Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Talanta ; 277: 126430, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38878510

RESUMO

In the present work, we developed an aptasensor to determine chloramphenicol (CAP) based on the dual signal output of photoelectrochemistry (PEC) and colorimetry. The Fe3+-doped porous tungsten trioxide was prepared by sol-gel method and coated on the ITO conductive glass to form ITO/p-W(Fe)O3. After assembling the captured DNA (cDNA) and the aptamer of CAP (apt) successively, the constructed ITO/p-W(Fe)O3-cDNA/apt aptasensor exhibited excellent photocurrent response under visible light irradiation in the presence of glucose, which provided the feasibility for PEC measurement with high sensitivity. In the presence of CAP, the apt left the ITO/p-W(Fe)O3 surface and AuNPs linked on the probe DNA would be assembled on it, which led to the decrease of photocurrent. Thanks to the oxidase-mimic catalytic performance of AuNPs and the recycling catalytic hydrolysis by exonuclease I, the measurement signal of the aptasensor could be amplified significantly, and the photocurrent decrease of the aptasensor was linearly related to the concentration of CAP in the range of 1.0 pM-10.0 nM and low detection limit was 0.36 pM. Meanwhile, the H2O2 produced from catalytic oxidation of glucose could oxidize TMB to blue oxTMB under HRP catalysis, which absorbance at 652 nm was linearly related to the concentration of CAP in the range of 5.0 pM-10.0 nM and low detection limit was 1.72 pM. Therefore, an aptasensor that determine CAP in real samples was successfully constructed with good precision of the relative standard deviation less than 5.7 % for PEC method and 7.3 % for colorimetric method, which can meet the analysis needs in different scenarios.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cloranfenicol , Colorimetria , Técnicas Eletroquímicas , Ouro , Nanopartículas Metálicas , Cloranfenicol/análise , Cloranfenicol/química , Aptâmeros de Nucleotídeos/química , Colorimetria/métodos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Ouro/química , Nanopartículas Metálicas/química , Limite de Detecção , Óxidos/química , Processos Fotoquímicos , Antibacterianos/análise , Antibacterianos/química , Tungstênio
2.
Vaccine ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38918102

RESUMO

Pneumococcal conjugate vaccines (PCV) typically consist of capsular polysaccharides from different S. pneumoniae serotypes which are covalently attached to carrier protein. A well-established process to manufacture PCV is through activating polysaccharide by oxidation of vicinal diols to aldehydes, followed by protein conjugation via reductive amination. Polysaccharide activation is a crucial step that affects vaccine product critical attributes including conjugate size and structure. Therefore, it is highly desired to have robust analytical methods to well characterize this activation process. In this study, using pneumococcal serotype 6A as the model, we present two complimentary analytical methods for characterization of activated polysaccharide. First, a size exclusion chromatography (SEC) method was developed for quantitative measurement of polysaccharide activation levels. This SEC method demonstrated good assay characteristics on accuracy, precision and linearity. Second, a gold nanoparticle labeled cryo-electron microscopy (Cryo-EM) technique was developed to visualize activation site distribution along polysaccharide chain and provide information on activation heterogeneity. These two complimentary methods can be utilized to control polysaccharide activation process and ensure consistent delivery of conjugate vaccine products.

