Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Biochem Biophys Res Commun ; 728: 150340, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38968770

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a prevalent malignancy and poses a significant clinical challenge. Piperine, an alkaloid molecule extracted from Piper nigrum and Piper longum, has emerged as a promising anticancer agent. However, the molecular mechanisms of piperine' antitumor effects in CRC need to be further elucidated. METHODS: Human colorectal cancer cells were treated with piperine in vitro. CCK-8 and clone formation assays were adopted to detect cell viability. The accumulation of autophagosomes was assessed by Western blotting and immunofluorescence. Apoptosis and reactive oxygen species (ROS) levels were analyzed by flow. In vivo, a xenograft tumor mouse model was constructed using CT26 cells. RESULTS: Piperine inhibited CRC cell viability and suppressed tumor weight and volume in a mouse model. Additionally, piperine treatment induced the accumulation of autophagosomes in CRC cells. This effect was attributed to the inhibition of the AKT/mTOR pathway and the accumulation of ROS. activation of AKT or clearance of ROS attenuated piperine-mediated tumor suppression. CONCLUSION: This study shows that piperine induces autophagy-dependent cell death in CRC cells by increasing ROS production and inhibiting Akt/mTOR signaling.

2.
Phytomedicine ; 130: 155745, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38833788

RESUMO

BACKGROUND AND AIMS: Isogarcinol, a natural compound extracted from the fruits of Garcinia oblongifolia, has potential chemopreventive activity. This study aimed to elucidate the anti-tumor effects and mechanism of action of isogarcinol on nasopharyngeal carcinoma (NPC). METHODS: Isogarcinol was isolated from Garcinia oblongifolia by using chromatographic separation. The anti-tumor effects of isogarcinol in NPC cells were tested by MTT assay, flow cytometry, wound healing assay, western blotting, transwell assay, colony formation assay, immunofluorescence, and transmission electron microscopy (TEM). The anti-tumor efficacy in vivo was evaluated in NPC cells xenograft models. RESULTS: Functional studies revealed that isogarcinol inhibited the proliferation, colony formation, migration and invasion abilities of NPC cells in vitro. Isogarcinol caused mitochondrial damage to overproduce reactive oxygen species through reducing the mitochondrial membrane potential and ΔΨm. Isogarcinol also substantially inhibited NPC cells growth in a xenograft tumor model without any obvious toxicity when compared with paclitaxel (PTX). Mechanistic studies have illustrated that isogarcinol increased the Bax/Bcl-2 ratio, cleaved caspase-3, and cytoplasmic cytochrome C levels to induce mitochondrial apoptosis. The ROS overproduction by isogarcinol could suppress EMT pathway via decreasing the levels of p-Akt and Snail. Furthermore, isogarcinol promoted the conversion of LC3-Ⅰ to LC3-Ⅱ, but increased p62 level to block autophagic flux, resulting in the accumulation of damaged mitochondria to promote autophagic cell death in NPC cells. CONCLUSION: This study provides a new theoretical foundation for the anti-tumor application of Garcinia oblongifolia and confirms that isogarcinol could be developed as a candidate drug for NPC treatment with low toxicity.


Assuntos
Antineoplásicos Fitogênicos , Garcinia , Camundongos Nus , Mitocôndrias , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Garcinia/química , Animais , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Morte Celular Autofágica/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Frutas/química
3.
Respir Res ; 25(1): 215, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764025

