Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Front Nutr ; 11: 1405156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962436

RESUMO

Objective: Smoking reduction or cessation are critical public health goals, given the well-documented risks of tobacco use to health. Reducing smoking frequency and cessation entirely are challenging due to nicotine addiction and withdrawal symptoms, which can significantly affect mental wellness and overall wellbeing. Previous research has suggested that certain dietary supplements may support smoking cessation and reduction efforts by mitigating these adverse effects. The objective of this study was to assess the effect of supplementation with 900 mg/day of Neuravena®, a green oat extract (GOE) of Avena sativa L., in enhancing wellness and wellbeing during a smoking reduction or cessation experience. Methods: This was an 8-week randomized, double-blind, placebo-controlled study, ClinicalTrials Identifier: NCT04749017 (https://classic.clinicaltrials.gov/ct2/show/NCT04749017). Participants were assigned to one of the study groups, 72 participants were assigned to GOE and 73 to placebo. The subjects were followed for 8-weeks intervention period as well as an additional 4-week follow-up period. At subsequent visits, they underwent clinical assessments including assessments of quality of life, perceived stress, depression, nicotine dependence, anxiety, cognitive performance, and specific assessments of craving intensity. Results: GOE was associated with greater improvements in elements of the abbreviated World Health Organization Quality of Life (WHOQOL-BREF) questionnaire as compared with placebo. Similar results were obtained from the SF-36 questionnaire and a visual QoL analogue scale (VAS). Perceived stress levels showed greater decline from baseline among the GOE supplemented participants as compared to placebo. Sleep quality parameters improved with GOE supplementation and worsened in the placebo group. At the end of the intervention period, the percentage of successful reducers (defined as >20% reduction in daily cigarettes) was higher in the GOE group as compared to placebo (66.7% vs. 49.3%, p = 0.034). The improvements from baseline in QoL measures in the GOE group persisted at 4 weeks after termination of the intervention. Conclusion: GOE supplementation demonstrated greater improvements in quality of life measures, stress and sleep related parameters during a smoking reduction or cessation experience and the product was shown to be safe and well tolerated.

2.
BMC Plant Biol ; 24(1): 632, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970019

RESUMO

BACKGROUND: The myeloblastosis (MYB) transcription factor (TF) family is one of the largest and most important TF families in plants, playing an important role in a life cycle and abiotic stress. RESULTS: In this study, 268 Avena sativa MYB (AsMYB) TFs from Avena sativa were identified and named according to their order of location on the chromosomes, respectively. Phylogenetic analysis of the AsMYB and Arabidopsis MYB proteins were performed to determine their homology, the AsMYB1R proteins were classified into 5 subgroups, and the AsMYB2R proteins were classified into 34 subgroups. The conserved domains and gene structure were highly conserved among the subgroups. Eight differentially expressed AsMYB genes were screened in the transcriptome of transcriptional data and validated through RT-qPCR. Three genes in AsMYB2R subgroup, which are related to the shortened growth period, stomatal closure, and nutrient and water transport by PEG-induced drought stress, were investigated in more details. The AsMYB1R subgroup genes LHY and REV 1, together with GST, regulate ROS homeostasis to ensure ROS signal transduction and scavenge excess ROS to avoid oxidative damage. CONCLUSION: The results of this study confirmed that the AsMYB TFs family is involved in the homeostatic regulation of ROS under drought stress. This lays the foundation for further investigating the involvement of the AsMYB TFs family in regulating A. sativa drought response mechanisms.


Assuntos
Avena , Secas , Homeostase , Filogenia , Proteínas de Plantas , Espécies Reativas de Oxigênio , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Avena/genética , Avena/metabolismo , Regulação da Expressão Gênica de Plantas , Polietilenoglicóis/farmacologia , Família Multigênica , Estresse Fisiológico/genética , Estudo de Associação Genômica Ampla , Genoma de Planta
3.
Int J Biol Macromol ; 274(Pt 1): 133295, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914398