3.
Anal Chim Acta ; 1306: 342617, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692789

RESUMO

BACKGROUND: Alpha-fetoprotein (AFP) is a fetal protein that can indicate congenital anomalies such as Down syndrome and spinal canal blockage when detected at abnormal levels in pregnant women. Current AFP detection methods rely on invasive blood or serum samples, which require sophisticated equipment. From the many solutions proposed, colorimetric paper-based assays excel in point-of-care settings. The concept of paper-based ELISA (p-ELISA) enhances traditional methods, aligning with the ASSURED criteria for diagnostics in resource-limited regions. Despite success in microfluidic paper-based assay devices, laser printing remains underexplored for p-ELISA. Additionally, modifying the paper surface provides an additional layer of sensitivity enhancement. RESULTS: In this study, we developed a novel laser-printed paper-based ELISA (LP-pELISA) for rapid, sensitive, and noninvasive detection of AFP in saliva samples. The LP-pELISA platform was fabricated by printing hydrophobic barriers on filter paper using a laser printer, followed by depositing hydroxyapatite (HAp) as an immobilization material for the antibodies. The colorimetric detection was achieved using AuNPs functionalized with anti-AFP antibodies and silver nitrate enhancement. The LP-pELISA exhibited a linear response for AFP detection in both buffer and saliva samples over a range of 1.0-800 ng mL-1, with a limit of detection (LOD) reaching 1.0 ng mL-1. The assay also demonstrated good selectivity, repeatability, reproducibility, and stability. The LP-pELISA was further validated by testing spiked human saliva samples, showing its potential for point-of-care diagnosis of congenital disabilities. SIGNIFICANCE: The LP-pELISA is a noninvasive platform showcasing simplicity, cost-effectiveness, and user-friendliness, utilizing laser printing, hydroxyapatite modification, and saliva samples to efficiently detect AFP. Beyond its application for AFP, this method's versatility extends to other biomarkers, positioning it as a catalyst for the evolution of paper-based biosensors. The LP-pELISA holds promise as a transformative tool for point-of-care diagnostics, fostering advancements in healthcare with its innovative technology.


Assuntos
Colorimetria , Durapatita , Ensaio de Imunoadsorção Enzimática , Lasers , Papel , Saliva , alfa-Fetoproteínas , Humanos , Saliva/química , Durapatita/química , alfa-Fetoproteínas/análise , Impressão , Ouro/química , Limite de Detecção , Anticorpos Imobilizados/imunologia , Anticorpos Imobilizados/química
4.
Anal Chim Acta ; 1308: 342616, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740451

RESUMO

BACKGROUND: Bacterial spores are the main potential hazard in medium- and high-temperature sterilized meat products, and their germination and subsequent reproduction and metabolism can lead to food spoilage. Moreover, the spores of some species pose a health and safety threat to consumers. The rapid detection, prevention, and control of bacterial spores has always been a scientific problem and a major challenge for the medium and high-temperature meat industry. Early and sensitive identification of spores in meat products is a decisive factor in contributing to consumer health and safety. RESULTS: In this study, we developed a novel and stable Ag@AuNP array substrate by using a two-step synthesis approach and a liquid-interface self-assembly method that can directly detect bacterial spores in actual meat product samples without the need for additional in vitro bacterial culture. The results indicate that the Ag@AuNP array substrate exhibits high reproducibility and Raman enhancement effects (1.35 × 105). The differentiation in the Surface enhanced Raman scattering (SERS) spectra of five bacterial spores primarily arises from proteins in the spore coat and inner membrane, peptidoglycan of cortex, and Ca2⁺-DPA within the spore core. The correct recognition rate of linear discriminant analysis for spores in the meat product matrix can reach 100 %. The average recovery accuracy of the SERS quantitative model was at around 101.77 %, and the limit of detection can reach below 10 CFU/mL. SIGNIFICANCE: It provides a promising technological strategy for the characteristic substance analysis and timely monitoring of spores in meat products.


Assuntos
Produtos da Carne , Prata , Análise Espectral Raman , Esporos Bacterianos , Análise Espectral Raman/métodos , Prata/química , Esporos Bacterianos/isolamento & purificação , Esporos Bacterianos/química , Produtos da Carne/microbiologia , Produtos da Carne/análise , Nanopartículas Metálicas/química , Contaminação de Alimentos/análise , Propriedades de Superfície , Microbiologia de Alimentos/métodos , Culinária
5.
Sci Rep ; 14(1): 12125, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802360

