Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Neuroinflammation ; 21(1): 89, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600510

RESUMO

BACKGROUND: Neuropsychiatric lupus (NPSLE) describes the cognitive, memory, and affective emotional burdens faced by many lupus patients. While NPSLE's pathogenesis has not been fully elucidated, clinical imaging studies and cerebrospinal fluid (CSF) findings, namely elevated interleukin-6 (IL-6) levels, point to ongoing neuroinflammation in affected patients. Not only linked to systemic autoimmunity, IL-6 can also activate neurotoxic glial cells the brain. A prior pre-clinical study demonstrated that IL-6 can acutely induce a loss of sucrose preference; the present study sought to assess the necessity of chronic IL-6 exposure in the NPSLE-like disease of MRL/lpr lupus mice. METHODS: We quantified 1308 proteins in individual serum or pooled CSF samples from MRL/lpr and control MRL/mpj mice using protein microarrays. Serum IL-6 levels were plotted against characteristic NPSLE neurobehavioral deficits. Next, IL-6 knockout MRL/lpr (IL-6 KO; n = 15) and IL-6 wildtype MRL/lpr mice (IL-6 WT; n = 15) underwent behavioral testing, focusing on murine correlates of learning and memory deficits, depression, and anxiety. Using qPCR, we quantified the expression of inflammatory genes in the cortex and hippocampus of MRL/lpr IL-6 KO and WT mice. Immunofluorescent staining was performed to quantify numbers of microglia (Iba1 +) and astrocytes (GFAP +) in multiple cortical regions, the hippocampus, and the amygdala. RESULTS: MRL/lpr CSF analyses revealed increases in IL-17, MCP-1, TNF-α, and IL-6 (a priori p-value < 0.1). Serum levels of IL-6 correlated with learning and memory performance (R2 = 0.58; p = 0.03), but not motivated behavior, in MRL/lpr mice. Compared to MRL/lpr IL-6 WT, IL-6 KO mice exhibited improved novelty preference on object placement (45.4% vs 60.2%, p < 0.0001) and object recognition (48.9% vs 67.9%, p = 0.002) but equivalent performance in tests for anxiety-like disease and depression-like behavior. IL-6 KO mice displayed decreased cortical expression of aif1 (microglia; p = 0.049) and gfap (astrocytes; p = 0.044). Correspondingly, IL-6 KO mice exhibited decreased density of GFAP + cells compared to IL-6 WT in the entorhinal cortex (89 vs 148 cells/mm2, p = 0.037), an area vital to memory. CONCLUSIONS: The inflammatory composition of MRL/lpr CSF resembles that of human NPSLE patients. Increased in the CNS, IL-6 is necessary to the development of learning and memory deficits in the MRL/lpr model of NPSLE. Furthermore, the stimulation of entorhinal astrocytosis appears to be a key mechanism by which IL-6 promotes these behavioral deficits.


Assuntos
Interleucina-6 , Lúpus Eritematoso Sistêmico , Vasculite Associada ao Lúpus do Sistema Nervoso Central , Animais , Camundongos , Depressão , Gliose , Interleucina-6/genética , Transtornos da Memória/genética , Camundongos Endogâmicos MRL lpr
2.
Methods Mol Biol ; 2785: 195-218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427196