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of lung cancer patients with mutated EGFR. However, the efficacy of EGFR-TKIs in wild-type EGFR tumors has been shown to be marginal. Methods that can sensitize EGFR-TKIs to EGFR wild-type NSCLC remain rare. Hence, we determined whether combination treatment can maximize the therapeutic efficacy of EGFR-TKIs. METHODS: We established a focused drug screening system to investigate candidates for overcoming the intrinsic resistance of wild-type EGFR NSCLC to EGFR-TKIs. Molecular docking assays and western blotting were used to identify the binding mode and blocking effect of the candidate compounds. Proliferation assays, analyses of drug interactions, colony formation assays, flow cytometry and nude mice xenograft models were used to determine the effects and investigate the molecular mechanism of the combination treatment. RESULTS: Betulinic acid (BA) is effective at targeting EGFR and synergizes with EGFR-TKIs (gefitinib and osimertinib) preferentially against wild-type EGFR. BA showed inhibitory activity due to its interaction with the ATP-binding pocket of EGFR and dramatically enhanced the suppressive effects of EGFR-TKIs by blocking EGFR and modulating the EGFR-ATK-mTOR axis. Mechanistic studies revealed that the combination strategy activated EGFR-induced autophagic cell death and that the EGFR-AKT-mTOR signaling pathway was essential for completing autophagy and cell cycle arrest. Activation of the mTOR pathway or blockade of autophagy by specific chemical agents markedly attenuated the effect of cell cycle arrest. In vivo administration of the combination treatment caused marked tumor regression in the A549 xenografts. CONCLUSIONS: BA is a potential wild-type EGFR inhibitor that plays a critical role in sensitizing EGFR-TKI activity. BA combined with an EGFR-TKI effectively suppressed the proliferation and survival of intrinsically resistant lung cancer cells via the inhibition of EGFR as well as the induction of autophagy-related cell death, indicating that BA combined with an EGFR-TKI may be a potential therapeutic strategy for overcoming the primary resistance of wild-type EGFR-positive lung cancers.


Assuntos
Autofagia , Ácido Betulínico , Carcinoma Pulmonar de Células não Pequenas , Sinergismo Farmacológico , Receptores ErbB , Neoplasias Pulmonares , Triterpenos Pentacíclicos , Inibidores de Proteínas Quinases , Animais , Humanos , Camundongos , Células A549 , Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Gefitinibe/farmacologia , Indóis , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
4.
ACS Nano ; 18(20): 12870-12884, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38727063

RESUMO

Epirubicin (EPI) alone can trigger mildly protective autophagy in residual tumor cells, resulting in an immunosuppressive microenvironment. This accelerates the recurrence of residual tumors and leads to antiprogrammed death ligand 1 (anti-PD-1)/PD-L1 therapy resistance, posing a significant clinical challenge in tumor immunotherapy. The combination of checkpoint inhibitors targeting the PD-1/PD-L1 pathway and amplifying autophagy presents an innovative approach to tumor treatment, which can prevent tumor immune escape and enhance therapeutic recognition. Herein, we aimed to synthesize a redox-triggered autophagy-induced nanoplatform with SA&EA-induced PD-L1 inhibition. The hyaluronic acid (HA) skeleton and arginine segment promoted active nanoplatform targeting, cell uptake, and penetration. The PLGLAG peptide was cleaved by overexpressing matrix metalloproteinase-2 (MMP-2) in the tumor microenvironment, and the PD-L1 inhibitor D-PPA was released to inhibit tumor immune escape. The intense autophagy inducers, STF-62247 and EPI, were released owing to the cleavage of disulfide bonds influenced by the high glutathione (GSH) concentration in tumor cells. The combination of EPI and STF induced apoptosis and autophagic cell death, effectively eliminating a majority of tumor cells. This indicated that the SA&EA nanoplatform has better therapeutic efficacy than the single STF@AHMPP and EPI@AHMPTP groups. This research provided a way to set up a redox-triggered autophagy-induced nanoplatform with PD-L1 inhibition to enhance chemo-immunotherapy.


Assuntos
Autofagia , Antígeno B7-H1 , Imunoterapia , Nanopartículas , Oxirredução , Autofagia/efeitos dos fármacos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Animais , Humanos , Camundongos , Nanopartículas/química , Microambiente Tumoral/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais
5.
Inflammation ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38762837

