin and eosin (H&E) staining and Nissl staining were used to explore the effect of DHC on pathological changes in the hippocampus. The concentrations of depression-related factors (5-HT and DA) and inflammatory factors (TNF-α, IL-6, and IL-1ß) in the hippocampus and serum were assessed by ELISA assay. NLRP3 inflammasome pathway-related proteins (NLRP3, IL-18, IL-1 IL-1α, and caspase-1) were detected by western blot. The activation of microglia and astrocytes was subjected to immunofluorescent staining. Additionally, microglia were treated with DHC (100 mg/L) for 24 h following incubation with 100 ng/ml LPS for 12 h. ov-NC or ov-NLRP3 plasmid was transfected into microglia 6 h before LPS induction for exploring the effect of NLRP3 overexpression on DHC-inhibited microglia activation. Then, conditioned media of microglia were collected from each group, followed by intervention of astrocytes for 24 h to explore the effect of NLRP3 overexpression of microglia on astrocyte activation. Results: In vivo administration of DHC was found to ameliorate depressive-like behaviors and attenuate neuron damage of CUMS mice. DHC increased neurotransmitter concentration, reduced the proinflammatory factor levels, attenuated NLRP3 inflammasome activation, and decreased A1 astrocyte and microglia activation in the hippocampus of CUMS mice. Furthermore, in vivo results showed that activated microglia induced activation of A1 astrocytes but not A2 astrocytes. Conclusion: Taken together, we provided evidence that DHC exhibited antidepressive effects on CUMS mice possibly via NLRP3 inflammasome-mediated astrocyte activation.

20.
Open Med (Wars) ; 17(1): 2117-2129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582210

RESUMO

As a common complication of diabetes, diabetic pain neuropathy (DPN) is caused by neuron intrinsic and extrinsic factors. Neuron intrinsic factors include neuronal apoptosis and oxidative stress, while extrinsic factors are associated with glial activation. The present study was performed to reveal the functions of miR-130a-3p in apoptosis and oxidative stress of the high glucose (HG)-stimulated primary neurons as well as in the activation of microglial and astrocytes. Primary neurons, microglial, and astrocytes were isolated from newborn mice. Apoptosis was assessed by flow cytometry analysis and western blotting. Reactive oxygen species and glutathione levels were assessed to determine the oxidative stress. Markers of glial cells were detected by immunofluorescence staining. The results revealed that miR-130a-3p deficiency alleviated apoptosis and oxidative stress of HG-stimulated neurons as well as suppressed microglial and astrocyte activation. Moreover, sphingosine-1-phosphate receptor 1 (S1PR1) was found as a target downstream of miR-130a-3p. S1PR1 knockdown partially rescued the inhibitory effects of silenced miR-130a-3p on neuronal injury and glial activation. In conclusion, miR-130a-3p targets S1PR1 to activate the microglial and astrocytes and to promote apoptosis and oxidative stress of the HG-stimulated primary neurons. These findings may provide a novel insight into DPN treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...