RESUMO

Emergence of Coronavirus disease 2019 (COVID-19) pandemic has posed a huge threat to public health. Rapid and reliable test to diagnose infected subjects is crucial for disease spread control. We developed a colorimetric test for COVID-19 detection using a Colorimetric Assay based on thiol-linked RNA modified gold nanoparticles (AuNPs) and oligonucleotide probes. This method was conducted on RNA from 200 pharyngeal swab samples initially tested by Real-Time polymerase chain reaction (RT-PCR) as gold standard. A specific oligonucleotide probe designed based on ORF1ab of COVID-19 was functionalized with AuNPs-probe conjugate. The exposure of AuNP-probe to isolated RNA samples was tested using hybridization. In this comparative study, the colorimetric functionalized AuNPs assay exhibited a detection limit of 25 copies/µL. It was higher in comparison to the RT-PCR method, which could only detect 15 copies/µL. The results demonstrated 100% specificity and 96% sensitivity for the developed method. Herein, we developed an incredibly rapid, simple and cost-effective Colorimetric Assay lasting approximately 30 min which could process considerably higher number of COVID-19 samples compared to the RT-PCR. This AuNP-probe conjugate colorimetric method could be considered the optimum alternatives for conventional diagnostic tools especially in over-populated and/or low-income countries.


Assuntos
COVID-19 , Colorimetria , Ouro , Nanopartículas Metálicas , Nasofaringe , RNA Viral , SARS-CoV-2 , Sensibilidade e Especificidade , Colorimetria/métodos , Humanos , COVID-19/diagnóstico , COVID-19/virologia , Nanopartículas Metálicas/química , Ouro/química , Nasofaringe/virologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , RNA Viral/análise , RNA Viral/genética , RNA Viral/isolamento & purificação , Limite de Detecção , Sondas de Oligonucleotídeos/genética , Teste de Ácido Nucleico para COVID-19/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Teste para COVID-19/métodos
6.
ACS Nano ; 18(19): 12333-12340, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38688009

RESUMO

In this study, we investigated the optical properties of a transition metal dichalcogenide (TMD) substrate via Mie-scattering-induced surface analysis (MISA). Employing near-field optical microscopy and finite-difference time-domain (FDTD) simulations, we systemically prove and directly visualize the Mie scattering of superspherical gold nanoparticles (s-AuNPs) at the nanoscale. Molybdenum disulfide substrates exhibited optical isotropy, while rhenium disulfide (ReS2) substrates showed anisotropic behavior attributed to the interaction with incident light's electric field. Our study revealed substantial anisotropic trends in Mie scattering, particularly in the near-infrared energy range, with ReS2 exhibiting more pronounced spectral and angular responses in satellite peaks. Our results emphasize the application of Mie scattering, exploring the optical properties of substrates and contributing to a deeper understanding of nanoscale light-matter interactions.

7.
J Microbiol Methods ; 220: 106925, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552847

RESUMO

Attempts were made to improve the efficacy of PCR amplified immunoassay (I-PCR) for diagnosing abdominal TB cases by utilizing the gold nanoparticle (AuNP)-based I-PCR, where AuNPs were functionalized with detection antibodies/oligonucleotides that exhibited 84.3% sensitivity and 95.1% specificity. This assay would improve the ongoing algorithms used in abdominal TB diagnosis.


Assuntos
Nanopartículas Metálicas , Tuberculose , Humanos , Ouro , Tuberculose/diagnóstico , Imunoensaio , Reação em Cadeia da Polimerase
8.
Clin Exp Med ; 24(1): 8, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240834

RESUMO

Humanity is suffering from cancer which has become a root cause of untimely deaths of individuals around the globe in the recent past. Nanotheranostics integrates therapeutics and diagnostics to monitor treatment response and enhance drug efficacy and safety. We hereby propose to discuss all recent cancer imaging and diagnostic tools, the mechanism of targeting tumor cells, and current nanotheranostic platforms available for cancer. This review discusses various nanotheranostic agents and novel molecular imaging tools like MRI, CT, PET, SPEC, and PAT used for cancer diagnostics. Emphasis is given to gold nanoparticles, silica, liposomes, dendrimers, and metal-based agents. We also highlight the mechanism of targeting the tumor cells, and the limitations of different nanotheranostic agents in the field of research for cancer treatment. Due to the complexity in this area, multifunctional and hybrid nanoparticles functionalized with targeted moieties or anti-cancer drugs show the best feature for theranostics that enables them to work on carrying and delivering active materials to the desired area of the requirement for early detection and diagnosis. Non-invasive imaging techniques have a specificity of receptor binding and internalization processes of the nanosystems within the cancer cells. Nanotheranostics may provide the appropriate medicine at the appropriate dose to the appropriate patient at the appropriate time.


