Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891767

RESUMO

Myocarditis is characterized by an influx of inflammatory cells, predominantly of myeloid lineage. The progression of myocarditis to a dilated cardiomyopathy is markedly influenced by TGF-ß signalling. Here, we investigate the role of TGF-ß signalling in inflammatory cardiac macrophages in the development of myocarditis and post-inflammatory fibrosis. Experimental autoimmune myocarditis (EAM) was induced in the LysM-Cre × R26-stop-EYFP × Tgfbr2-fl/fl transgenic mice showing impaired TGF-ß signalling in the myeloid lineage and the LysM-Cre × R26-stop-EYFP control mice. In EAM, immunization led to acute myocarditis on day 21, followed by cardiac fibrosis on day 40. Both strains showed a similar severity of myocarditis and the extent of cardiac fibrosis. On day 21 of EAM, an increase in cardiac inflammatory macrophages was observed in both strains. These cells were sorted and analysed for differential gene expression using whole-genome transcriptomics. The analysis revealed activation and regulation of the inflammatory response, particularly the production of both pro-inflammatory and anti-inflammatory cytokines and cytokine receptors as TGF-ß-dependent processes. The analysis of selected cytokines produced by bone marrow-derived macrophages confirmed their suppressed secretion. In conclusion, our findings highlight the regulatory role of TGF-ß signalling in cytokine production within inflammatory cardiac macrophages during myocarditis.


Assuntos
Doenças Autoimunes , Citocinas , Macrófagos , Camundongos Transgênicos , Miocardite , Transdução de Sinais , Fator de Crescimento Transformador beta , Animais , Miocardite/metabolismo , Miocardite/imunologia , Miocardite/patologia , Miocardite/etiologia , Fator de Crescimento Transformador beta/metabolismo , Camundongos , Macrófagos/metabolismo , Macrófagos/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Miocárdio/metabolismo , Miocárdio/patologia , Miocárdio/imunologia , Fibrose , Masculino
2.
Int Immunopharmacol ; 133: 112073, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38636372

RESUMO

BACKGROUND: Myocarditis is an important clinical issue which lacks specific treatment by now. Ivermectin (IVM) is an inhibitor of importin α/ß-mediated nuclear translocation. This study aimed to explore the therapeutic effects of IVM on acute myocarditis. METHODS: Mouse models of coxsackie B3 virus (CVB3) infection-induced myocarditis and experimental autoimmune myocarditis (EAM) were established to evaluate the effects of IVM. Cardiac functions were evaluated by echocardiography and Millar catheter. Cardiac inflammatory infiltration was assessed by histological staining. Cytometric bead array and quantitative real-time PCR were used to detect the levels of pro-inflammatory cytokines. The macrophages and their M1/M2 polarization were analyzed via flow cytometry. Protein expression and binding were detected by co-immunoprecipitation, Western blotting and histological staining. The underlying mechanism was verified in vitro using CVB3-infected RAW264.7 macrophages. Cyclic polypeptide (cTN50) was synthesized to selectively inhibit the nuclear translocation of NF-κB/p65, and CVB3-infected RAW264.7 cells were treated with cTN50. RESULTS: Increased expression of importin ß was observed in both models. IVM treatment improved cardiac functions and reduced the cardiac inflammation associated with CVB3-myocarditis and EAM. Furthermore, the pro-inflammatory cytokine (IL-1ß/IL-6/TNF-α) levels were downregulated via the inhibition of the nuclear translocation of NF-κB/p65 in macrophages. IVM and cTN50 treatment also inhibited the nuclear translocation of NF-κB/p65 and downregulated the expression of pro-inflammatory cytokines in RAW264.7 macrophages. CONCLUSIONS: Ivermectin inhibits the nuclear translocation of NF-κB/p65 and the expression of major pro-inflammatory cytokines in myocarditis. The therapeutic effects of IVM on viral and non-viral myocarditis models suggest its potential application in the treatment of acute myocarditis.


Assuntos
Ivermectina , Miocardite , Fator de Transcrição RelA , Animais , Humanos , Masculino , Camundongos , Doenças Autoimunes/tratamento farmacológico , beta Carioferinas/metabolismo , Infecções por Coxsackievirus/tratamento farmacológico , Citocinas/metabolismo , Modelos Animais de Doenças , Enterovirus Humano B , Ivermectina/uso terapêutico , Ivermectina/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Miocardite/tratamento farmacológico , Miocardite/virologia , Miocárdio/patologia , Miocárdio/metabolismo , Células RAW 264.7 , Fator de Transcrição RelA/metabolismo
3.
Sci Rep ; 14(1): 9763, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684719