RESUMO

The recent progress in the development of in vivo biomarkers is rapidly changing how neurodegenerative diseases are conceptualized and diagnosed and how clinical trials are designed today. Alzheimer's disease (AD) - the most common neurodegenerative disorder - is characterized by a complex neuropathology involving the deposition of extracellular amyloid-ß (Aß) plaques and intracellular neurofibrillary tangles (NFTs) of hyperphosphorylated tau proteins, accompanied by the activation of glial cells, i.e., astrocytes and microglia, and neuroinflammatory response, leading to neurodegeneration and cognitive dysfunction. An increasing diversity of positron emission tomography (PET) imaging radiotracers is available to selectively target the different pathophysiological processes of AD. Along with the success of Aß PET and the more recent tau PET imaging, there is a great interest to develop PET tracers to image glial reactivity and neuroinflammation. While most research to date has focused on imaging microgliosis, there is an upsurge of interest in imaging reactive astrocytes in the AD continuum. There is increasing evidence that reactive astrocytes are morphologically and functionally heterogeneous, with different subtypes that express different markers and display various homeostatic or detrimental roles across disease stages. Therefore, multiple biomarkers are desirable to unravel the complex phenomenon of reactive astrocytosis. In the field of in vivo PET imaging in AD, the research concerning reactive astrocytes has predominantly focused on targeting monoamine oxidase B (MAO-B), most often using either 11C-deuterium-L-deprenyl (11C-DED) or 18F-SMBT-1 PET tracers. Additionally, imidazoline2 binding (I2BS) sites have been imaged using 11C-BU99008 PET. Recent studies in our group using 11C-DED PET imaging suggest that astrocytosis may be present from the early stages of disease development in AD. This chapter provides a detailed description of the practical approach used for the analysis of 11C-DED PET imaging data in a multitracer PET paradigm including 11C-Pittsburgh compound B (11C-PiB) and 18F-fluorodeoxyglucose (18F-FDG). The multitracer PET approach allows investigating the comparative regional and temporal patterns of in vivo brain astrocytosis, fibrillar Aß deposition, glucose metabolism, and brain structural changes. It may also contribute to understanding the potential role of novel plasma biomarkers of reactive astrocytes, in particular the glial fibrillary acidic protein (GFAP), at different stages of disease progression. This chapter attempts to stimulate further research in the field, including the development of novel PET tracers that may allow visualizing different aspects of the complex astrocytic and microglial response in neurodegenerative diseases. Progress in the field will contribute to the incorporation of PET imaging of glial reactivity and neuroinflammation as biomarkers with clinical application and motivate further investigation on glial cells as therapeutic targets in AD and other neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Gliose , Humanos , Gliose/metabolismo , Doenças Neuroinflamatórias , Doença de Alzheimer/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Fluordesoxiglucose F18/metabolismo , Inflamação/metabolismo , Placa Amiloide/metabolismo , Biomarcadores/metabolismo
3.
Exp Eye Res ; 240: 109813, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331016

RESUMO

Glaucoma is a multifactorial progressive ocular pathology that manifests clinically with damage to the optic nerve (ON) and the retina, ultimately leading to blindness. The optic nerve head (ONH) shows the earliest signs of glaucoma pathology, and therefore, is an attractive target for drug discovery. The goal of this study was to elucidate the effects of reactive astrocytosis on the elastin metabolism pathway in primary rat optic nerve head astrocytes (ONHA), the primary glial cell type in the unmyelinated ONH. Following exposure to static equibiaxial mechanical strain, we observed prototypic molecular and biochemical signatures of reactive astrocytosis that were associated with a decrease in lysyl oxidase like 1 (Loxl1) expression and a concomitant decrease in elastin (Eln) gene expression. We subsequently investigated the role of Loxl1 in reactive astrocytosis by generating primary rat ONHA cultures with ∼50% decreased Loxl1 expression. Our results suggest that reduced Loxl1 expression is sufficient to elicit molecular signatures of elastinopathy in ONHA. Astrocyte derived exosomes (ADE) significantly increased the length of primary neurites of primary neurons in vitro. In contrast, ADE from Loxl1-deficient ONHA were deficient of trophic effects on neurite outgrowth in vitro, positing that Loxl1 dysfunction and the ensuing impaired elastin synthesis during reactive astrocytosis in the ONH may contribute to impaired neuron-glia signaling in glaucoma. Our data support a role of dysregulated Loxl1 function in eliciting reactive astrocytosis in glaucoma subtypes associated with increased IOP, even in the absence of genetic polymorphisms in LOXL1 typically associated with exfoliation glaucoma. This suggests the need for a paradigm shift toward considering lysyl oxidase activity and elastin metabolism and signaling as contributors to an altered secretome of the ONH that may lead to the progression of glaucomatous changes. Future research is needed to investigate cargo of exosomes in the context of reactive astrocytosis and identify the pathways leading to the observed transcriptome changes during reactive astrocytosis.