Assuntos
Nanopartículas Metálicas , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina Teranóstica/métodos , Ouro/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico
9.
Nanomaterials (Basel) ; 14(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38202566

RESUMO

Point-of-care (POC) diagnostic platforms are globally employed in modern smart technologies to detect events or changes in the analyte concentration and provide qualitative and quantitative information in biosensing. Surface plasmon-coupled emission (SPCE) technology has emerged as an effective POC diagnostic tool for developing robust biosensing frameworks. The simplicity, robustness and relevance of the technology has attracted researchers in physical, chemical and biological milieu on account of its unique attributes such as high specificity, sensitivity, low background noise, highly polarized, sharply directional, excellent spectral resolution capabilities. In the past decade, numerous nano-fabrication methods have been developed for augmenting the performance of the conventional SPCE technology. Among them the utility of plasmonic gold nanoparticles (AuNPs) has enabled the demonstration of plethora of reliable biosensing platforms. Here, we review the nano-engineering and biosensing applications of AuNPs based on the shape, hollow morphology, metal-dielectric, nano-assembly and heterometallic nanohybrids under optical as well as biosensing competencies. The current review emphasizes the recent past and evaluates the latest advancements in the field to comprehend the futuristic scope and perspectives of exploiting Au nano-antennas for plasmonic hotspot generation in SPCE technology.

10.
ACS Nano ; 18(2): 1744-1755, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38174995

RESUMO

DNA-templated metallization has emerged as an efficient strategy for creating nanoscale-metal DNA hybrid structures with a desirable conformation and function. Despite the potential of DNA-metal hybrids, their use as combinatory therapeutic agents has rarely been examined. Herein, we present a simple approach for fabricating a multipurpose DNA superstructure that serves as an efficient photoimmunotherapy agent. Specifically, we adsorb and locally concentrate Au ions onto DNA superstructures through induced local reduction, resulting in the formation of Au nanoclusters. The mechanical and optical properties of these metallic nanoclusters can be rationally controlled by their conformations and metal ions. The resulting golden DNA superstructures (GDSs) exhibit significant photothermal effects that induce cancer cell apoptosis. When sequence-specific immunostimulatory effects of DNA are combined, GDSs provide a synergistic effect to eradicate cancer and inhibit metastasis, demonstrating potential as a combinatory therapeutic agent for tumor treatment. Altogether, the DNA superstructure-templated metal casting system offers promising materials for future biomedical applications.


Assuntos
Neoplasias , Fototerapia , Humanos , Fototerapia/métodos , DNA , Neoplasias/terapia , Imunoterapia , Íons
11.
Anal Chim Acta ; 1288: 342152, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220286

RESUMO

BACKGROUND: Regular blood glucose monitoring is very important for diabetic patients. The composition of skin interstitial fluid (ISF) is similar to that of blood, which can be used for daily blood sugar detection and disease care. However, most methods of ISF extraction have complicated steps, may cause skin damage, and can only extract a limited amount of ISF, resulting in low detection efficiency. Therefore, it is very necessary to develop a detection method that can not only extract a large amount of ISF safely, efficiently, and conveniently, but also realize rapid detection of glucose level in ISF. RESULTS: Here, we developed a gold nanoparticle (AuNP)-based swellable colorimetric MN patch with minimally invasive sampling function and real-time ISF glucose analysis ability. The MN patch could quickly absorb a large amount of skin ISF, and 60.2 mg of ISF was extracted within 10 min in vitro. It was divided into two layers: the tip layer was embedded with AuNPs with glucose oxidase (GOx)-like activity, which catalyzed the oxidation of glucose extracted from ISF and produced hydrogen peroxide (H2O2); horseradish peroxidase (HRP) encapsulated in the backing layer catalyzed the oxidation of 3, 3', 5, 5'-tetramethylbenzidine (TMB) by H2O2 to produce oxTMB, which led to a visible color shift in the backing layer. The ISF glucose level was judged by naked eyes and further quantified by color analysis with Image J software. As a result, the colorimetric MN patch successfully identified the normal blood sugar and hyperglycemia state in vivo. SIGNIFICANCE: The colorimetric MN patch combined in-situ colorimetric sensing based on AuNP nanozyme with MN patch, which detected glucose level without blood drawing, increasing patients' compliance and reducing detection steps and time. Compared with the detection methods based on natural nanozymes, our method had better stability and sensitivity to complex environments (extreme pH and high temperature, etc.) in actual detection.