RESUMO

Autoimmune myocarditis is the limited or diffuse inflammation of the myocardium due to dysfunctional cellular and humoral immunity mechanisms. We constructed mouse models of experimental autoimmune myocarditis (EAM) using peptide MyHC-α614-629. On the day after secondary immunization, the mice were intraperitoneally injected with Rho kinase (ROCK) inhibitor Y-27632. On day 21, the cardiac tissues were harvested and weighed. The hearts of EAM mice were significantly enlarged and whitened. Furthermore, body weight (BW) slowly increased during the treatment period, the heart weight (HW) and the ratio of HW/eventual BW were increased, and inflammatory infiltration and fibrosis were aggravated in the myocardial tissue. Y-27632 treatment improved the aforementioned phenotypic and pathological features of EAM mice. Mechanistic analysis revealed a significant increase in Notch1, Hes1, Jag2, Dil1, Toll-like receptor (Tlr) 2, and interleukin (IL)-1ß expression in the myocardial tissue of EAM mice. Notably, IL-1ß expression was correlated with that of Notch1 and Tlr2. Following Y-27632 treatment, the expression of key target genes of the Notch signaling pathway (Notch1, Hes1, Dil1, and Jag2) and Tlr2 were obviously decreased. Y-27632 treatment also decreased the number of monocytes in the spleen of EAM mice. Thus, ROCK inhibitor Y-27632 exerted a protective effect in EAM mice by downregulating IL-1ß expression. This study aimed to provide a reference point for the future treatment of myocarditis in clinical settings.


Assuntos
Amidas , Doenças Autoimunes , Modelos Animais de Doenças , Interleucina-1beta , Miocardite , Piridinas , Quinases Associadas a rho , Animais , Miocardite/tratamento farmacológico , Miocardite/metabolismo , Miocardite/patologia , Piridinas/farmacologia , Piridinas/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Camundongos , Amidas/farmacologia , Amidas/uso terapêutico , Interleucina-1beta/metabolismo , Regulação para Baixo/efeitos dos fármacos , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos BALB C
4.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339075

RESUMO

Recent research suggests that T-cell receptor (TCR) sequences expanded during human immunodeficiency virus and SARS-CoV-2 infections unexpectedly mimic these viruses. The hypothesis tested here is that TCR sequences expanded in patients with type 1 diabetes mellitus (T1DM) and autoimmune myocarditis (AM) mimic the infectious triggers of these diseases. Indeed, TCR sequences mimicking coxsackieviruses, which are implicated as triggers of both diseases, are statistically significantly increased in both T1DM and AM patients. However, TCRs mimicking Clostridia antigens are significantly expanded in T1DM, whereas TCRs mimicking Streptococcal antigens are expanded in AM. Notably, Clostridia antigens mimic T1DM autoantigens, such as insulin and glutamic acid decarboxylase, whereas Streptococcal antigens mimic cardiac autoantigens, such as myosin and laminins. Thus, T1DM may be triggered by combined infections of coxsackieviruses with Clostridia bacteria, while AM may be triggered by coxsackieviruses with Streptococci. These TCR results are consistent with both epidemiological and clinical data and recent experimental studies of cross-reactivities of coxsackievirus, Clostridial, and Streptococcal antibodies with T1DM and AM antigens. These data provide the basis for developing novel animal models of AM and T1DM and may provide a generalizable method for revealing the etiologies of other autoimmune diseases. Theories to explain these results are explored.


Assuntos
Doenças Autoimunes , Infecções por Coxsackievirus , Diabetes Mellitus Tipo 1 , Enterovirus , Miocardite , Infecções Estreptocócicas , Animais , Humanos , Doenças Autoimunes/complicações , Infecções por Coxsackievirus/complicações , Autoantígenos , Streptococcus , Infecções Estreptocócicas/complicações , Antígenos de Bactérias , Receptores de Antígenos de Linfócitos T
5.
Mol Immunol ; 167: 1-15, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306778

RESUMO

Myocarditis is an inflammation of the heart muscle often associated with viral infections and can lead to dilated cardiomyopathy. Interferon-induced transmembrane protein 3 (IFITM3) is a small endosomal membrane protein with anti-viral activity against multiple viruses and is also implicated in non-infectious diseases such as cancer and Alzheimer's Disease. Since the IFITM3 proteins are expressed both in T cells and in cardiomyocytes, it is reasonable to hypothesize that these molecules could affect myocarditis either through their effect on the autoimmune response or through direct modulation of cardiomyocyte damage. The aim of this study was to investigate the role of IFITM3 in experimental autoimmune myocarditis (EAM)-mediated myocardial injury. Immunization of rats with cardiac myosin results in substantial cardiac inflammation and is associated with increased expression of IFITM3 after 21 days. In vivo IFITM3 shRNA knockdown using the lentivirus transfection method reduced cardiac injury while restoring IFITM3 expression reversed the protective effect of IFITM3 RNA interference. To determine the direct impact of IFITM3, the rat ventricular cell line, H9c2, was treated with palmitic acid which causes apoptosis in these cells. Suppressing IFITM3 expression protects H9c2 cells while overexpressing IFITM3 enhances cell injury. JAK inhibitors reduced IFITM3-mediated myocardial cell injury. In conclusion, IFITM3 may mediate myocardial injury in EAM rats and palmitic acid-induced damage to H9c2 cells through the JAK2/STAT3 pathway.