Assuntos
Exossomos , Glaucoma , Disco Óptico , Ratos , Animais , Disco Óptico/metabolismo , Proteína-Lisina 6-Oxidase/genética , Astrócitos/metabolismo , Exossomos/metabolismo , Gliose/metabolismo , Glaucoma/metabolismo , Elastina/genética , Inflamação/metabolismo
4.
Exp Neurol ; 374: 114675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38216109

RESUMO

Huntington's Disease (HD) is a progressive neurodegenerative disease caused by a mutation in the huntingtin gene. The mutation leads to a toxic gain of function of the mutant huntingtin (mHtt) protein resulting in cellular malfunction, aberrant huntingtin aggregation and eventually neuronal cell death. Patients with HD show impaired motor functions and cognitive decline. Elevated levels of glucocorticoids have been found in HD patients and in HD mouse models, and there is a positive correlation between increased glucocorticoid levels and the progression of HD. Therefore, antagonism of the glucocorticoid receptor (GR) may be an interesting strategy for the treatment of HD. In this study, we evaluated the efficacy of the selective GR antagonist CORT113176 in the commonly used R6/2 mouse model. In male mice, CORT113176 treatment significantly delayed the loss of grip strength, the development of hindlimb clasping, gait abnormalities, and the occurrence of epileptic seizures. CORT113176 treatment delayed loss of DARPP-32 immunoreactivity in the dorsolateral striatum. It also restored HD-related parameters including astrocyte markers in both the dorsolateral striatum and the hippocampus, and microglia markers in the hippocampus. This suggests that CORT113176 has both cell-type and brain region-specific effects. CORT113176 delayed the formation of mHtt aggregates in the striatum and the hippocampus. In female mice, we did not observe major effects of CORT113176 treatment on HD-related symptoms, with the exception of the anti-epileptic effects. We conclude that CORT113176 effectively delays several key symptoms related to the HD phenotype in male R6/2 mice and believe that GR antagonism may be a possible treatment option.


Assuntos
Doença de Huntington , Isoquinolinas , Doenças Neurodegenerativas , Pirazóis , Animais , Feminino , Humanos , Masculino , Camundongos , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/complicações , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Receptores de Glucocorticoides
5.
Cell Rep ; 42(10): 113252, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37863057

RESUMO

Apolipoprotein E4 (APOE4) is an important driver of Tau pathology, gliosis, and degeneration in Alzheimer's disease (AD). Still, the mechanisms underlying these APOE4-driven pathological effects remain elusive. Here, we report in a tauopathy mouse model that APOE4 promoted the nucleocytoplasmic translocation and release of high-mobility group box 1 (HMGB1) from hippocampal neurons, which correlated with the severity of hippocampal microgliosis and degeneration. Injection of HMGB1 into the hippocampus of young APOE4-tauopathy mice induced considerable and persistent gliosis. Selective removal of neuronal APOE4 reduced HMGB1 translocation and release. Treatment of APOE4-tauopathy mice with HMGB1 inhibitors effectively blocked the intraneuronal translocation and release of HMGB1 and ameliorated the development of APOE4-driven gliosis, Tau pathology, neurodegeneration, and myelin deficits. Single-nucleus RNA sequencing revealed that treatment with HMGB1 inhibitors diminished disease-associated and enriched disease-protective subpopulations of neurons, microglia, and astrocytes in APOE4-tauopathy mice. Thus, HMGB1 inhibitors represent a promising approach for treating APOE4-related AD.


Assuntos
Doença de Alzheimer , Proteína HMGB1 , Tauopatias , Animais , Camundongos , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Gliose , Camundongos Transgênicos , Tauopatias/tratamento farmacológico
6.
J Neurol ; 270(10): 4860-4867, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37338614

