Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Hazard Mater ; 473: 134643, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776815

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) have the capability for solar radiation absorption related to climate forcing. Herein, pollution characteristics and absorption spectra of size-resolved PAHs in atmospheric particles in a cold megacity were comprehensively investigated. The mean concentrations of Σ18PAHs in all the 11 particle size ranges were 3.95 ± 4.77 × 104 pg/m3 and 2.17 ± 1.54 × 103 pg/m3 in heating period (HP) and non-heating period (NHP), respectively. Except for most PAHs with 2 and 3 benzene rings in NHP, most other PAHs showed a unimodal distribution pattern with the peak at 0.56-1.0 µm in both periods, which was caused by PAH emission sources. The PAH-related climate forcing was mainly caused by the solar radiation absorptions at ∼325 (∼330) nm and ∼365 nm. In general, the absorption intensities were higher in HP than NHP. The absorption intensity in the particle size range of 0.56-1.0 µm was the highest, and benzo[e]pyrene was the dominant contributor. In colder periods in HP, higher PAH concentrations caused more intensive PAH-related climate forcing. This study provided new insights for pollution characteristics and absorption spectra of size-resolved PAHs in atmospheric particles, which will be useful for better understanding PAH-related climate forcing.

2.
Sci Total Environ ; 937: 173462, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38797399

RESUMO

Triphenyl phosphate (TPhP) and transition metal elements have been ubiquitously detected in the atmosphere, which can participate in atmospheric chemical reactions and induce damage to human health. Currently the understanding of TPhP degradation, transformation and cytotoxicity on atmospheric particles surface are still limited. Therefore, this study used laboratory simulation methods to investigate the influence of irradiation time, transition metal salts, relative humidity (RH) to TPhP degradation, transformation and relative cytotoxicity. TPhP was coated on particle surfaces of four transition metal salts (MnSO4, CuSO4, FeSO4 and Fe2(SO4)3) in the experiment. Within 12 h irradiation, the significant TPhP photodegradation can be observed on all particles surface. Among these influence factors, the irradiation and RH were the crucial aspects to TPhP degradation, which primarily affect the OH concentration in the atmosphere. The transition metal elements only exhibited slightly catalytic effect to TPhP degradation. The mechanism study indicated that the major degradation products of TPhP are diphenyl hydrogen phosphate (DPhP) and OH-DPhP, which originated from the phenoxy bond cleavage and hydroxylation of TPhP induced by OH. As for the cytotoxicity to A549 cells, all the transition metal particles coated with TPhP can cause cellular injury, which was chiefly induced by the transition metal salt. The possible cytotoxicity mechanism of these particles to A549 cells can be attributed to the excessive reactive oxygen species (ROS) production. This study may provide a further understanding of TPhP degradation and related cytotoxicity with the coexistent transition metal salts in the atmosphere.


Assuntos
Poluentes Atmosféricos , Atmosfera , Organofosfatos , Elementos de Transição , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/química , Elementos de Transição/química , Humanos , Organofosfatos/toxicidade , Organofosfatos/química , Atmosfera/química , Células A549 , Sais/química
3.
Sci Total Environ ; 933: 173227, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38750744

RESUMO

Pre-existing particles usually constitute the major fraction of atmospheric particles, except during some episodes in the presence of strong emissions and/or secondary generation of fresh particles. Previous case studies have investigated the growth of pre-existing particles and their potential environmental and climate impacts. However, there is limited knowledge about the statistical characteristics of these growth events and related effects. In this study, we examine pre-existing particle growth events using a large dataset (725 days from 2010 to 2018) collected at a coastal megacity in northern China. The occurrence frequency of pre-existing particle growth events was 12.4 % (90 out of 725 days). When these events were related to measured criteria air pollutants, no significant differences were found in PM2.5, SO2, NO2 and NO2 + O3 concentrations between periods with and without pre-existing particle growth events. These 90-day events can be further classified into two categories, i.e., Category 1, with 68 % of events representing the growth of pre-existing particles alone, and Category 2, with 32 % of events representing the simultaneous growth of pre-existing and newly formed particles. In Category 2, the growth rates of pre-existing particles and newly formed particles were close in 21 % of the cases, while pre-existing particles exhibited significantly larger growth rates in 69 % of the cases. Conversely, in 10 % of the cases, the growth rates of newly formed particles were larger. The different growth rate mechanisms were discussed in terms of the volatility of atmospheric condensation vapors. In addition, we present case studies on the impact of pre-existing particle growth on cloud condensation nuclei simultaneously measured, specifically considering the chemistry of condensation vapors and pre-existing particles.