RESUMO

The periodontium is a highly organized ecosystem, and the imbalance between oral microorganisms and host defense leads to periodontal diseases. The periodontal pathogens, mainly Gram-negative anaerobic bacteria, colonize the periodontal niches or enter the blood circulation, resulting in periodontal tissue destruction and distal organ damage. This phenomenon links periodontitis with various systemic conditions, including cardiovascular diseases, malignant tumors, steatohepatitis, and Alzheimer's disease. Autophagy is an evolutionarily conserved cellular self-degradation process essential for eliminating internalized pathogens. Nowadays, increasing studies have been carried out in cells derived from periodontal tissues, immune system, and distant organs to investigate the relationship between periodontal pathogen infection and autophagy-related activities. On one hand, as a vital part of innate and adaptive immunity, autophagy actively participates in host resistance to periodontal bacterial infection. On the other, certain periodontal pathogens exploit autophagic vesicles or pathways to evade immune surveillance, therefore achieving survival within host cells. This review provides an overview of the autophagy process and focuses on periodontopathogen-related autophagy and their involvements in cells of different tissue origins, so as to comprehensively understand the role of autophagy in the occurrence and development of periodontal diseases and various periodontitis-associated systemic illnesses.

6.
Autophagy ; : 1-16, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38726865

RESUMO

AQP3 (aquaporin 3 (Gill blood group)), a member of the AQP family, is an aquaglyceroporin which transports water, glycerol and small solutes across the plasma membrane. Beyond its role in fluid transport, AQP3 plays a significant role in regulating various aspects of tumor cell behavior, including cell proliferation, migration, and invasion. Nevertheless, the underlying regulatory mechanism of AQP3 in tumors remains unclear. Here, for the first time, we report that AQP3 is a direct target for ubiquitination by the SCFFBXW5 complex. In addition, we revealed that downregulation of FBXW5 significantly induced AQP3 expression to prompt macroautophagic/autophagic cell death in hepatocellular carcinoma (HCC) cells. Mechanistically, AQP3 accumulation induced by FBXW5 knockdown led to the degradation of PDPK1/PDK1 in a lysosomal-dependent manner, thus inactivating the AKT-MTOR pathway and inducing autophagic death in HCC. Taken together, our findings revealed a previously undiscovered regulatory mechanism through which FBXW5 degraded AQP3 to suppress autophagic cell death via the PDPK1-AKT-MTOR axis in HCC cells.Abbreviation: BafA1: bafilomycin A1; CQ: chloroquine; CRL: CUL-Ring E3 ubiquitin ligases; FBXW5: F-box and WD repeat domain containing 5; HCC: hepatocellular carcinoma; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; 3-MA: 3-methyladenine; PDPK1/PDK1: 3-phosphoinositide dependent protein kinase 1; RBX1/ROC1: ring-box 1; SKP1: S-phase kinase associated protein 1; SCF: SKP1-CUL1-F-box protein.

7.
Oncol Rep ; 51(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38624021

RESUMO

It has been reported that PL2L60 proteins, a product of PIWIL2 gene which might be activated by an intragenic promoter, could mediate a common pathway specifically for tumorigenesis. In the present study, it was further identified by using western blot assay that the PL2L60 proteins could be degraded in cancer cells through a mechanism of selective autophagy in response to oxidative stress. The PL2L60 was downregulated in various types of cancer cells under the hypoxic condition independently of HIF­1α, resulting in apoptosis of cancer cells. Inhibition of autophagy by small interfering RNA targeting of either Beclin­1 (BECN1) or Atg5 resulted in restoration of PL2L60 expression in hypoxic cancer cell. The hypoxic degradation of PL2L60 was also blocked by the attenuation of the autophagosome membrane protein Atg8/microtubule­associated protein 1 light chain 3 (LC3) or autophagy cargo protein p62 expression. Surprisingly, Immunofluorescence analysis demonstrated that LC3 could be directly bound to PL2L60 and was required for the transport of PL2L60 from the nucleus to the cytoplasm for lysosomal flux under basal or activated autophagy in cancer cells. Moreover, flow cytometric analysis displayed that knocking down of PL2L60 mRNA but not PIWIL2 mRNA effectively inhibited cancer cell proliferation and promoted apoptosis of cancer cells. The similar results were obtained from in vivo tumorigenic experiment, in which PL2L60 downregulation in necroptosis areas was confirmed by immunohistochemistry. These results suggested that various cancer could be suppressed by promoting autophagy. The present study revealed a key role of autophagic degradation of PL2L60 in hypoxia­induced cancer cell death, which could be used as a novel therapeutic target of cancer.