RESUMO

BACKGROUND: This study aimed to summarize the clinical features of Autoimmune Glial Fibrillary Acidic Protein Astrocytosis mimicking tuberculosis meningitis to improve clinicians' understanding of this disease. METHODS: We retrospectively analyzed the clinical manifestations, cerebrospinal fluid results, and imaging data of five patients with Autoimmune Glial Fibrillary Acidic Protein Astrocytosis mimicking tuberculous meningitis who were admitted to Xiangya Hospital Central South University between October 2021 and July 2022. RESULTS: Five patients were aged 31-59 years, with a male-to-female ratio of 4:1. Among the cases reviewed, four had a history of prodromal infections manifesting as fever and headache. One patient developed limb weakness and numbness with clinical manifestations of meningitis, meningoencephalitis, encephalomyelitis, or meningomyelitis. Cerebrospinal fluid analysis revealed an increased cell count in five cases, with a lymphocyte majority. All five cases had a CSF protein level > 1.0 g/L, CSF/blood glucose ratio < 0.5, and two patients had CSF glucose < 2.2 mmol/L. Decreased CSF chloride was observed in three cases, while increased ADA was observed in one case. Both serum and cerebrospinal fluid were positive for anti-GFAP antibodies in three cases, while in two cases, only CSF was positive for anti-GFAP antibodies. Additionally, hyponatremia and hypochloremia were observed in three cases. No tumors were detected in any of the five patients during tumor screening, and all five cases had a good prognosis following immunotherapy. CONCLUSION: Anti-GFAP antibody testing should be routinely performed in patients with suspected tuberculosis meningitis to avoid misdiagnosis.


Assuntos
Meningoencefalite , Tuberculose Meníngea , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Glial Fibrilar Ácida , Gliose , Meningoencefalite/diagnóstico , Estudos Retrospectivos , Tuberculose Meníngea/diagnóstico
7.
Nutrients ; 15(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36678151

RESUMO

Prolactin-releasing peptide (PrRP) is an anorexigenic neuropeptide that has potential for the treatment of obesity and its complications. Recently, we designed a palmitoylated PrRP31 analog (palm11-PrRP31) that is more stable than the natural peptide and able to act centrally after peripheral administration. This analog acted as an anti-obesity and glucose-lowering agent, attenuating lipogenesis in rats and mice with high-fat (HF) diet-induced obesity. In Wistar Kyoto (WKY) rats fed a HF diet for 52 weeks, we explored glucose intolerance, but also prediabetes, liver steatosis and insulin resistance-related changes, as well as neuroinflammation in the brain. A potential beneficial effect of 6 weeks of treatment with palm11-PrRP31 and liraglutide as comparator was investigated. Liver lipid profiles, as well as urinary and plasma metabolomic profiles, were measured by lipidomics and metabolomics, respectively. Old obese WKY rats showed robust glucose intolerance that was attenuated by palm11-PrRP31, but not by liraglutide treatment. On the contrary, liraglutide had a beneficial effect on insulin resistance parameters. Despite obesity and prediabetes, WKY rats did not develop steatosis owing to HF diet feeding, even though liver lipogenesis was enhanced. Plasma triglycerides and cholesterol were not increased by HFD feeding, which points to unincreased lipid transport from the liver. The liver lipid profile was significantly altered by a HF diet that remained unaffected by palm11-PrRP31 or liraglutide treatment. The HF-diet-fed WKY rats revealed astrogliosis in the brain cortex and hippocampus, which was attenuated by treatment. In conclusion, this study suggested multiple beneficial anti-obesity-related effects of palm11-PrRP31 and liraglutide in both the periphery and brain.


Assuntos
Intolerância à Glucose , Resistência à Insulina , Estado Pré-Diabético , Ratos , Camundongos , Animais , Ratos Endogâmicos WKY , Intolerância à Glucose/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Hormônio Liberador de Prolactina/farmacologia , Estado Pré-Diabético/tratamento farmacológico , Obesidade/tratamento farmacológico , Lipídeos , Dieta Hiperlipídica/efeitos adversos
8.
Cell Rep ; 41(8): 111696, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417872

RESUMO

Mutations in Kv1.1 (Kcna1) voltage-gated potassium channels in humans and mice generate network hyperexcitability, enhancing aberrant postnatal neurogenesis in the dentate subgranular zone, resulting in epilepsy and hippocampal hypertrophy. While Kcna1 loss stimulates proliferation of progenitor cell subpopulations, the identity of extrinsic molecular triggers linking network hyperexcitability to aberrant postnatal neurogenesis remains incomplete. System x-c (Sxc) is an inducible glutamate/cysteine antiporter that regulates extracellular glutamate. Here, we find that the functional unit of Sxc, xCT (Slc7a11), is upregulated in regions of Kcna1 knockout (KO) hippocampus, suggesting a contribution to both hyperplasia and epilepsy. However, Slc7a11 KO suppressed and rescued hippocampal enlargement without altering seizure severity in Kcna1-Slc7a11-KO mice. Microglial activation, but not astrocytosis, was also reduced. Our study identifies Sxc-mediated glutamate homeostasis as an essential non-synaptic trigger coupling aberrant postnatal neurogenesis and neuroimmune crosstalk, revealing that neurogenesis and epileptogenesis in the dentate gyrus are not mutually contingent events.