4.
Sci Total Environ ; 925: 171775, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38499095

RESUMO

Aerosol and cloud acidity are essential to human health, ecosystem health and productivity, as well as climate effects. The main chemical composition of cloud water greatly varies in different regions, resulting in substantial differences in the pH of cloud water. However, the influences of the anthropogenic emissions of acidic gases and substances, alkaline dust components, and dicarboxylic acids (diacids) on the ground concerning the acidity of cloud water in the free troposphere of the Guanzhong Plain, China, remain clear. In this study, cloud water and PM2.5 samples were simultaneously collected in the troposphere (Mt. Hua, 2060 m a.s.l). The results indicated that the cloud water was alkaline (pH = 7.6) and PM2.5 was acidic (pH = 3.2). These results showed the neutral property of clouds collected in the heavily polluted Guanzhong Plain, although most previous studies always considered acidity as a marker of pollution. The sulfate (SO42-), nitrate (NO3-), and ammonium (NH4+) (SNA) of particulate matter and cloud water in the same period were compared. SO42- was dominant in particulate matters (accounting for 63.4 % of the total SNA) but substantially decreased in cloud water (only 30.1 % of the total SNA), whereas NO3- and NH4+ increased from 28.5 % and 8.2 % to 39.8 % and 30.2 %, respectively. This could be attributed to the complex formation mechanism and sources of SO42- and NO3- in the cloud. The results of ion balance indicated that a significant deficit of inorganic anion equivalents was observed in the cloud water samples. The high concentration of diacids in the cloud phase (1237.4 µg L-1) may facilitate the formation of salt complexes with NH4+, thus influencing the acidity of the cloud water. The pH of cloud water has increased in recent decades due to the sustained reduction of sulfur dioxide, which may also affect the acidity of future precipitation.

5.
Sci Total Environ ; 901: 165880, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37536602

RESUMO

Organic nitrogen (ON) in atmospheric particles is much less monitored compared to inorganic nitrogen (IN), despite its significant contribution to atmospheric N deposition budget. In this study, we expanded a newly developed instrumental method for IN and ON in PM2.5 samples to PM10 samples. We determined the quantities of ON and IN for paired PM2.5 and PM10 samples collected at an urban coastal site in Hong Kong, southern China over a year. These measurements also allowed the determination of IN and ON abundance in the coarse PM (i.e., PM2.5-10) by taking the difference between PM10 and PM2.5. The measurement results show that ON accounted for 27.6 % and 21.1 % of total N in fine and coarse particles, respectively, and was mainly (87.7 %) distributed in the fine mode at the site. The seasonal variation of ON/total N was relatively small in PM2.5 (23.6-30.4 %) while considerably larger in coarse PM (4.3-42.1 %). Analysis aided by concurrently measured source indicators revealed that sea spray, biological particle emissions, and dust mixed with anthropogenic pollutants are potentially significant sources of ON in coarse particles. Positive matrix factorization (PMF) source apportionment further revealed that industrial emissions/coal combustion (43.6 %), soil dust emission (16.3 %), fresh sea salt emission (15.2 %), and aged sea salt (24.9 %) are major sources of PMcoarse-bound ON at the site. The contributions of industrial emissions/coal combustion and soil dust emission to ON were significantly higher in autumn and winter. Fresh sea salt emissions contributed greater proportions to ON in spring and summer, while ON associated with the aged sea salt source was higher in spring and autumn. These findings have advanced our quantitative understanding of the sources of PMcoarse-bound ON, which was scarcely determined in the past. Furthermore, the ON measurement data in fine and coarse particles helps estimate ON deposition, which has been previously under-evaluated.