Assuntos
Neoplasias , Humanos , RNA Interferente Pequeno/metabolismo , Hipóxia/metabolismo , Apoptose , Autofagia , Estresse Fisiológico , RNA Mensageiro , Proteínas Argonautas/metabolismo
8.
Plant Cell Physiol ; 65(2): 269-281, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38029282

RESUMO

The autophagy-defective mutants (atg5 and atg7) of Physcomitrium patens exhibit strong desiccation tolerance. Here, we examined the effects of H2O2 on wild-type (WT) and autophagy-defective mutants of P. patens, considering that desiccation induces reactive oxygen species (ROS). We found that atg mutants can survive a 30-min treatment with 100 mM H2O2, whereas WT cannot, implying that autophagy promotes cell death induced by H2O2. Concomitant with cell death, vacuole collapse occurred. Intracellular H2O2 levels in both WT and atg5 increased immediately after H2O2 treatment and subsequently reached plateaus, which were higher in WT than in atg5. The ROS scavenger N-acetylcysteine lowered the plateau levels in WT and blocked cell death, suggesting that higher H2O2 plateau caused cell death. The uncoupler of electron transport chain (ETC) carbonyl cyanide m-chlorophenylhydrazone also lowered the H2O2 plateaus, showing that ROS produced in the ETC in mitochondria and/or chloroplasts elevated the H2O2 plateau. The autophagy inhibitor 3-methyladenine lowered the H2O2 plateau and the cell death rate in WT, suggesting that autophagy occurring after H2O2 treatment is involved in the production of ROS. Conversely, the addition of bovine serum albumin, which is endocytosed and supplies amino acids instead of autophagy, elevated the H2O2 plateau in atg5 cells, suggesting that amino acids produced through autophagy promote H2O2 generation. These results clearly show that autophagy causes cell death under certain stress conditions. We propose that autophagy-derived amino acids are catabolized using ETCs in mitochondria and/or chloroplasts and produce H2O2, which in turn promotes the cell death accompanying vacuole collapse.


Assuntos
Aminoácidos , Peróxido de Hidrogênio , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Morte Celular , Aminoácidos/metabolismo , Autofagia/fisiologia , Estresse Oxidativo/fisiologia
9.
J Adv Res ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37956860

RESUMO

INTRODUCTION: Fetal hypoxia has long-term effects on postnatal reproductive functions and the mitochondrial impairments of ovarian granulosa cells may be one of the causes. Melatonin applied to mitigate mitochondrial dysfunction and autophagy in mammalian cells has been reported. However, the potential mechanisms by which fetal hypoxia damages reproductive function in neonatal female mice and the melatonin effects on this problem remain unclear. OBJECTIVES: This research aimed to explore the mechanism that fetal hypoxia damages reproductive function in neonatal female mice and attempt to improve the reproductive function by treating with melatonin in vivo and in vitro. METHODS: We established a fetal hypoxia model and confirmed that fetal hypoxia affects ovarian function by inducing GC excessive autophagy. Transcriptomic analysis, gene interference, cell immunofluorescence, immunohistochemistry and western blot were conducted to explore and verify the underlying mechanisms in mice GCs and KGN cells. Finally, melatonin treatment was executed on hypoxia-treated mice GCs and KGN cells and melatonin injection to fetal-hypoxia-treated mice to determine its effect. RESULTS: The results of in vitro experiments found that fetal hypoxia led to mitochondrial dysfunction in ovarian GCs causing autophagic cell death. And the PI3K/Akt/FoxO pathway mediated the occurrence of this process by transcriptome analysis of ovarian GCs from normal and fetal hypoxia mice, which was further verified in mice GCs and KGN cells. Additionally, melatonin administration prevented autophagic injuries and mitochondrial impairments in hypoxia-treated mice GCs and KGN cells. Meanwhile, in vivo experiments by melatonin injection ameliorated oxidative stress of ovary in fetal-hypoxia-treated mice and improved their low fertility. CONCLUSION: Our data found that fetal hypoxia causes ovarian GCs excessive autophagy leading to low fertility in neonatal female mice and mitigated by melatonin. These results provide a potential therapy for hypoxic stress-related reproductive disorders.