Assuntos
Epilepsia , Neurogênese , Animais , Camundongos , Epilepsia/genética , Glutamatos , Hipocampo , Canal de Potássio Kv1.1/genética , Camundongos Knockout
9.
Neurobiol Dis ; 174: 105888, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36209948

RESUMO

Based on previous evidence that the non-steroidal estrogen receptor modulator STX mitigates the effects of neurotoxic Amyloid-ß (Aß) in vitro, we have evaluated its neuroprotective benefits in a mouse model of Alzheimer's disease. Cohorts of 5XFAD mice, which begin to accumulate cerebral Aß at two months of age, were treated with orally-administered STX starting at 6 months of age for two months. After behavioral testing to evaluate cognitive function, biochemical and immunohistochemical assays were used to analyze key markers of mitochondrial function and synaptic integrity. Oral STX treatment attenuated Aß-associated mitochondrial toxicity and synaptic toxicity in the brain, as previously documented in cultured neurons. STX also moderately improved spatial memory in 5XFAD mice. In addition, STX reduced markers for reactive astrocytosis and microgliosis surrounding amyloid plaques, and also unexpectedly reduced overall levels of cerebral Aß in the brain. The neuroprotective effects of STX were more robust in females than in males. These results suggest that STX may have therapeutic potential in Alzheimer's Disease.


Assuntos
Doença de Alzheimer , Síndromes Neurotóxicas , Masculino , Feminino , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Moduladores de Receptor Estrogênico/uso terapêutico , Camundongos Transgênicos , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Placa Amiloide/tratamento farmacológico
10.
J Biomed Res ; 36(5): 299-311, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36131679

RESUMO

Obesity is a worldwide health, economic and social concern, despite efforts made to counteract the spreading wave of eating and nourishment-associated disorders. The review aims to show how the glial cells, astrocytes, contribute to the central regulation of appetite and energy metabolism. The hypothalamus is the brain center responsible for nutrients and nutritional hormone sensing, signal processing, and execution of metabolic and behavioral responses, directed at sustaining energy homeostasis. The astrocytes are endowed with receptors, transporters and enzymatic machinery responsible for glucose, lactate, fatty acids, ketone bodies, as well as leptin or ghrelin transport and metabolism, and that render them supporters and partners for neurons in governing the brain and body energy intake and expenditure. However, the role of astrocytes associated with brain energy metabolism reaches far beyond simple fuel contingent-they contribute to cognitive performance. The cognitive decline which often accompanies high fat- and/or high-calorie diets and correlates with neuroinflammation and astrogliosis, is a major concern. The last two decades of research enabled us to acknowledge the astroglia in obesity-associated dysfunctions and to investigate astrocytes as contributors to the pathology, as well as targets for therapy.

11.
Biomedicines ; 10(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35885061

RESUMO

In mammalian cells, the content of polyamines is tightly regulated. Polyamines, including spermine, spermidine and putrescine, are involved in many cellular processes. Spermine oxidase specifically oxidizes spermine, and its deregulated activity has been reported to be linked to brain pathologies involving neuron damage. Spermine is a neuromodulator of a number of ionotropic glutamate receptors and types of ion channels. In this respect, the Dach-SMOX mouse model overexpressing spermine oxidase in the neocortex neurons was revealed to be a model of chronic oxidative stress, excitotoxicity and neuronal damage. Reactive astrocytosis, chronic oxidative and excitotoxic stress, neuron loss and the susceptibility to seizure in the Dach-SMOX are discussed here. This genetic model would help researchers understand the linkage between polyamine dysregulation and neurodegeneration and unveil the roles of polyamines in the crosstalk between astrocytes and neurons in neuroprotection or neurodegeneration.