Assuntos
Miocardite , Animais , Ratos , Inflamação/metabolismo , Miocárdio/metabolismo , Ácido Palmítico/farmacologia , Transdução de Sinais
6.
Cardiovasc Res ; 120(1): 82-94, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-37879102

RESUMO

AIMS: Tumour necrosis factor α (TNF-α) represents a classical pro-inflammatory cytokine, and its increased levels positively correlate with the severity of many cardiovascular diseases. Surprisingly, some heart failure patients receiving high doses of anti-TNF-α antibodies showed serious health worsening. This work aimed to examine the role of TNF-α signalling on the development and progression of myocarditis and heart-specific autoimmunity. METHODS AND RESULTS: Mice with genetic deletion of TNF-α (Tnf+/- and Tnf-/-) and littermate controls (Tnf+/+) were used to study myocarditis in the inducible and the transgenic T cell receptor (TCRM) models. Tnf+/- and Tnf-/- mice immunized with α-myosin heavy chain peptide (αMyHC) showed reduced myocarditis incidence, but the susceptible animals developed extensive inflammation in the heart. In the TCRM model, defective TNF-α production was associated with increased mortality at a young age due to cardiomyopathy and cardiac fibrosis. We could confirm that TNF-α as well as the secretome of antigen-activated heart-reactive effector CD4+ T (Teff) cells effectively activated the adhesive properties of cardiac microvascular endothelial cells (cMVECs). Our data suggested that TNF-α produced by endothelial in addition to Teff cells promoted leucocyte adhesion to activated cMVECs. Analysis of CD4+ T lymphocytes from both models of myocarditis showed a strongly increased fraction of Teff cells in hearts, spleens, and in the blood of Tnf+/- and Tnf-/- mice. Indeed, antigen-activated Tnf-/- Teff cells showed prolonged long-term survival and TNF-α cytokine-induced cell death of heart-reactive Teff. CONCLUSION: TNF-α signalling promotes myocarditis development by activating cardiac endothelial cells. However, in the case of established disease, TNF-α protects from exacerbating cardiac inflammation by inducing activation-induced cell death of heart-reactive Teff. These data might explain the lack of success of standard anti-TNF-α therapy in heart failure patients and open perspectives for T cell-targeted approaches.


Assuntos
Doenças Autoimunes , Insuficiência Cardíaca , Miocardite , Animais , Camundongos , Linfócitos T CD4-Positivos , Citocinas/metabolismo , Morte , Células Endoteliais/patologia , Insuficiência Cardíaca/metabolismo , Inflamação/metabolismo , Miocardite/metabolismo , Miocárdio/metabolismo , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/metabolismo
7.
Biomed Pharmacother ; 170: 115963, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042114

RESUMO

Autoimmune myocarditis, which falls within the broad spectrum of myocarditis, is characterized by an excessive inflammatory response in the heart, and can progress into dilated cardiomyopathy and irreversible heart failure in all possibility. However, effective clinical therapeutics are limited due to its complex inflammatory reactions. Empagliflozin (EMPA) has been previously demonstrated to possess anti-inflammatory properties. This study aimed to determine the improvement effects of EMPA on cardiac dysfunction under the condition of autoimmune myocarditis, and to further investigate the potential mechanisms. In vivo, all male Balb/c mice were randomly divided into four groups: control, experimental autoimmune myocarditis (EAM), EAM+EMPA and EMPA. In vitro, the effects of EMPA on IL-18-stimulated H9C2 cells were explored and the underlying molecular mechanisms were further determined. EMPA treatment significantly inhibited the development of autoimmune myocarditis, and mice treated with EMPA exhibited improved cardiac function compared with that in the EAM group, potentially through modulating pyroptosis of myocardium. Specifically, the NF-κB pathway was activated in the hearts of the EAM mice, which further activated NLRP3 inflammasome-dependent pyroptosis. EMPA treatment significantly inhibited such activation, thus alleviating inflammatory reactions in the context of EAM. Moreover, in vitro, we also observed that EMPA significantly inhibited pyroptosis of IL-18-stimulated H9C2 cells, and reduced nuclear translocation of NF-κB and degradation of activated IκBα. This work provides the first direct evidence that EMPA can inhibit myocardial inflammation and improve cardiac function in EAM mice, partly attributed to the drug-induced suppression of cardiomyocyte pyroptosis via disrupting the NF-κB pathway.