Assuntos
Glicemia , Nanopartículas Metálicas , Humanos , Glicemia/análise , Ouro/química , Glucose Oxidase/química , Automonitorização da Glicemia , Colorimetria/métodos , Peróxido de Hidrogênio/química , Nanopartículas Metálicas/química , Glucose/análise
12.
Anal Biochem ; 686: 115411, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38070665

RESUMO

We report a sensitive lateral flow assay (LFA) in which the assay colour change originated from reporter labels constructed from silica spheres (radius = 450 nm) coated with approximately 3.9 × 103 gold nanoparticles (radius = 8.5 nm). These reporter labels were modified with DNA and deposited in the conjugation area of an LFA device assembled on wax-patterned Fusion 5 paper. Test and control zones of the device were pre-loaded with capture probe formed by avidin-coated mesoporous silica nanoparticles attached with biotin-tagged DNA sequences. Proof-of-concept was demonstrated by the detection of a partial sequence of the actin gene of Colletotrichum truncatum. The DNA target could be detected with an LOD of 46 pM, which was 5 times lower than a comparative assay using gold nanoparticles alone. The assay showed good selectivity against the Colletotrichum species C. scovillei and C. gloeosporioides, as well as against DNA from the fungal genera Aspergillus niger and Alternaria alternata. There was negligible change in sensor response over storage for one month at room temperature. The LFA was used to detect PCR products following extraction from mycelium.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro , Dióxido de Silício , DNA/análise , Reação em Cadeia da Polimerase
13.
Biosens Bioelectron ; 246: 115891, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056341

RESUMO

Printed circuit board (PCB) based biosensors have often utilized hard gold electroplating, that nullifies the cost advantages of this technology as compared to screen printed electrodes. Electroless nickel immersion gold (ENIG) is a popular gold deposition process widely used in PCB manufacturing, but vulnerable to pinhole defects and large surface roughness, which compromises biosensor performance. In this work, we present a method to address these challenges through electrodeposition of methylene blue (MB) to cover surface defects and improve electroactivity of ENIG PCB electrodes. We also demonstrate a process to realize in situ synthesis of gold nanoparticles (AuNPs) using acid-functionalized multi-walled carbon nanotubes (MWCNTs) as scaffold, that are used to immobilize antibody for the target molecule (myeloperoxidase: MPO, early warning biomarker for cardiovascular diseases) through a modified cysteamine/gluteraldehyde based process. The processing steps on the electrode surface are developed in a manner that do not compromise the integrity of the electrode, resulting in repeatable and reliable performance of the sensors. Further, we demonstrate a cost-effective microfluidic packaging process to integrate a capillary pump driven microfluidic channel on the PCB electrode for seamless introduction of samples for testing. We demonstrate the ability of the sensor to distinguish clinically abnormal concentrations of MPO from normal concentrations through extensive characterization using spiked serum and blood plasma samples, with a limit of detection of 15.79 ng/mL.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos de Carbono , Ouro/química , Níquel , Nanotubos de Carbono/química , Imersão , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Peroxidase , Eletrodos , Plasma , Técnicas Eletroquímicas
14.
Chemosphere ; 346: 140665, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949188

RESUMO

Along with the development of productive forces, the use of organic compounds including diversified dyes and multiple drugs has become more and more commonly, resulting in the accelerating water contamination. Herein in this paper, Au doped PCN 224 are designed as bi-functional wastewater treatment agents to absorb and decompose organics molecules efficiently under light irradiation. After inserted with Au, the PCN 224 nanoparticles, which is kind of porous, stable and photosensitive metal-organic framework, show enhanced photodegradeability. Because the Au inserted could inhibit the re-combination of electrons and holes by absorbing photo-electrons; decrease the nanoparticles' band gap, and finally produce much more free radicals. In the meanwhile, due to the lower binding energy between S and Au, the Au modified PCN 224 perform better in absorbing organic compounds consisted of S contained heterocyclic ring (such as methylene blue). This work provides new insights into the precious design of materials in clearing organic compounds.