6.
Chemosphere ; 304: 135347, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35714951

RESUMO

It is well established that in environments where NH3 abundance is limiting in secondary PM2.5 generation, a reduction of NH3 emissions can result in an important contribution to air quality control. However, as deduced from open data published by the European Environmental Agency, the availability of measurements of NH3 concentrations is very scarce, with very few countries in Europe reporting data consistently for extensive periods, this being especially true for urban background sites. In this framework, simultaneous multi-site measurements were carried out in NE (Northeast) Spain from 2011 to 2020, using diffusion tubes. The highest NH3 concentrations were recorded at the traffic site (5.3 µgm-3 on average), followed by those measured at the urban background site (2.1 µgm-3). Mean concentrations at the mountain site were 1.6 µgm-3, while the lowest concentrations were recorded at the regional site (0.9 µgm-3). This comparison highlights traffic emissions as an important source of NH3. A statistically significant time trend of this pollutant was observed at the urban background site, increasing by 9.4% per year. A season-separated analysis also revealed a significant increasing trend at the mountain site during summer periods, probably related with increasing emissions from agricultural/livestock activities. These increases in NH3 concentrations were hypothesized to be responsible for the lack of a decreasing trend of NO3- concentrations at the monitoring sites, in spite of a markedly reduction of NO2 during the period, especially at the urban background. Thus, this would in turn affect the effectiveness of current action plans to abate fine aerosols, largely made up of secondary compounds. Actions to reduce NH3 concentrations at urban backgrounds are challenging though, as predicting NH3 is subjected to a high uncertainty and complexity due to its dependence on a variety of factors. This complexity was clearly indicated by the application of a decision tree algorithm to find the parameters better predicting NH3 at the urban background under study. O3, NO, NO2, CO, SO2 and OM + EC concentrations, together with meteorological indicators, were used as independent variables, obtaining no combination of parameters evidently able to predict significant differences in NH3 concentrations, with a coefficient of determination between real and predicted measurements lower than 0.50. This emphasizes the need for highly temporally and spatially resolved NH3 measurements for an accurate design of abatement actions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Amônia/análise , Monitoramento Ambiental , Dióxido de Nitrogênio/análise , Material Particulado/análise , Espanha
7.
J Chromatogr A ; 1673: 463139, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35584565

RESUMO

In this work, porous aromatic frameworks (PAFs) with different pore size were evaluated for simultaneous adsorption of 16 polycyclic aromatic hydrocarbons (PAHs) with large difference in polarity and molecular size. Two other porous organic polymers containing electron pushing/withdrawing group were investigated along for a comparison, and PAF-120 with the pore size of appr. 2.1 nm exhibited the highest extraction efficiency. Based on water contact angle and molecular dynamics simulation, the adsorption of 16 PAHs on PAF-120 was attributed to hydrophobic interaction, π-π interaction and molecular sieving effect. PAF-120/PDMS coated stir bar was then prepared by physical adhesion, and a method of stir bar sorptive extraction-gas chromatography-flame ionization detector was established for trace PAHs analysis in environmental samples. Under the optimal experimental conditions, the limits of detection (S/N = 3) for 16 PAHs were found to be in the range of 42-375 ng/L, with the relative standard deviations of 4.1-14.6% (n = 7). The enrichment factors varied from 31 (Indeno[1,2,3-cd]pyrene) to 80-fold (anthracene), with the maximal enrichment factor of 100-fold. The proposed method was applied to the analysis of PAHs in local environmental water and atmospheric particle samples. None of the 16 PAHs were detected in the collected water samples. While for the collected atmospheric particles, 12 PAHs were detected in fine particulate matter (PM2.5) within the range of 0.6-2.8 ng/m3. For inhalable particulate matter (PM10) and total suspended particulate matter (TSP), 16 PAHs were all detected in the range of 0.6-3.8 ng/m3 and 0.6-5.9 ng/m3, respectively. Quantitative recoveries were obtained in recovery test, demonstrating the accuracy and application potential of the proposed method.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Cromatografia Gasosa/métodos , Limite de Detecção , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Porosidade , Água , Poluentes Químicos da Água/análise
8.
Environ Sci Technol ; 56(12): 7751-7760, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35593326