Assuntos
Doenças Autoimunes , Miocardite , Masculino , Camundongos , Animais , Miocardite/tratamento farmacológico , NF-kappa B/metabolismo , Miócitos Cardíacos/metabolismo , Interleucina-18/metabolismo , Piroptose , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Doenças Autoimunes/metabolismo
8.
PeerJ ; 11: e16320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901475

RESUMO

Background: An experimental autoimmune myocarditis rat model was established by subcutaneous injection of porcine myocardial myosin (PCM). The effect of ET-1 receptor type B (ETBR) overexpression on autoimmune myocarditis was observed via tail vein injection of ETBR overexpression lentivirus in rats. We further investigated the mechanisms involved in the regulation of autoimmune myocarditis by ETBR overexpression. Methods: Six rats were randomly selected from 24 male Lewis rats as the NC group, and the remaining 18 rats were injected with PCM on Day 0 and Day 7, to establish the experimental autoimmune myocarditis (EAM) rat model. The 18 rats initially immunized were randomly divided into three groups: the EAM group, ETBR-oe group, and GFP group. On Day 21 after the initial immunization of rats, cardiac echocardiography and serum brain natriuretic peptide (BNP) analysis were performed to evaluate cardiac function, myocardial tissue HE staining was performed to assess myocardial tissue inflammatory infiltration and the myocarditis score, and mRNA expression of IFN-γ, IL-12, and IL-17 was detected by qRT-PCR. Subsequently, immunohistochemical analysis was performed to detect the localization and expression of the ETBR and ICAM-1 proteins, and the expression of ETBR and ICAM-1 was verified by qRT-PCR and western blotting methods. Results: On Day 21 after initial immunization, left ventricular end-diastolic diameter (LVEDd), left ventricular end-systolic diameter (LVEDs), and serum BNP concentrations increased in the hearts of rats in the EAM group compared with the NC group (P < 0.01), and ejection fraction (EF) and fractional shortening (FS) decreased compared with those of the normal control (NC) group (P < 0.01). LVEDd, LVEDs, and serum BNP concentrations decreased in the ETBR-oe group compared with the EAM group, while EF and FS increased significantly (P < 0.01). HE staining showed that a large number of inflammatory cell infiltrates, mainly lymphocytes, were observed in the EAM group, and the myocarditis score was significantly higher than that of the NC group (P < 0.01). Compared with that of the EAM group, myocardial tissue inflammatory cell infiltration was significantly reduced in the ETBR-oe group, and the myocarditis scores were significantly lower (P < 0.01). The mRNAs of the inflammatory factors IFN-γ, IL-12 and IL-17 in myocardial tissue of rats in the EAM group exhibited elevated levels compared with those of the NC group (P < 0.01) while the mRNAs of IFN-γ, IL-12 and IL-17 were significantly decreased in the ETBR-oe group compared with the EAM group (P < 0.01). Immunohistochemistry showed that the staining depth of ETBR protein in myocardial tissue was greater in the EAM group than in the NC group, and significantly greater in the ETBR-oe group than in the EAM group, while the staining depth of ICAM-1 was significantly greater in the EAM group than in the NC group, and significantly lower in the ETBR-oe group than in the EAM group. The ICAM-1 expression level was significantly higher in the EAM group than in the NC group (P < 0.01), and was significantly lower in the ETBR-oe groupthan in the EAM group (P < 0.01).


Assuntos
Molécula 1 de Adesão Intercelular , Miocardite , Receptor de Endotelina B , Animais , Masculino , Ratos , Regulação para Baixo , Interleucina-12 , Interleucina-17 , Ratos Endogâmicos Lew , Suínos
9.
J Natl Compr Canc Netw ; 21(9): 894-899, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37673116