RESUMO

The stability and bioavailability of green tea polyphenols, crucial for their health benefits, are compromised by environmental sensitivity, limiting their use in functional foods and supplements. This study introduces a novel water-in-oil-in-water double emulsion technique with microwave-assisted extraction, significantly enhancing the stability and bioavailability of these compounds. The primary objective of this study was to assess the effectiveness of several encapsulating agents, such as gum Arabic as control and native and modified starches, in improving encapsulated substances' stability and release control. Native and modified starches were chosen for their outstanding film-forming properties, improving encapsulation efficiency and protecting bioactive compounds from oxidative degradation. The combination of maltodextrin and tapioca starch improved phenolic content retention, giving 46.25 ± 2.63 mg/g in tapioca starch microcapsules (GTTA) and 41.73 ± 3.24 mg/g in gum arabic microcapsules (GTGA). Besides the control, modified starches also had the most potent antioxidant activity, with a 45 % inhibition (inh%) in the DPPH analysis. Oat oil was utilized for its superior viscosity and nutritional profile, boosting emulsion stability and providing the integrity of the encapsulated polyphenols, as indicated by the microcapsules' narrow span index (1.30 ± 0.002). The microcapsules' thermal behavior and structural integrity were confirmed using advanced methods such as Differential Scanning Calorimetry (DSC) and Fourier-Transform Infrared Spectroscopy (FT-IR). This study highlights the critical role of choosing appropriate wall materials and extraction techniques. It sets a new standard for microencapsulation applications in the food industry, paving the way for future innovations.

4.
Front Plant Sci ; 15: 1358490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736447

RESUMO

In an ethyl methanesulfonate oat (Avena sativa) mutant population we have found a mutant with striking differences to the wild-type (WT) cv. Belinda. We phenotyped the mutant and compared it to the WT. The mutant was crossed to the WT and mapping-by-sequencing was performed on a pool of F2 individuals sharing the mutant phenotype, and variants were called. The impacts of the variants on genes present in the reference genome annotation were estimated. The mutant allele frequency distribution was combined with expression data to identify which among the affected genes was likely to cause the observed phenotype. A brassinosteroid sensitivity assay was performed to validate one of the identified candidates. A literature search was performed to identify homologs of genes known to be involved in seed shape from other species. The mutant had short kernels, compact spikelets, altered plant architecture, and was found to be insensitive to brassinosteroids when compared to the WT. The segregation of WT and mutant phenotypes in the F2 population was indicative of a recessive mutation of a single locus. The causal mutation was found to be one of 123 single-nucleotide polymorphisms (SNPs) spanning the entire chromosome 3A, with further filtering narrowing this down to six candidate genes. In-depth analysis of these candidate genes and the brassinosteroid sensitivity assay suggest that a Pro303Leu substitution in AVESA.00010b.r2.3AG0419820.1 could be the causal mutation of the short kernel mutant phenotype. We identified 298 oat proteins belonging to orthogroups of previously published seed shape genes, with AVESA.00010b.r2.3AG0419820.1 being the only of these affected by a SNP in the mutant. The AVESA.00010b.r2.3AG0419820.1 candidate is functionally annotated as a GSK3/SHAGGY-like kinase with homologs in Arabidopsis, wheat, barley, rice, and maize, with several of these proteins having known mutants giving rise to brassinosteroid insensitivity and shorter seeds. The substitution in AVESA.00010b.r2.3AG0419820.1 affects a residue with a known gain-of function substitution in Arabidopsis BRASSINOSTEROID-INSENSITIVE2. We propose a gain-of-function mutation in AVESA.00010b.r2.3AG0419820.1 as the most likely cause of the observed phenotype, and name the gene AsGSK2.1. The findings presented here provide potential targets for oat breeders, and a step on the way towards understanding brassinosteroid signaling, seed shape and nutrition in oats.

5.
Antioxidants (Basel) ; 13(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38790649

RESUMO

Hyperpigmentation occurs due to irregular secretion of melanin pigment in the skin. This can affect quality of life depending on its severity, so prevention and management are essential. Oats (Avena sativa L.), a grain consumed worldwide, are known to offer improved health benefits upon germination and fermentation. This study is aimed to investigate the protective effects of lactobacilli-fermented sprouted oat extracts on oxidative stress and melanin overproduction in vitro. The anti-melanogenic effect was investigated using melanin content and tyrosinase activity assays in B16F10 cells, as well as a mushroom tyrosinase-based enzyme inhibition assay. The results showed that L. casei-fermented oat extracts were the most effective for reducing melanin formation by reducing the mRNA expression of microphthalmia-associated transcription factor, tyrosinase, and tyrosinase-related protein 2. Furthermore, L. casei fermentation was effective in improving the total phenolic, flavonoid, and avenanthramide A contents of sprouted oat extracts. The results also demonstrated the antioxidant effects of L. casei-fermented sprouted oat extracts in promoting DPPH radical-scavenging activity, superoxide dismutase-like activity, and reduction in reactive oxygen species levels. Overall, the findings indicate that fermented sprouted oat extracts are promising candidates for antioxidant and anti-hyperpigmentation treatments.