RESUMO

Atmospheric amines are considered to be an effective enhancer for methanesulfonic acid (MSA)-driven nucleation. However, out of the 195 detected atmospheric amines, the enhancing potential (EP) has so far only been studied for five amines. This severely hinders the understanding of the contribution of amines to MSA-driven nucleation. Herein, a two-step procedure was employed to probe the EP of various amines on MSA-driven nucleation. Initially, the formation free energies (ΔG) of 50 MSA-amine dimer clusters were calculated. Based on the calculated ΔG values, a robust quantitative structure-activity relationship (QSAR) model was built and utilized to predict the ΔG values of the remaining 145 amines. The QSAR model identified two guanidino-containing compounds as the potentially strongest enhancer for MSA-driven nucleation. Second, the EP of guanidino-containing compounds was studied by employing larger clusters and selecting guanidine (Gud) as a representative. The results indicate that Gud indeed has the strongest EP. The Gud-MSA system presents a unique clustering mechanism, proceeding via the initial formation of the (Gud)1(MSA)1 cluster, and subsequently by cluster collisions with either a (Gud)1(MSA)1 or (Gud)2(MSA)2 cluster. The developed QSAR model and the identification of amines with the strongest EP provide a foundation for comprehensively evaluating the contribution of atmospheric amines to MSA-driven nucleation.


Assuntos
Aminas , Mesilatos
9.
J Environ Radioact ; 248: 106887, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35487089

RESUMO

The charging of various airborne particles was investigated using single-particle levitation and charge-balance equations. Though radioactive decay and triboelectrification can induce charging, it is typically assumed that the aerosols in a radioactive plume will not carry significant charge at steady state since atmospheric particles can have their charge neutralized through the capture of adjacent counter-ions (i.e., diffusion charging). To assess this assumption, we directly measured the surface charge and charge density of various triboelectrically charged aerosols including radioactive uranium oxide (<1 µm), urban dust, Arizona desert dust, hydrophilic and hydrophobic silica nanoparticles, and graphene oxide powders using an electric field-assisted particle levitator in air. Of these particles, uranium oxide aerosols exhibited the highest surface charge density. Charge balance equations were employed to predict the average charge gained from radioactive decay as a function of time and to evaluate the effects of diffusion charging on triboelectrically charged radioactive and non-radioactive particles in the atmosphere. Simulation results show that particles, initially charged through triboelectrification, can be quickly discharged by diffusion charging in the absence of radioactive decay. Nevertheless, simulation results also indicate that particles can be strongly charged when they carry radionuclides. These experimental and simulation results suggest that radioactive decay can induce strong particle charging that may potentially affect atmospheric transport of airborne radionuclides.


Assuntos
Monitoramento de Radiação , Radioatividade , Aerossóis , Poeira , Radioisótopos/química
10.
J Chromatogr A ; 1673: 463030, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35487115

RESUMO

A magnetic covalent organic framework material (M-COF) with conjugated structure, high surface area and good chemical stability, was prepared for the adsorption of nine organophosphorus pesticides (OPPs). The extraction recovery of the M-COF for nine target OPPs were 64-91%, and the extraction dynamics was relatively fast. Based on it, a method by combining magnetic solid phase extraction (MSPE) with sweeping micellar electrokinetic chromatography (MEKC) was developed for the determination of nine OPPs in environmental water and atmospheric particle samples. The enrichment factor (EF) of MSPE-sweeping-MEKC for nine target OPPs are 1740 and 3626 times, with the limits of detection of 0.78-2.33 µg L-1. This method was used to analyze nine OPPs in environmental samples, and the recovery of nine OPPs in spiked East Lake water, Triangle Lake water, the extracts of PM2.5, PM10 and TSP were 81.0-111%, 83.6-111%, 83.1-117%, 81.7-114% and 80.2-114%, respectively. The method is sensitive, rapid and simple, and can be used for the quantification of interest OPPs in environmental samples with complex matrix.