RESUMO

Immune checkpoint inhibitors (ICIs) induce profound benefits in cancer patients with mismatch repair gene mutations or high levels of microsatellite instability. Herein, we present a case of a patient with history of Muir-Torre/Lynch syndrome and metastatic gastric adenocarcinoma in the presence of an MSH2 gene mutation. The patient was initially treated with a PD-1 inhibitor, pembrolizumab, but developed grade 4 myocarditis requiring treatment with infliximab and a prolonged steroid taper. Following discontinuation of pembrolizumab, surveillance testing showed no radiographic or endoscopic evidence of progression for 7 months, until biopsy results from a repeat upper endoscopy indicated local disease recurrence. The patient was subsequently rechallenged with another PD-1 inhibitor, nivolumab, at a 50% dose reduction without recurrent adverse events and eventually achieved a complete response after 13 cycles. This case highlights the relative importance of considering careful rechallenge with ICI therapy in patients with microsatellite instability-high malignancies and a high risk of severe adverse events.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Miocardite , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias Colorretais Hereditárias sem Polipose/tratamento farmacológico , Instabilidade de Microssatélites , Miocardite/tratamento farmacológico , Miocardite/etiologia , Nivolumabe/efeitos adversos
10.
J Nucl Cardiol ; 30(6): 2760-2772, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37758963

RESUMO

BACKGROUND: Vascular adhesion protein-1 (VAP-1) is an adhesion molecule and primary amine oxidase, and Gallium-68-labeled 1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetra-acetic acid conjugated sialic acid-binding immunoglobulin-like lectin 9 motif containing peptide ([68Ga]Ga-DOTA-Siglec-9) is a positron emission tomography (PET) tracer targeting VAP-1. We evaluated the feasibility of PET imaging with [68Ga]Ga-DOTA-Siglec-9 for the detection of myocardial lesions in rats with autoimmune myocarditis. METHODS: Rats (n = 9) were immunized twice with porcine cardiac myosin in complete Freund's adjuvant. Control rats (n = 6) were injected with Freund's adjuvant alone. On day 21, in vivo PET/computed tomography (CT) imaging with [68Ga]Ga-DOTA-Siglec-9 was performed, followed by ex vivo autoradiography, histology, and immunohistochemistry of tissue sections. In addition, myocardial samples from three patients with cardiac sarcoidosis were studied. RESULTS: [68Ga]Ga-DOTA-Siglec-9 PET/CT images of immunized rats showed higher uptake in myocardial lesions than in myocardium outside lesions (SUVmean, 0.5 ± 0.1 vs 0.3 ± 0.1; P = .003) or control rats (SUVmean, 0.2 ± 0.03; P < .0001), which was confirmed by ex vivo autoradiography of tissue sections. Immunohistochemistry showed VAP-1-positive staining in lesions of rats with myocarditis and in patients with cardiac sarcoidosis. CONCLUSION: VAP-1-targeted [68Ga]Ga-DOTA-Siglec-9 PET is a potential novel technique for the detection of myocardial lesions.


Assuntos
Miocardite , Sarcoidose , Humanos , Ratos , Animais , Suínos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioisótopos de Gálio/química , Miocardite/diagnóstico por imagem , Adjuvante de Freund , Tomografia Computadorizada por Raios X , Tomografia por Emissão de Pósitrons/métodos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/química
11.
Rev Med Virol ; 33(6): e2478, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37658748

RESUMO

Myocarditis can result from various infectious and non-infectious causes that can lead to dilated cardiomyopathy (DCM) and heart failure. Among the infectious causes, viruses are commonly suspected. But the challenge is our inability to demonstrate infectious viral particles during clinical presentations, partly because by that point, the viruses would have damaged the tissues and be cleared by the immune system. Therefore, viral signatures such as viral nucleic acids and virus-reactive antibodies may be the only readouts pointing to viruses as potential primary triggers of DCM. Thus, it becomes hard to explain persistent inflammatory infiltrates that might occur in individuals affected with chronic myocarditis/DCM manifesting myocardial dysfunctions. In these circumstances, autoimmunity is suspected, and antibodies to various autoantigens have been demonstrated, suggesting that immune therapies to suppress the autoimmune responses may be necessary. From this perspective, we endeavoured to determine whether or not the known viral causes are associated with development of autoimmune responses to cardiac antigens that include both cardiotropic and non-cardiotropic viruses. If so, what their nature and significance are in developing chronic myocarditis resulting from viruses as primary triggers.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Miocardite , Viroses , Humanos , Autoimunidade , Cardiomiopatia Dilatada/complicações
12.
Antioxidants (Basel) ; 12(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37627502