10.
J Biomed Sci ; 30(1): 91, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936170

RESUMO

BACKGROUND: Although stimulating autophagy caused by UV has been widely demonstrated in skin cells to exert cell protection, it remains unknown the cellular events in UVA-treated retinal pigment epithelial (RPE) cells. METHODS: Human ARPE-19 cells were used to measure cell viability, mitochondrial reactive oxygen species (ROS), mitochondrial membrane potential (MMP), mitochondrial mass and lysosomal mass by flow cytometry. Mitochondrial oxygen consumption rate (OCR) was recorded using Seahorse XF flux analyzer. Confocal microscopic images were performed to indicate the mitochondrial dynamics, LC3 level, and AMPK translocation after UVA irradiation. RESULTS: We confirmed mitochondrial ROS production and DNA damage are two major features caused by UVA. We found the cell death is prevented by autophagy inhibitor 3-methyladenine and gene silencing of ATG5, and UVA induces ROS-dependent LC3II expression, LC3 punctate and TFEB expression, suggesting the autophagic death in the UVA-stressed RPE cells. Although PARP-1 inhibitor olaparib increases DNA damage, ROS production, and cell death, it also blocks AMPK activation caused by UVA. Interestingly we found a dramatic nuclear export of AMPK upon UVA irradiation which is blocked by N-acetylcysteine and olaparib. In addition, UVA exposure gradually decreases lysosomal mass and inhibits cathepsin B activity at late phase due to lysosomal dysfunction. Nevertheless, cathepsin B inhibitor, CA-074Me, reverses the death extent, suggesting the contribution of cathepsin B in the death pathway. When examining the role of EGFR in cellular events caused by UVA, we found that UVA can rapidly transactivate EGFR, and treatment with EGFR TKIs (gefitinib and afatinib) enhances the cell death accompanied by the increased LC3II formation, ROS production, loss of MMP and mass of mitochondria and lysosomes. Although AMPK activation by ROS-PARP-1 mediates autophagic cell death, we surprisingly found that pretreatment of cells with AMPK activators (A769662 and metformin) reverses cell death. Concomitantly, both agents block UVA-induced mitochondrial ROS production, autophagic flux, and mitochondrial fission without changing the inhibition of cathepsin B. CONCLUSION: UVA exposure rapidly induces ROS-PARP-1-AMPK-autophagic flux and late lysosomal dysfunction. Pre-inducing AMPK activation can prevent cellular events caused by UVA and provide a new protective strategy in photo-oxidative stress and photo-retinopathy.


Assuntos
Morte Celular Autofágica , Humanos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Catepsina B/metabolismo , Catepsina B/farmacologia , Células Epiteliais/metabolismo , Receptores ErbB , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Genetica ; 151(6): 349-355, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37819589

RESUMO

The Drosophila GAGA-factor encoded by the Trithorax-like (Trl) gene is DNA-binding protein with unusually wide range of applications in diverse cell contexts. In Drosophila spermatogenesis, reduced GAGA expression caused by Trl mutations induces mass autophagy leading to germ cell death. In this work, we investigated the contribution of mitochondrial abnormalities to autophagic germ cell death in Trl gene mutants. Using a cytological approach, in combination with an analysis of high-throughput RNA sequencing (RNA-seq) data, we demonstrated that the GAGA deficiency led to considerable defects in mitochondrial ultrastructure, by causing misregulation of GAGA target genes encoding essential components of mitochondrial molecular machinery. Mitochondrial anomalies induced excessive production of reactive oxygen species and their release into the cytoplasm, thereby provoking oxidative stress. Changes in transcription levels of some GAGA-independent genes in the Trl mutants indicated that testis cells experience ATP deficiency and metabolic aberrations, that may trigger extensive autophagy progressing to cell death.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Masculino , Drosophila/genética , Drosophila/metabolismo , Testículo/metabolismo , Proteínas de Drosophila/genética , Fenótipo , Mitocôndrias/genética , Morte Celular/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Drosophila melanogaster/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
12.
Stem Cells ; 41(12): 1113-1132, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37715783