Assuntos
Estruturas Metalorgânicas , Praguicidas , Cromatografia Gasosa/métodos , Limite de Detecção , Fenômenos Magnéticos , Estruturas Metalorgânicas/química , Micelas , Compostos Organofosforados/análise , Praguicidas/análise , Extração em Fase Sólida/métodos , Água
11.
Chemosphere ; 291(Pt 2): 132886, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34774904

RESUMO

The present work aimed to establish potential changes in the ecotoxicological effects on C. elegans induced by the exposure of coarse (PM10) and fine (PM2.5) particulate matter collected during dry and rainy periods. We also analyzed the probable influence on the change of a city's activities as the mega-events result in air quality. The element levels evaluation was performed on PM, on the solutions of exposure, and C. elegans after exposure. Biochemical essays were performed to evaluate damage to C. elegans. The results showed that infrastructure works increased the levels of pollutants, generating increases in the concentrations of PM2.5 and PM10. The biochemical results suggested effects mediated by different mechanisms, where PM2.5 induced an increase in antioxidant capacity with activation of the defense system and lipoperoxidation. Results suggest that PM10 reduces the antioxidant capacity and activates the glutathione S-transferase activity enzymatic action, but also induces lipoperoxidation in all groups of animals exposed to samples collected during the dry period of 2016. Individuals exposed to PM2.5 in 2017 wet and dry periods and PM10 in 2016 and 2017 dry periods shown a decrease in size compared to controls, while for fertility data, there was a decrease only in individuals exposed to PM2.5 in the periods that the highest levels of PM concentration. We conclude that despite the positive issues linked to the hosting of mega-events, their infrastructure requirements can compromise air quality and bring damage related to lipoperoxidation and physiological changes in the life cycle of biological systems, such as what happened to C. elegans exposed to tested extracts. Also, rainy events reduced the presence of these pollutants, washing the atmosphere.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Animais , Caenorhabditis elegans , Modelos Animais de Doenças , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Material Particulado/toxicidade
12.
Ecotoxicol Environ Saf ; 225: 112722, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478986

RESUMO

Wheat flag leaf (FL) is one of the primary sources of carbohydrates in grains; however, its role in grain lead (Pb) absorption remains unclear. A field experiment was conducted to assess the relative contribution of the FL to Pb accumulation in wheat grain by two contrasting treatments: without (CK) and with FL removal (FLR) at the grain-filling stage. The Pb concentration in leaves was closely related to leaf strata and decreased from FL to the third leaf. FLR treatment significantly reduced the yield and grain Pb concentration by 2.79% and 11.47%, respectively. The contribution of FL to grain Pb accumulation decreased gradually with the filling process, from 35.08% (at early stage) to 13.94% (at maturity stage). After FLR, the contribution proportion of atmospheric fallout to grain Pb decreased from 69.01% (CK) to 62.43% (FLR). Combined isotope analysis with scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS) revealed that the main contribution of FLs to grain Pb originated from Pb fallout in fine atmospheric particles. Therefore, taking measures to reduce the influence of fine atmospheric particles on wheat may be an effective way to control wheat grain Pb contamination.