RESUMO

Myocarditis is an inflammatory and oxidative disorder characterized by immune cell recruitment in the damaged tissue and organ dysfunction. In this paper, we evaluated the molecular pathways involved in myocarditis using a natural compound, Coriolus versicolor, in an experimental model of autoimmune myocarditis (EAM). Animals were immunized with an emulsion of pig cardiac myosin and complete Freund's adjuvant supplemented with mycobacterium tuberculosis; thereafter, Coriolus versicolor (200 mg/Kg) was orally administered for 21 days. At the end of the experiment, blood pressure and heart rate measurements were recorded and the body and heart weights as well. From the molecular point of view, the Coriolus versicolor administration reduced the activation of the TLR4/NF-κB pathway and the levels of pro-inflammatory cytokines (INF-γ, TNF-α, IL-6, IL-17, and IL-2) and restored the levels of anti-inflammatory cytokines (IL-10). These anti-inflammatory effects were accompanied with a reduced lipid peroxidation and nitrite levels and restored the antioxidant enzyme activities (SOD and CAT) and GSH levels. Additionally, it reduced the histological injury and the immune cell recruitment (CD4+ and CD68+ cells). Moreover, we observed an antiapoptotic activity in both intrinsic (Fas/FasL/caspase-3) and extrinsic (Bax/Bcl-2) pathways. Overall, our data showed that Coriolus versicolor administration modulates the TLR4/NF-κB signaling in EAM.

13.
Front Pharmacol ; 14: 1189372, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547335

RESUMO

Background: Oxidative stress is crucial in experimental autoimmune myocarditis (EAM)-induced inflammatory myocardial injury. Ursolic acid (UA) is an antioxidant-enriched traditional Chinese medicine formula. The present study aimed to investigate whether UA could alleviate inflammatory cardiac injury and determine the underlying mechanisms. Methods: Six-week-old male BALB/c mice were randomly assigned to one of the three groups: Sham, EAM group, or UA intervention group (UA group) by gavage for 2 weeks. An EAM model was developed by subcutaneous injection of α-myosin heavy chain derived polypeptide (α-MyHC peptide) into lymph nodes on days 0 and 7. Echocardiography was used to assess cardiac function on day 21. The inflammation level in the myocardial tissue of each group was compared using hematoxylin and eosin staining (HE) of heart sections and Interleukin-6 (IL-6) immunohistochemical staining. Masson staining revealed the degree of cardiac fibrosis. Furthermore, Dihydroethidium staining, Western blot, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA) were used to determine the mechanism of cardioprotective effects of UA on EAM-induced cardiac injury, and the level of IL-6, Nrf2, and HO-1. Results: In EAM mice, UA intervention significantly reduced the degree of inflammatory infiltration and myocardial fibrosis while improving cardiac function. Mechanistically, UA reduced myocardial injury by inhibiting oxidative stress (as demonstrated by a decrease of superoxide and normalization of pro- and antioxidant enzyme levels). Interestingly, UA intervention upregulated the expression of antioxidant factors such as Nrf2 and HO-1. In vitro experiments, specific Nrf2 inhibitors reversed the antioxidant and antiapoptotic effects of ursolic acid, which further suggested that the amelioration of EAM by UA was in a Nrf2/HO-1 pathway-dependent manner. Conclusion: These findings indicate that UA is a cardioprotective traditional Chinese medicine formula that reduces EAM-induced cardiac injury by up-regulating Nrf2/HO-1 expression and suppressing oxidative stress, making it a promising therapeutic strategy for the treatment of EAM.

14.
Immun Inflamm Dis ; 11(6): e872, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37382257

RESUMO

OBJECTIVE: Autoimmune myocarditis is caused by both innate and adaptive immune responses. Many studies have found that myeloid-derived suppressor cells (MDSCs) suppress T-cell responses and reduce immune tolerance, while MDSCs may serve as a key player in inflammatory responses and pathogenesis in variety of autoimmune diseases. However, research into the role of MDSCs in experimental autoimmune myocarditis (EAM) remains lacking. METHODS AND RESULTS: We discovered that the expansion of MDSCs in EAM was closely related to the severity of myocardial inflammation. At an early stage of EAM, both adoptive transfer (AT) and selective depletion of MDSCs could inhibit the expression of IL-17 in CD4+ cells and downregulate the Th17/Treg ratio, alleviating excessive inflammation of EAM myocarditis. In another experiment, in addition, MDSCs transferred after selective depletion could increase IL-17 and Foxp3 expressions in CD4+ cells, as well as the Th17/Treg ratio, contributing to the aggravation of myocardial inflammation. MDSCs promoted the Th17 cell induction under Th17-polarizing conditions in vitro but suppressed Treg expansion. CONCLUSION: These findings suggest that MDSCs play a plastic role in sustaining mild inflammation in EAM by shifting Th17/Treg balance.