13.
J Neuropathol Exp Neurol ; 81(8): 588-595, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35689655

RESUMO

Over 100 years ago, von Hösslein and Alzheimer described enlarged and multinucleated astrocytes in the brains of patients with Wilson disease. These odd astrocytes, now well known to neuropathologists, are present in a large variety of neurological disorders, and yet the mechanisms underlying their generation and their functional attributes are still not well understood. They undergo abnormal mitoses and fail to accomplish cytokinesis, resulting in multinucleation. Oxidative stress, hypoxia, and inflammation may be contributing pathologies to generate these astrocytes. The abnormal mitoses occur from changes in cell shape, the accumulation of cytoplasmic proteins, and the mislocalization of many of the important molecules whose coordination is necessary for proper mitotic spindle formation. Modern technologies will be able to characterize their abnormalities and solve century old questions of their form and function.


Assuntos
Doença de Alzheimer , Astrócitos , Doença de Alzheimer/patologia , Astrócitos/patologia , Encéfalo/patologia , Humanos , Inflamação/patologia , Estresse Oxidativo
14.
J Mol Med (Berl) ; 100(6): 933-946, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35536323

RESUMO

Aquaporin-4 (AQP4) is the molecular target of the immune response in neuromyelitis optica (NMO) that leads to severe structural damage in the central nervous system (CNS) and in the retina. Conversely, AQP4 might be upregulated in astrocytes as a compensatory event in multiple sclerosis. Thus, the functional relevance of AQP4 in neuroinflammation needs to be defined. Here, we tested the role of AQP4 in the retina in MOG(35-55)-induced experimental autoimmune encephalomyelitis (EAE) using optical coherence tomography (OCT), OCT angiography, immunohistology, flow cytometry, and gene expression analysis in wild-type and Aqp4-/- mice. No direct infiltrates of inflammatory cells were detected in the retina. Yet, early retinal expression of TNF and Iba1 suggested that the retina participated in the inflammatory response during EAE in a similar way in wild-type and Aqp4-/- mice. While wild-type mice rapidly cleared retinal swelling, Aqp4-/- animals exhibited a sustainedly increased retinal thickness associated with retinal hyperperfusion, albumin extravasation, and upregulation of GFAP as a hallmark of retinal scarring at later stages of EAE. Eventually, the loss of retinal ganglion cells was higher in Aqp4-/- mice than in wild-type mice. Therefore, AQP4 expression might be critical for retinal Müller cells to clear the interstitial space from excess vasogenic edema and prevent maladaptive scarring in the retina during remote inflammatory processes of the CNS. KEY MESSAGES : Genetic ablation of AQP4 leads to a functional derangement of the retinal gliovascular unit with retinal hyperperfusion during autoimmune CNS inflammation. Genetic ablation of AQP4 results in a structural impairment of the blood retina barrier with extravasation of albumin during autoimmune CNS inflammation. Eventually, the lack of AQP4 in the retina during an inflammatory event prompts the exaggerated upregulation of GFAP as a hallmark of scarring as well as loss of retinal ganglion cells.


Assuntos
Encefalomielite Autoimune Experimental , Gliose , Albuminas/metabolismo , Animais , Aquaporina 4/genética , Aquaporina 4/metabolismo , Cicatriz/patologia , Gliose/metabolismo , Gliose/patologia , Inflamação/metabolismo , Camundongos , Retina/metabolismo
15.
Cell Signal ; 96: 110359, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35597427

RESUMO

Aquaporin-4 (AQP4) is the water regulating channel found in the terminal processes of astrocytes in the brain and is implicated in regulating the astrocyte functions, whereas in neuropathologies, AQP4 performs an important role in astrocytosis and release of proinflammatory cytokines. However, several findings have revealed the modulation of the AQP4 water channel in the etiopathogenesis of various neuropsychiatric diseases. In the current article, we have summarized the recent studies and highlighted the implication of astrocytic dysfunction and AQP4 in the etiopathogenesis of depressive disorder. Most of the studies have measured the AQP4 gene or protein expression in the brain regions, particularly the locus coeruleus, choroid plexus, prefrontal cortex, and hippocampus, and found that in these brain regions, AQP4 gene expression decreased on exposure to chronic mild stress. Few studies also measured the peripheral AQP4 mRNA expression in the blood and AQP4 autoantibodies in the blood serum and revealed no change in the depressed patients in comparison with normal individuals.