Assuntos
Chumbo , Triticum , Grão Comestível , Isótopos , Folhas de Planta
13.
Environ Sci Technol ; 55(21): 14360-14369, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34404213

RESUMO

The influence of relative humidity (RH) on the condensational growth of organic aerosol particles remains incompletely understood. Herein, the RH dependence was investigated via a series of experiments for α-pinene ozonolysis in a continuously mixed flow chamber in which recurring cycles of particle growth occurred every 7 to 8 h at a given RH. In 5 h, the mean increase in the particle mode diameter was 15 nm at 0% RH and 110 nm at 75% RH. The corresponding particle growth coefficients, representing a combination of the thermodynamic driving force and the kinetic resistance to mass transfer, increased from 0.35 to 2.3 nm2 s-1. The chemical composition, characterized by O:C and H:C atomic ratios of 0.52 and 1.48, respectively, and determined by mass spectrometry, did not depend on RH. The Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) was applied to reproduce the observed size- and RH-dependent particle growth by optimizing the diffusivities Db within the particles of the condensing molecules. The Db values increased from 5 α-1 × 10-16 at 0% RH to 2 α-1 × 10-12 cm-2 s-1 at 75% RH for mass accommodation coefficients α of 0.1 to 1.0, highlighting the importance of particle-phase properties in modeling the growth of atmospheric aerosol particles.


Assuntos
Ozônio , Aerossóis , Monoterpenos Bicíclicos , Umidade , Monoterpenos
14.
Environ Sci Technol ; 55(15): 10243-10254, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34286964

RESUMO

Measuring the chemical composition of individual atmospheric aerosol particles can provide direct evidence of their heterogeneous reactions and mixing states in the atmosphere. In this study, micro-Raman spectroscopy was used to measure the chemical composition of 1200 individual atmospheric particles in 11 samples collected in Beijing air. (NH4)2SO4, NH4NO3, various minerals, carbonaceous species (soot and organics), and NaNO3 were identified in the measured particles according to their characteristic Raman peaks. These species represented the main components of aerosol particles. In individual particles, NH4NO3 and (NH4)2SO4 either existed separately or were internally mixed. Possible reaction pathways of CaCO3 particles in the atmosphere were proposed based on the results of this study and laboratory simulations on heterogeneous reactions in the literature. CaCO3 reacted with N- and S-containing (nitrogen- and sulfur-containing) acidic gases to produce Ca(NO3)2 and CaSO4. Ca(NO3)2 further reacted with S-containing acidic gases and oxidants to produce CaSO4. Of the soot-containing particles, 23% were internal mixtures of soot and inorganic material. Of the organics-containing particles, 57% were internal mixtures of organic and inorganic materials. Micro-Raman spectroscopy directly identified functional groups and molecules in individual atmospheric particles under normal ambient conditions, rendering it a powerful tool for measuring the chemical composition of individual atmospheric particles with a diameter of ≥1.0 µm.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Atmosfera , Fuligem , Análise Espectral Raman
15.
Sci Total Environ ; 782: 146783, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33838363

RESUMO

Meteorology over coastal region is a driving factor to the concentration of air particles and reactive gases. This study aims to conduct a research to determine the level of year-round air particles and the interaction of the meteorological driving factors with the particle number and mass in 2018, which is moderately influenced by Southeast Asian haze. We obtained the measurement data for particle number count (PNC), mass, reactive gases, and meteorological factors from a Global Atmospheric Watch (GAW) station located at Bachok Marine Research Center, Bachok, Kelantan, Malaysia. For various timeseries and correlation analyses, a 60-second resolution of the data has been averaged hourly and daily and visualized further. Our results showed the slight difference in particle behavior that is either measured by unit mass or number count at the study area. Diurnal variations showed that particles were generally high during morning and night periods. Spike was observed in August for PM2.5/PNC2.5 and PM10/PNC10 and in November for PMCoarse/PNCCoarse. From a polar plot, the particles came from two distinct sources (e.g., seaside and roadside) at the local scale. Regional wind vector shows two distinct wind-blown directions from northeast and southwest. The air mases were transported from northeast (e.g., Philippines, mainland China, and Taiwan) or southwest (e.g., Sumatra) region. Correlation analysis shows that relative humidity, wind direction, and pressure influence the increase in particles, whereas negative correlation with temperature is observed, and wind speed may have a potential role on the decline of particle concentration. The particles at the study area was highly influenced by the changes in regional wind direction and speed.