Assuntos
Estruturas Metalorgânicas , Águas Residuárias , Compostos Orgânicos/química , Catálise
15.
Front Bioeng Biotechnol ; 11: 1294074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929188

RESUMO

Introduction: Photothermal therapy (PTT) holds significant potential for the treatment of malignant tumors. However, conventional single PTT often struggles to effectively inhibit tumor metastasis and recurrence. In this study, we constructed a MOF nanoparticle with a synergistic therapeutic effect combining photothermal and immunotherapy, enabling selective blocking of the PD-1/PD-L1 pathway within the tumor microenvironment. Methods: Firstly, MOF nanoparticles were synthesized using NH2-TPDC as ligands and Zr+4 as metal ions. Subsequently, NH2 was modified to N3 via azide transfer reagents. Through a copper free catalytic click chemical reaction, the PD-1/PD-L1 blocking agent AUNP-12 functionalized with disulfide bonds of DBCO was covalently introduced into MOF nanoparticles which were then loaded with the photothermal agent indocyanine green (ICG) to successfully obtain uniformly sized and stable ICG-MOF-SS-AUNP12 nanoparticles. Results and discussion: ICG-MOF-SS-AUNP12 exhibited GSH-triggered release of PD-1/PD-L1 blockers while demonstrating potent photothermal effects capable of efficiently killing tumor cells. Under 808 nm near-infrared (NIR) irradiation, ICG-MOF-SS-AUNP12 effectively promoted the maturation of DC cells and activated immune responses. This study presents a novel method for constructing MOF-based nanodrugs and offers new possibilities for the synergistic treatment of tumors involving photothermal combined with immunotherapy.

16.
Mikrochim Acta ; 190(11): 430, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37804452

RESUMO

The low detection sensitivity of lateral-flow immunochromatography assay (LFIA) based on spherical gold nanoparticle (AuNP) limits its wide applications. In the present study, AuNP dimers with strong plasma scattering and robust signal output were synthesized via the Ag ion soldering (AIS) strategy and used as labeled probes in LFIA to boost the sensitivity without any extra operation process and equipment. The established LFIA exhibited high sensitivity with a limit of detection (LOD) of 2.0 × 102 TCID50/mL for PEDV, which provides 50 times higher sensitivity than commercial LFIA based on spherical colloidal gold. In addition, the AuNP dimer-based LFIA showed strong specificity, good reproducibility, high stability, and good accordance to reverse transcription polymer chain reaction (RT-PCR) when detecting 109 clinical samples. Thus, the AuNP dimers is a promising probe for LFIA and the developed AuNP dimer-based LFIA is suitable for the rapid detection of PEDV in the field.


Assuntos
Nanopartículas Metálicas , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Ouro , Sensibilidade e Especificidade , Reprodutibilidade dos Testes , Doenças dos Suínos/diagnóstico , Nanopartículas Metálicas/química , Cromatografia de Afinidade , Polímeros
17.
Materials (Basel) ; 16(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687519

RESUMO

This work focuses on the possible application of gold nanoparticles on flexible cotton fabric as acetone- and ethanol-sensitive substrates by means of impedance measurements. Specifically, citrate- and polyvinylpyrrolidone (PVP)-functionalized gold nanoparticles (Au NPs) were synthesized using green and well-established procedures and deposited on cotton fabric. A complete structural and morphological characterization was conducted using UV-VIS and Fourier transform infrared (FT-IR) spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM). A detailed dielectric characterization of the blank substrate revealed interfacial polarization effects related to both Au NPs and their specific surface functionalization. For instance, by entirely coating the cotton fabric (i.e., by creating a more insulating matrix), PVP was found to increase the sample resistance, i.e., to decrease the electrical interconnection of Au NPs with respect to citrate functionalized sample. However, it was observed that citrate functionalization provided a uniform distribution of Au NPs, which reduced their spacing and, therefore, facilitated electron transport. Regarding the detection of volatile organic compounds (VOCs), electrochemical impedance spectroscopy (EIS) measurements showed that hydrogen bonding and the resulting proton migration impedance are instrumental in distinguishing ethanol and acetone. Such findings can pave the way for the development of VOC sensors integrated into personal protective equipment and wearable telemedicine devices. This approach may be crucial for early disease diagnosis based on nanomaterials to attain low-cost/low-end and easy-to-use detectors of breath volatiles as disease markers.