Assuntos
Astrócitos , Depressão , Aquaporina 4/genética , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Hipocampo/metabolismo , Humanos
16.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328600

RESUMO

Stroke is one of the leading causes of death and long-term disabilities worldwide, resulting in a debilitating condition occasioned by disturbances in the cerebral vasculature. Primary damage due to metabolic collapse is a quick outcome following stroke, but a multitude of secondary events, including excitotoxicity, inflammatory response, and oxidative stress cause further cell death and functional impairment. In the present work, we investigated whether a primary ischemic damage into the dorsal striatum may cause secondary damage in the circumjacent corpus callosum (CC). Animals were injected with endothelin-1 and perfused at 3, 7, 14, and 30 post-lesion days (PLD). Sections were stained with Cresyl violet for basic histopathology and immunolabeled by antibodies against astrocytes (anti-GFAP), macrophages/microglia (anti-IBA1/anti MHC-II), oligodendrocytes (anti-TAU) and myelin (anti-MBP), and Anti-Nogo. There were conspicuous microgliosis and astrocytosis in the CC, followed by later oligodendrocyte death and myelin impairment. Our results suggest that secondary white matter damage in the CC follows a primary focal striatal ischemia in adult rats.


Assuntos
Acidente Vascular Cerebral , Substância Branca , Animais , Corpo Caloso/patologia , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Ratos , Acidente Vascular Cerebral/metabolismo
17.
Molecules ; 27(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164175

RESUMO

A new formulation of a pomegranate-peel extract (PEm) obtained by PUAE (Pulsed Ultrasound-Assisted Extraction) and titrated in both ellagic acid (EA) and punicalagin is proposed, characterized and then analyzed for potential health properties in mice suffering from the experimental autoimmune encephalomyelitis (EAE). PEm effects were compared to those elicited by a formulation containing EA (EAm). Control and EAE mice were chronically administered EAm and Pem dissolved in the drinking water, starting from the day 10 post-immunization (d.p.i.), with a "therapeutic" protocol to deliver daily 50 mg/kg of EA. Treated EAE mice did not limit their daily access to the beverage, nor did they show changes in body weight, but they displayed a significant amelioration of "in vivo" clinical symptoms. "Ex vivo" histochemical analysis showed that spinal-cord demyelination and inflammation in PEm and EAm-treated EAE mice at 23 ± 1 d.p.i. were comparable to those in the untreated EAE animals, while microglia activation (measured as Ionized Calcium Binding Adaptor 1, Iba1 staining) and astrocytosis (quantified as glial fibrillar acid protein, GFAP immunopositivity) significantly recovered, particularly in the gray matter. EAm and PEm displayed comparable efficiencies in controlling the spinal pathological cellular hallmarks in EAE mice, and this would support their delivery as dietary supplementation in patients suffering from multiple sclerosis (MS).


Assuntos
Encefalomielite Autoimune Experimental/terapia , Extratos Vegetais/uso terapêutico , Punica granatum , Animais , Modelos Animais de Doenças , Ácido Elágico/uso terapêutico , Encefalomielite Autoimune Experimental/patologia , Feminino , Taninos Hidrolisáveis/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Punica granatum/química
18.
Biomolecules ; 12(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35204705

RESUMO

Polyamines are organic polycations ubiquitously present in living cells. Polyamines are involved in many cellular processes, and their content in mammalian cells is tightly controlled. Among their function, these molecules modulate the activity of several ion channels. Spermine oxidase, specifically oxidized spermine, is a neuromodulator of several types of ion channel and ionotropic glutamate receptors, and its deregulated activity has been linked to several brain pathologies, including epilepsy. The Dach-SMOX mouse line was generated using a Cre/loxP-based recombination approach to study the complex and critical functions carried out by spermine oxidase and spermine in the mammalian brain. This mouse genetic model overexpresses spermine oxidase in the neocortex and is a chronic model of excitotoxic/oxidative injury and neuron vulnerability to oxidative stress and excitotoxic, since its phenotype revealed to be more susceptible to different acute oxidative insults. In this review, the molecular mechanisms underlined the Dach-SMOX phenotype, linked to reactive astrocytosis, neuron loss, chronic oxidative and excitotoxic stress, and susceptibility to seizures have been discussed in detail. The Dach-SMOX mouse model overexpressing SMOX may help in shedding lights on the susceptibility to epileptic seizures, possibly helping to understand the mechanisms underlying epileptogenesis in vulnerable individuals and contributing to provide new molecular mechanism targets to search for novel antiepileptic drugs.