16.
Anal Bioanal Chem ; 413(8): 2195-2206, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33594485

RESUMO

An analytical method was validated with two reference materials of polycyclic aromatic hydrocarbons in atmospheric particles. Standard reference materials (SRMs) were incorporated into the matrix of unexposed cut quartz filters. The methodology was previously designed and extraction of polycyclic aromatic hydrocarbons (PAHs) from fortified filters was based on a rapid low-cost method, for a low consumption of volume and time. The optimisation combined a low-volume Soxhlet apparatus used in hot Soxhlet mode with a quick clean-up by solid-phase extraction with special cartridges. The quantification of target compounds was performed by gas chromatography/mass spectroscopy in SIM mode. Temperatures of injector and oven program of the GC-MS were also optimised. Experimental variables of both systems were successfully optimised and validated, achieving a robust analytical methodology.

17.
Sci Total Environ ; 746: 141320, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768789

RESUMO

The COVID-19 pandemic has triggered an industrial and financial slowdown due to unprecedented regulations imposed with the purpose to contain the spread of the virus. Consequently, the positive effect on the environment has been witnessed. One of the most prominent evidences has been the drastic air quality improvement, as a direct consequence of lower emissions from reduced industrial activity. While several studies have demonstrated the validity of this hypothesis in mega-cities worldwide, it is still an unsubstantiated fact whether the same holds true for cities with a smaller urban extent and population. In the present study we investigate the temporal development of atmospheric constituent concentrations as retrieved concurrently from the Sentinel-5P satellite and a ground meteorological station. We focus on the period before and during the COVID-19 pandemic over the city of Hat Yai, Thailand and present the effect of the lockdown on the atmospheric quality over this average populated city (156,000 inhabitants). NO2, PM2.5 and PM10 concentrations decreased by 33.7%, 21.8% and 22.9% respectively in the first 3 weeks of the lockdown compared to the respective pre-lockdown period; O3 also decreased by 12.5% and contrary to similar studies. Monthly averages of NO2, CO and PM2.5 for the month April exhibit in 2020 the lowest values in the last decade. Sentinel-5P retrieved NO2 tropospheric concentrations, both locally over the ground station and the spatial average over the urban extent of the city, are in agreement with the reduction observed from the ground station. Numerous studies have already presented evidence of the bettering of the air quality over large metropolitan areas during the COVID-19 pandemic. In the current study we demonstrate that this holds true for Hat Yai, Thailand; we propound that the environmental benefits documented in major urban agglomerations during the lockdown may extend to medium-sized urban areas as well.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Betacoronavirus , COVID-19 , Cidades , Monitoramento Ambiental , Humanos , Material Particulado/análise , SARS-CoV-2 , Tailândia/epidemiologia
18.
Huan Jing Ke Xue ; 41(7): 3021-3030, 2020 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608874