RESUMO

Diffuse alveolar epithelial cell (AEC) death occurs extensively during acute lung injury (ALI). Due to the limited proliferative capacity of alveolar type 1 epithelial (AT1) cells, the differentiation and regenerative capacity of alveolar type 2 epithelial (AT2) cells are required to restore the barrier function of AECs. However, during lung injury, AT1 cells are particularly susceptible to injury, and ATII cells die in the presence of severe or certain types of injury. This disruption ultimately results in a hindrance to the ability of AT2 cells to proliferate and differentiate into AT1 cells in time to repair the extensively damaged AECs. Therefore, understanding the mechanism of injury death of AT2 cells may be beneficial to reverse the above situation. This article reviews the main death modes of AT2 cells, including apoptosis, necrosis, necroptosis, pyroptosis, autophagic cell death, and ferroptosis. It compares the various forms of death, showing that various cell injury death modes have unique action mechanisms and partially overlapping pathways. Studying the mechanism of AT2 cell death is helpful in screening and analyzing the target pathway of AEC barrier function recovery. It opens up new ideas and strategies for preventing and treating ALI.


Assuntos
Lesão Pulmonar Aguda , Células Epiteliais Alveolares , Humanos , Células Epiteliais Alveolares/metabolismo , Lesão Pulmonar Aguda/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Apoptose/fisiologia , Pulmão
13.
World J Gastroenterol ; 29(34): 5038-5053, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37753370

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a common clinical condition with a poor prognosis and few effective treatment options. Potent anticancer agents for treating HCC must be identified. Epigenetics plays an essential role in HCC tumorigenesis. Suberoylanilide hydroxamic acid (SAHA), the most common histone deacetylase inhibitor agent, triggers many forms of cell death in HCC. However, the underlying mechanism of action remains unclear. Family with sequence similarity 134 member B (FAM134B)-induced reticulophagy, a selective autophagic pathway, participates in the decision of cell fate and exhibits anticancer activity. This study focused on the relationship between FAM134B-induced reticulophagy and SAHA-mediated cell death. AIM: To elucidate potential roles and underlying molecular mechanisms of reticulophagy in SAHA-induced HCC cell death. METHODS: The viability, apoptosis, cell cycle, migration, and invasion of SAHA-treated Huh7 and MHCC97L cells were measured. Proteins related to the reticulophagy pathway, mitochondria-endoplasmic reticulum (ER) contact sites, intrinsic mitochondrial apoptosis, and histone acetylation were quantified using western blotting. ER and lysosome colocalization, and mitochondrial Ca2+ levels were characterized via confocal microscopy. The level of cell death was evaluated through Hoechst 33342 staining and propidium iodide colocalization. Chromatin immunoprecipitation was used to verify histone H4 lysine-16 acetylation in the FAM134B promoter region. RESULTS: After SAHA treatment, the proliferation of Huh7 and MHCC97L cells was significantly inhibited, and the migration and invasion abilities were greatly blocked in vitro. This promoted apoptosis and caused G1 phase cells to increase in a concentration-dependent manner. Following treatment with SAHA, ER-phagy was activated, thereby triggering autophagy-mediated cell death of HCC cells in vitro. Western blotting and chromatin immunoprecipitation assays confirmed that SAHA regulated FAM134B expression by enhancing the histone H4 lysine-16 acetylation in the FAM134B promoter region. Further, SAHA disturbed the Ca2+ homeostasis and upregulated the level of autocrine motility factor receptor and proteins related to mitochondria-endoplasmic reticulum contact sites in HCC cells. Additionally, SAHA decreased the mitochondrial membrane potential levels, thereby accelerating the activation of the reticulophagy-mediated mitochondrial apoptosis pathway and promoting HCC cell death in vitro. CONCLUSION: SAHA stimulates FAM134B-mediated ER-phagy to synergistically enhance the mitochondrial apoptotic pathway, thereby enhancing HCC cell death.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Vorinostat/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Histonas , Lisina , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Morte Celular , Autofagia
14.
Drug Discov Today ; 28(9): 103692, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37379905