Assuntos
Astrócitos , Epilepsia , Animais , Astrócitos/patologia , Epilepsia/genética , Epilepsia/patologia , Mamíferos , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/patologia , Poliamina Oxidase
19.
J Neuropathol Exp Neurol ; 81(1): 27-47, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34865073

RESUMO

Diffusion tensor imaging (DTI) metrics are highly sensitive to microstructural brain alterations and are potentially useful imaging biomarkers for underlying neuropathologic changes after experimental and human traumatic brain injury (TBI). As potential imaging biomarkers require direct correlation with neuropathologic alterations for validation and interpretation, this study systematically examined neuropathologic abnormalities underlying alterations in DTI metrics in the hippocampus and cortex following controlled cortical impact (CCI) in rats. Ex vivo DTI metrics were directly compared with a comprehensive histologic battery for neurodegeneration, microgliosis, astrocytosis, and mossy fiber sprouting by Timm histochemistry at carefully matched locations immediately, 48 hours, and 4 weeks after injury. DTI abnormalities corresponded to spatially overlapping but temporally distinct neuropathologic alterations representing an aggregate measure of dynamic tissue damage and reorganization. Prominent DTI alterations of were observed for both the immediate and acute intervals after injury and associated with neurodegeneration and inflammation. In the chronic period, diffusion tensor orientation in the hilus of the dentate gyrus became prominently abnormal and was identified as a reliable structural biomarker for mossy fiber sprouting after CCI in rats, suggesting potential application as a biomarker to follow secondary progression in experimental and human TBI.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Imagem de Tensor de Difusão/métodos , Fibras Musgosas Hipocampais/patologia , Regeneração Nervosa/fisiologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley
20.
Antioxidants (Basel) ; 10(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34829553

RESUMO

Disruptions in brain energy metabolism, oxidative damage, and neuroinflammation are commonly seen in traumatic brain injury (TBI). Microglial activation is the hallmark of neuroinflammation. After brain injury, microglia also act as a double-edged sword with distinctive phenotypic changes. Therefore, therapeutic applications to potentiate microglia towards pro-inflammatory response following brain injury have become the focus of attention in recent years. Here, in the current study, we investigated the hypothesis that 17ß-estradiol could rescue the mouse brain against apoptotic cell death and neurodegeneration by suppressing deleterious proinflammatory response probably by abrogating metabolic stress and oxidative damage after brain injury. Male C57BL/6N mice were used to establish a cortical stab wound injury (SWI) model. Immediately after brain injury, the mice were treated with 17ß-estradiol (10 mg/kg, once every day via i.p. injection) for one week. Immunoblotting and immunohistochemical analysis was performed to examine the cortical and hippocampal brain regions. For the evaluation of reactive oxygen species (ROS), reduced glutathione (GSH), and oxidized glutathione (GSSG), we used specific kits. Our findings revealed that 17ß-estradiol treatment significantly alleviated SWI-induced energy dyshomeostasis and oxidative stress by increasing the activity of phospho-AMPK (Thr172) and by regulating the expression of an antioxidant gene (Nrf2) and cytoprotective enzymes (HO-1 and GSH) to mitigate ROS. Importantly, 17ß-estradiol treatment downregulated gliosis and proinflammatory markers (iNOS and CD64) while significantly augmenting an anti-inflammatory response as evidenced by the robust expression of TGF-ß and IGF-1 after brain injury. The treatment with 17ß-estradiol also reduced inflammatory mediators (Tnf-α, IL-1ß, and COX-2) in the injured mouse. Moreover, 17ß-estradiol administration rescued p53-associated apoptotic cell death in the SWI model by regulating the expression of Bcl-2 family proteins (Bax and Bcl-2) and caspase-3 activation. Finally, SWI + 17ß-estradiol-treated mice illustrated reduced brain lesion volume and enhanced neurotrophic effect and the expression of synaptic proteins. These findings suggest that 17ß-estradiol is an effective therapy against the brain secondary injury-induced pathological cascade following trauma, although further studies may be conducted to explore the exact mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...