RESUMO

Atmospheric particulate matter pollution in Zigong City in southern Sichuan is quite severe. The average concentrations of PM10 and PM2.5 from 2015 to 2018 were (95.42±9.53) µg·m-3 and (65.95±6.98) µg·m-3, with an obvious trend of decline. The concentrations of PM10 and PM2.5 in winter were much higher than in other seasons, with the highest average concentrations being(138.08±52.29) µg·m-3 and (108.50±18.05) µg·m-3 in January, respectively, whereas in summer, the average concentrations were lowest. The average ratio of PM2.5 to PM10 is 69.12%, and the ratio in winter is about 1.17 times that in summer; thus, PM2.5 is mainly responsible for the air pollution. To explore the potential sources of fine particulate matter (PM2.5) in Zigong City and the pollution contributions of different sources in different seasons, the concentration of PM2.5 in Zigong and the daily trajectory after 72 h were calculated and clustered by the combined use of a variety of potential source analysis methods and data. These methods and data included the hybrid single particle lagrangian integrated trajectory (HYSPLIT) model, global data assimilation system (GDAS) meteorological data, potential source contribution analysis (PSCF), and concentration of weight trajectory analysis (CWT). The results showed that the area near Zigong is mostly controlled by southeasterly, westerly, and northwesterly winds in all seasons, and the high PM2.5 concentration is mostly located in the low-wind-speed zone of 0-2 m·s-1. The influence of different seasons and transport routes on PM2.5 pollution in Zigong is significant. In spring, it is mainly affected by short-distance air flow from the west and north; in summer, the pollution mainly comes from the southeast air flow of short-distance transportation; in autumn, it is mainly affected by short-distance transportation air flow from Ziyang, Suining, Chongqing, and Neijiang; and in winter, it is not only affected by the surrounding cities such as Ziyang, Suining, and Neijiang but also by the long-distance transportation air flow from central Tibet. In general, the potential source area of particulate matter in Zigong City is mainly located in the border area between the west of Chongqing and the south of Sichuan. In winter, the main contribution area is at its widest, while in summer, the potential source area is smallest.

19.
Artigo em Inglês | MEDLINE | ID: mdl-32312150

RESUMO

This study focuses on the water-soluble ion concentrations in the washing solution of leaves of different roadside tree species at three sites in Iran to estimate the ionic composition of the dry deposition of ambient air particulates. All considered water-soluble ion concentrations were significantly higher next to the roads with high traffic density compared to the reference site with low traffic density. The PCA results showed that Ca2+, Mg2+, [Formula: see text] and [Formula: see text] originated mainly from traffic activities and geological sources, and Na+, Cl-, K+ and F- from sea salts. In addition to sea salt, K+ and F- were also originated from anthropogenic sources i.e. industrial activities, biomass burning and fluorite mining. Moreover, the concentration of the water-soluble ions depended on species and site. C. lawsoniana had significantly higher ion concentrations in its leaf washing solution compared to L. japonicum and P. brutia which indicates C. lawsoniana is the most suitable species for accumulating of atmospheric dry deposition. From our results, it can be concluded that sites with similar traffic density can have different particle loads and water-soluble ion species, and that concentrations in leaf-washing solutions depend on site conditions and species-specific leaf surface characteristics.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Folhas de Planta/química , Árvores/química , Água/química , Biomassa , Poeira/análise , Indústrias , Íons , Irã (Geográfico) , Folhas de Planta/crescimento & desenvolvimento , Solubilidade , Árvores/crescimento & desenvolvimento
20.
Sci Total Environ ; 694: 133534, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31756840

RESUMO

China currently faces environmental challenges of lower air quality, partly as a result of industrial activities. The aim of this study was to investigate the role of iron and steelmaking facilities to regional air quality in four selected industry dominated urban centres in China. Nine different particle size ranges present in atmospheric particles collected from four sites in Kunming (KM), Wuhan (WH), Nanjing (NJ) and Ningbo (NB) were analysed and compared with particles collected at one background site at the Ningbo Nottingham University (UN) with very little industrial influence in China. Similar mass concentration levels of particulate matter PM2.1 and PM1.1 were found at the three sites near older iron and steelmaking plants (KM, WH and NJ). Significantly lower levels of PM2.1 and PM1.1 were collected at the fourth site (NB), which is near to a modern and coastal iron and steelmaking plant. The particles collected had the highest mass concentration in the aerodynamic diameter range of 3.3-9.0 µm for all sites, except for the background site (UN). Scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy, and inductively coupled plasma were used to determine the surface morphology and particle chemistry. Al, Ca, Fe, K, Mg, Na and Zn were found as the most abundant elements in all samples. The enrichment factors show that elements As, Cd, Cr, Cu, Pb and Zn were significantly enriched in particles, especially in fine particles, posing an adverse impact on human health. This study can be used to assist the development of particle monitoring programmes in the vicinity of industrial areas and also help to establish an elemental modality dataset on the exposure and risk assessments of atmospheric particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...