RESUMO

Cellular localization and deacetylation activity of sirtuin 1 (SIRT1) has a significant role in cancer regulation. The multifactorial role of SIRT1 in autophagy regulates several cancer-associated cellular phenotypes, aiding cellular survival and cell death induction. SIRT1-mediated deacetylation of autophagy-related genes (ATGs) and associated signaling mediators control carcinogenesis. The hyperactivation of bulk autophagy, disrupted lysosomal and mitochondrial biogenesis, and excessive mitophagy are key mechanism for SIRT1-mediated autophagic cell death (ACD). In terms of the SIRT1-ACD nexus, identifying SIRT1-activating small molecules and understanding the possible mechanism triggering ACD could be a potential therapeutic avenue for cancer prevention. In this review, we provide an update on the structural and functional intricacy of SIRT1 and SIRT1-mediated autophagy activation as an alternative cell death modality for cancer prevention.


Assuntos
Morte Celular Autofágica , Neoplasias , Sirtuína 1/genética , Sirtuína 1/metabolismo , Transdução de Sinais , Autofagia/genética , Neoplasias/prevenção & controle
15.
Proc Natl Acad Sci U S A ; 120(24): e2219435120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276410

RESUMO

M family proteins are critical virulence determinants of Streptococci. Streptococcus equi subsp. zooepidemicus (SEZ) are Group C streptococci that cause meningitis in animals and humans. SzM, the M protein of SEZ, has been linked to SEZ brain invasion. Here, we demonstrate that SzM is important in SEZ disruption of the blood-brain barrier (BBB). SEZ release SzM-bound membrane vesicles (MVs), and endocytosis of these vesicles by human brain endothelial microvascular cells (hBMECs) results in SzM-dependent cytotoxicity. Furthermore, administration of SzM-bound MVs disrupted the murine BBB. A CRISPR screen revealed that SzM cytotoxicity in hBMECs depends on PTEN-related activation of autophagic cell death. Pharmacologic inhibition of PTEN activity prevented SEZ disruption of the murine BBB and delayed mortality. Our data show that MV delivery of SzM to host cells plays a key role in SEZ pathogenicity and suggests that MV delivery of streptococcal M family proteins is likely a common streptococcal virulence mechanism.


Assuntos
Morte Celular Autofágica , Infecções Estreptocócicas , Streptococcus equi , Humanos , Animais , Camundongos , Barreira Hematoencefálica , Antígenos de Bactérias , Streptococcus , Células Endoteliais
16.
Front Cell Dev Biol ; 11: 1211196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228647

RESUMO

[This corrects the article DOI: 10.3389/fcell.2023.1164681.].

17.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175992

RESUMO

Autophagy is a cellular catabolic process that degrades and recycles cellular materials. Autophagy is considered to be beneficial to the cell and organism by preventing the accumulation of toxic protein aggregates, removing damaged organelles, and providing bioenergetic substrates that are necessary for survival. However, autophagy can also cause cell death depending on cellular contexts. Yet, little is known about the signaling pathways that differentially regulate the opposite outcomes of autophagy. We have previously reported that insulin withdrawal (IW) or corticosterone (CORT) induces autophagic cell death (ACD) in adult hippocampal neural stem (HCN) cells. On the other hand, metabolic stresses caused by 2-deoxy-D-glucose (2DG) and glucose-low (GL) induce autophagy without death in HCN cells. Rather, we found that 2DG-induced autophagy was cytoprotective. By comparing IW and CORT conditions with 2DG treatment, we revealed that ERK and JNK are involved with 2DG-induced protective autophagy, whereas GSK-3ß regulates death-inducing autophagy. These data suggest that cell death and survival-promoting autophagy undergo differential regulation with distinct signaling pathways in HCN cells.