Assuntos
Células Supressoras Mieloides , Miocardite , Humanos , Interleucina-17 , Linfócitos T Reguladores , Células Th17 , Inflamação
15.
J Neuroinflammation ; 20(1): 94, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069636

RESUMO

BACKGROUND: The cholinergic anti-inflammatory pathway (CAP) has been widely studied to modulate the immune response. Current stimulating strategies are invasive or imprecise. Noninvasive low-intensity pulsed ultrasound (LIPUS) has become increasingly appreciated for targeted neuronal modulation. However, its mechanisms and physiological role on myocarditis remain poorly defined. METHODS: The mouse model of experimental autoimmune myocarditis was established. Low-intensity pulsed ultrasound was targeted at the spleen to stimulate the spleen nerve. Under different ultrasound parameters, histological tests and molecular biology were performed to observe inflammatory lesions and changes in immune cell subsets in the spleen and heart. In addition, we evaluated the dependence of the spleen nerve and cholinergic anti-inflammatory pathway of low-intensity pulsed ultrasound in treating autoimmune myocarditis in mice through different control groups. RESULTS: The echocardiography and flow cytometry of splenic or heart infiltrating immune cells revealed that splenic ultrasound could alleviate the immune response, regulate the proportion and function of CD4+ Treg and macrophages by activating cholinergic anti-inflammatory pathway, and finally reduce heart inflammatory injury and improve cardiac remodeling, which is as effective as an acetylcholine receptor agonists GTS-21. Transcriptome sequencing showed significant differential expressed genes due to ultrasound modulation. CONCLUSIONS: It is worth noting that the ultrasound therapeutic efficacy depends greatly on acoustic pressure and exposure duration, and the effective targeting organ was the spleen but not the heart. This study provides novel insight into the therapeutic potentials of LIPUS, which are essential for its future application.


Assuntos
Miocardite , Animais , Camundongos , Miocardite/terapia , Miocardite/patologia , Baço/patologia , Ultrassonografia , Modelos Animais de Doenças
16.
Eur J Pharmacol ; 942: 175549, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36708976

RESUMO

Myocarditis is defined as an inflammatory disease of the myocardium, and the autoimmune response specific to myocardium plays an important role in chronic myocarditis. Inhibiting myocardial-specific autoimmune response and inflammation is crucial to treat myocarditis. Myricetin is a plant-derived flavonoid in nature which has potent anti-inflammatory and cardiovascular protective properties. However, the pharmacological effect of myricetin in autoimmune myocarditis is undefined. It is necessary to investigate the role and potential mechanisms of myricetin in autoimmune myocarditis. Therefore, purified cardiac myosin was subcutaneously injected to mice to establish the experimental autoimmune myocarditis (EAM) model. Myricetin was solubilized in normal saline and administered everyday by gavage from the day of immunization. After 21 days of treatment, it was found that myricetin significantly alleviated myocardial injury in EAM mice. The serum anti-cardiac myosin antibody, immunoglobulin (Ig) G, IgM levels and the proportion of T helper 17 (Th17) cells were decreased and the proportion of regulatory T (Treg) cells was increased with the treatment of myricetin in EAM mice. The myosin-specific T cell proliferation was inhibited by myricetin. Meanwhile, myricetin suppressed the expressions of monocyte chemoattractant protein-1 (MCP-1), phospho (p)-p65, p-c-Jun and Act1/TRAF6/TAK1 in H9C2 cells and myocardial tissues of EAM mice. These results revealed that myricetin inhibited the autoimmune response specific to myocardium and the expression of MCP-1 in cardiomyocytes, which suggested that myricetin ameliorated autoimmune myocarditis by modulating immune response and the expression of MCP-1. Therefore, myricetin may be a promising therapeutic strategy for autoimmune myocarditis.


Assuntos
Doenças Autoimunes , Miocardite , Animais , Camundongos , Doenças Autoimunes/tratamento farmacológico , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/metabolismo , Imunidade , Miocardite/tratamento farmacológico , Miocardite/metabolismo , Miocárdio/metabolismo , Miosinas/metabolismo
17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1005505