18.
Future Microbiol ; 18: 771-783, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37540117

RESUMO

Aim: Diagnosis of extrapulmonary tuberculosis (EPTB) is difficult, and a rapid and dependable diagnostic test is urgently needed. Methods: A nano-based assay, SYBR Green magnetic bead-coupled gold nanoparticle-based real-time immuno-polymerase chain reaction (MB-AuNP-RT-I-PCR) was studied for the quantitative detection of Mycobacterium tuberculosis MPT-64+CFP-10 proteins in clinically suspected EPTB patients. Results: A wide range (270 fg/ml-9.9 ng/ml) of MPT-64+CFP-10 was quantified by MB-AuNP-RT-I-PCR in EPTB cases, whereas magneto-ELISA demonstrated a narrow range (1.8-10 ng/ml). Furthermore, high sensitivity (88.2%) and specificity (100%) were attained by MB-AuNP-RT-I-PCR in EPTB (n = 51) and non-TB control (n = 49) subjects, respectively. Both MB-AuNP-I-PCR/magneto-ELISA exhibited significantly lower (p < 0.05-0.01) sensitivities than MB-AuNP-RT-I-PCR. Conclusion: The MB-AuNP-RT-I-PCR described herein shows good diagnostic accuracy, which may translate into a credible diagnostic kit.


Extrapulmonary tuberculosis (EPTB) is a type of tuberculosis disease caused by the bacteria Mycobacterium tuberculosis (Mtb) that affect other regions of the body, rather than the lungs. Detecting EPTB is difficult, and a fast and reliable test is needed. This study developed a test based on a small particle, known as a nanoparticle, to identify Mtb in people with EPTB. The test shows good accuracy and could be used for routine testing.

19.
ACS Sens ; 8(7): 2879-2888, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37411019

RESUMO

We demonstrate the reliable creation of multiple layers of Au nanoparticles in random close-packed arrays with sub-nm gaps as a sensitive surface-enhanced Raman scattering substrate. Using oxygen plasma etching, all the original molecules creating the nanogaps can be removed and replaced with scaffolding ligands that deliver extremely consistent gap sizes below 1 nm. This allows precision tailoring of the chemical environment of the nanogaps which is crucial for practical Raman sensing applications. Because the resulting aggregate layers are easily accessible from opposite sides by fluids and by light, high-performance fluidic sensing cells are enabled. The ability to cyclically clean off analytes and reuse these films is shown, exemplified by sensing of toluene, volatile organic compounds, and paracetamol, among others.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Ouro/química , Análise Espectral Raman/métodos
20.
J Pharm Biomed Anal ; 234: 115518, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37336038

RESUMO

This study aimed to develop a molecularly imprinted polymer (MIP) sensor using electropolymerization of thiophene acetic acid monomer around template molecules, sulfaguanidine (SGN) and sulfamerazine (SMR), for selective and sensitive detection of both antibiotics. Au nanoparticles were then deposited on the modified electrode surface, and SGN and SMR were extracted from the resulting layer. Surface characterization, changes in the oxidation peak current of both analytes, and investigation of the electrochemical properties of the MIP sensor were examined using scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry. The developed MIP sensor with Au nanoparticles showed a detection limit of 0.030 µmol L-1 and 0.046 µmol L-1 for SGN and SMR, respectively, with excellent selectivity in the presence of interferents. The sensor was successfully used for SGN and SMR analysis in human fluids, including blood serum and urine, with excellent stability and reproducibility.


Assuntos
Nanopartículas Metálicas , Impressão Molecular , Óxido de Zinco , Humanos , Polímeros Molecularmente Impressos , Sulfamerazina , Sulfaguanidina , Ouro/química , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Impressão Molecular/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...