Assuntos
Apoptose , Células-Tronco Neurais , Glicogênio Sintase Quinase 3 beta/metabolismo , Células-Tronco Neurais/metabolismo , Morte Celular , Transdução de Sinais , Autofagia , Insulina/metabolismo , Insulina Regular Humana , Hipocampo/metabolismo
18.
Immun Inflamm Dis ; 11(5): e876, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37249285

RESUMO

BACKGROUND: ß-Glucan from Lentinus edodes (LNT), an edible mushroom, possesses strong anticancer activity. However, the therapeutic effects of LNT during the occurrence and progression of breast cancer and their underlying molecular mechanisms have not been elucidated. METHODS: Mouse mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT) transgenic mice were used as a breast cancer mouse model. Hematoxylin and eosin, immunohistochemical, and immunofluorescence staining were performed for histopathological analysis. Moreover, we developed an inflammatory cell model using tumor necrosis factor-α (TNF-α). Macrophage polarization was assessed using western blot analysis and immunofluorescence. RESULTS: Orphan nuclear receptor 77 (Nur77) and sequestosome-1 (p62) were highly expressed and positively correlated with each other in breast cancer tissues. LNT significantly inhibited tumor growth, ameliorated inflammatory cell infiltration, and induced tumor cell apoptosis in PyMT transgenic mice. Moreover, LNT attenuated the ability of tumors to metastasize to lung tissue. Mechanistically, LNT treatment restrained macrophage polarization from M1 to M2 phenotype and promoted autophagic cell death by inhibiting Nur77 expression, AKT/mTOR signaling, and inflammatory signals in breast tumor cells. However, LNT did not exhibit a direct pro-autophagic effect on tumor cell death, except for its inhibitory effect on Nur77 expression. LNT-mediated autophagic tumor cell death depends on M1 macrophage polarization. In in vitro experiments, LNT inhibited the upregulation of p62, autophagy activation, and inflammatory signaling pathways in Nur77 cells. CONCLUSION: LNT inhibited macrophage M2 polarization and subsequently blocked the AKT/mTOR and inflammatory signaling axes in breast cancer cells, thereby promoting autophagic tumor cell death. Thus, LNT may be a promising therapeutic strategy for breast cancer.


Assuntos
Neoplasias , Cogumelos Shiitake , beta-Glucanas , Camundongos , Animais , Cogumelos Shiitake/química , beta-Glucanas/metabolismo , beta-Glucanas/farmacologia , Proteínas Proto-Oncogênicas c-akt , Macrófagos , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Autofagia , Camundongos Transgênicos , Neoplasias/metabolismo
19.
Front Cell Dev Biol ; 11: 1164681, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091978
20.
Pharmacol Res ; 191: 106769, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37061145

RESUMO

Drug resistance in cancer has been classified as innate resistance or acquired resistance, which were characterized by apoptotic defects and ABC transporters overexpression respectively. Therefore, to preclude or reverse these resistance mechanisms could be a promising strategy to improve chemotherapeutic outcomes. In this study, a natural product from Osage Orange, pomiferin, was identified as a novel autophagy activator that circumvents innate resistance by triggering autophagic cell death via SERCA inhibition and activation of the CaMKKß-AMPK-mTOR signaling cascade. In addition, pomiferin also directly inhibited the P-gp (MDR1/ABCB1) efflux and reversed acquired resistance by potentiating the accumulation and efficacy of the chemotherapeutic agent, cisplatin. In vivo study demonstrated that pomiferin triggered calcium-mediated tumor suppression and exhibited an anti-metastatic effect in the LLC-1 lung cancer-bearing mouse model. Moreover, as an adjuvant, pomiferin potentiated the anti-tumor effect of the chemotherapeutic agent, cisplatin, in RM-1 drug-resistant prostate cancer-bearing mouse model by specially attenuating ABCB1-mediated drug efflux, but not ABCC5, thereby promoting the accumulation of cisplatin in tumors. Collectively, pomiferin may serve as a novel effective agent for circumventing drug resistance in clinical applications.


Assuntos
Antineoplásicos , Morte Celular Autofágica , Neoplasias Pulmonares , Masculino , Camundongos , Animais , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/tratamento farmacológico , Apoptose , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...