RESUMO

【Objective】 To explore the effect and mechanism of Fasudil in the treatment of experimental autoimmune myocarditis (EAM) in mice so as to provide a theoretical basis for the clinical use of Fasudil in treating myocarditis. 【Methods】 Balb/c male mice were used as the research objects, and the EAM mice model was constructed using MyHC-α614-629 polypeptide. Mononuclear cells were isolated and cultured to detect the number of mononuclear cells in mouse spleen. Inflammation infiltration, fibrosis and IL-6 expression in mouse myocardial tissue were detected by HE staining, Masson staining and immunohistochemistry, respectively. The protein expressions of Notch1 and IL-6 were detected by Western blotting. qRT-PCR was used to detect the expressions of pro-inflammatory factors (IL-1α, IL-1β and IL-6) as well as key genes of TLRs and NOTCH signaling pathway. 【Results】 EAM mice showed increased HW, decreased BW, increased HW/e-BW, and increased inflammatory infiltration and fibrosis in myocardial tissue. The above-mentioned symptoms or pathological features were improved in EAM mice treated with Fasudil. The analysis showed that the pro-inflammatory factors IL-1α, IL-1β and IL-6 in the myocardial tissue of EAM mice were significantly increased, but only the expression of IL-6 was statistically different after Fasudil treatment compared with the control group. In addition, TLRs signaling pathway might also play an important role in the EAM mice treated with Fasudil. The expressions of IL-6 and Notch1 were consistent, and the expressions of the key genes of NOTCH signaling pathway (Notch1, Hes1 and Jag2) were down-regulated after Fasudil treatment. 【Conclusion】 Fasudil exerts a protective effect on down-regulation of IL-6 expression by inhibiting the NOTCH signaling pathway in EAM mice.

18.
Chinese Pharmacological Bulletin ; (12): 1980-1987, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1013961

RESUMO

Aim To investigate the effeot of Shenqi Fuzheng injection on the prevention of immune myocarditis induced by anti-PD-1 antibody by reducing the production of inflammatory factors and the expression of myocardial injury markers. Methods Thirty-two maie PD-1 humanized mice with C57BL/6 genetic background were randomly divided into control group, myocarditis model group, anti-PD-1 antibody group and Shenqi Fuzheng injection group (n = 8). Except the control group, mice in other groups were intraperitoneally injected with myocardial myosin heavy chain peptide (5 mg • kg

19.
Ann Transl Med ; 10(18): 1022, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36267709

RESUMO

Background and Objective: Myocarditis is a heterogeneous disease that can lead to acute heart failure, dilated cardiomyopathy (DCM), and sudden death. However, the knowledge of the precise molecular mechanisms of myocarditis is fairly limited. In recent years, non-coding RNAs (ncRNAs) have been demonstrated to be involved in many physiological and pathological processes in myocarditis and to have the potential to be used as novel diagnostic and therapeutic strategies for myocarditis. This review summarizes the role of ncRNAs in myocarditis and discusses their potential as noninvasive biomarkers and therapeutic targets for myocarditis. Methods: Literature on ncRNAs and myocarditis published in PubMed was extensively reviewed for analysis and discussion. Key Content and Findings: This review describes the roles of different ncRNAs in myocarditis and summarizes their potential in diagnosing and treating myocarditis. Multiple functions and mechanisms of ncRNAs in myocarditis have been uncovered. Conclusions: Current studies show that ncRNAs are widely involved in the occurrence and development of myocarditis caused by infection, autoimmunity, and the use of immune checkpoint inhibitors (ICIs) through their regulation of cell apoptosis, immune response, viral replication, and other aspects. Small-sample clinical studies have assessed the diagnostic value of ncRNAs. These results provide a new theoretical basis for diagnosing and treating myocarditis.

20.
Biology (Basel) ; 11(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-36101433

RESUMO

Enteroviruses such as group B coxsackieviruses (CVB) are commonly suspected as causes of myocarditis that can lead to dilated cardiomyopathy (DCM), and the mouse model of CVB3 myocarditis is routinely used to understand DCM pathogenesis. Mechanistically, autoimmunity is suspected due to the presence of autoantibodies for select antigens. However, their role continues to be enigmatic, which also raises the question of whether the breadth of autoantibodies is sufficiently characterized. Here, we attempted to comprehensively analyze the autoantibody repertoire using Phage ImmunoPrecipitation Sequencing (PhIP-Seq), a versatile and high-throughput platform, in the mouse model of CVB3 myocarditis. First, PhIP-Seq analysis using the VirScan library revealed antibody reactivity only to CVB3 in the infected group but not in controls, thus validating the technique in this model. Second, using the mouse peptide library, we detected autoantibodies to 32 peptides from 25 proteins in infected animals that are ubiquitously expressed and have not been previously reported. Third, by using ELISA as a secondary assay, we confirmed antibody reactivity in sera from CVB3-infected animals to cytochrome c oxidase assembly factor 4 homolog (COA4) and phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1), indicating the specificity of antibody detection by PhIP-Seq technology. Fourth, we noted similar antibody reactivity patterns in CVB3 and CVB4 infections, suggesting that the COA4- and PIK3AP1-reactive antibodies could be common to multiple CVB infections. The specificity of the autoantibodies was affirmed with influenza-infected animals that showed no reactivity to any of the antigens tested. Taken together, our data suggest that the autoantibodies identified by PhIP-Seq may have relevance to CVB pathogenesis, with a possibility that similar reactivity could be expected in human DCM patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...