6.
Int J Mol Sci ; 25(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38791572

RESUMO

Artificial hybrids between cultivated Avena species and wild Avena macrostachya that possess genes for resistance to biotic and abiotic stresses can be important for oat breeding. For the first time, a comprehensive study of genomes of artificial fertile hybrids Avena sativa × Avena macrostachya and their parental species was carried out based on the chromosome FISH mapping of satellite DNA sequences (satDNAs) and also analysis of intragenomic polymorphism in the 18S-ITS1-5.8S rDNA region, using NGS data. Chromosome distribution patterns of marker satDNAs allowed us to identify all chromosomes in the studied karyotypes, determine their subgenomic affiliation, and detect several chromosome rearrangements. Based on the obtained cytogenomic data, we revealed differences between two A. macrostachya subgenomes and demonstrated that only one of them was inherited in the studied octoploid hybrids. Ribotype analyses showed that the second major ribotype of A. macrostachya was species-specific and was not represented in rDNA pools of the octoploids, which could be related to the allopolyploid origin of this species. Our results indicate that the use of marker satDNAs in cytogenomic studies can provide important data on genomic relationships within Avena allopolyploid species and hybrids, and also expand the potential for interspecific crosses for breeding.


Assuntos
Avena , Cromossomos de Plantas , DNA Satélite , Genoma de Planta , DNA Satélite/genética , Avena/genética , Cromossomos de Plantas/genética , Poliploidia , DNA Ribossômico/genética , Marcadores Genéticos , Hibridização Genética , Variação Genética , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Hibridização in Situ Fluorescente
7.
Heliyon ; 10(10): e31541, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813156

RESUMO

Oat is a dual-purpose crop used for both food and feed for animals. The objective of this work is to characterize oat varieties for their genetic diversity in yield, physical traits, and nutritional composition, aiming to identify potential parent varieties for breeding programs to develop new oat varieties for improved livestock feed and diverse industrial applications. To conduct, chemical analysis for protein and carbohydare fractions, energy and digestible nutrient estimated, stastical analyses performed to assess genetic variations for traits among vaieties. Significant genetic variation (p < 0.05) for grain yield, grain density, sieving percentage, crude protein, ether extract, neutral and acid detergent fiber, cellulose, lignin, neutral and acid detergent insoluble nitrogen were observed in grains of eight oat varieties. All protein fractions exhibited significant differences (p < 0.05). Total carbohydrate content ranged significantly (p < 0.05) from 73 % to 79 %. The grains contained higher levels of intermediately degradable starch and pectin (54.12-60.16 %) compared to the slowly degradable cell wall (26-33 %), lignin bounded cell wall (6-10 %), and rapidly degradable sugars (2-8%). Significant variation (p < 0.05) was observed in terms of gross energy, digestible energy, metabolizable energy, net energy for maintenance and lactation about (2 Mcal/kg dry matter), gain (1.6-1.8 Mcal/kg dry matter), total digestible nutrients, digestible dry matter, rumen degradable protein, and total digestible nutrients related to crude protein, fatty acid, neutral detergent fiber, and non-fiber carbohydrate. Organic matter and ether extract were positively associated (p < 0.01) with total digestible nutrients, digestible and metabolizable energy, dry matter digestible and truly digestible non fibrous cabohydrates, while neutral and acid detergent fiber and cellulose showed negative correlation. The research shows that oat varieties vary widely in their yield, physical features, and nutritional content, offering potential for breeding better varieties for both animal feed and industrial uses.

8.
Int J Biol Macromol ; 265(Pt 2): 130891, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493821

RESUMO

Avena sativa L. (A. sativa L.), commonly known as oat, is a significant cereal grain crop with excellent edible and medicinal value. Oat polysaccharides (OPs), the major bioactive components of A. sativa L., have received considerable attention due to their beneficial bioactivities. However, the isolation and purification methods of OPs lack innovation, and the structure-activity relationship remains unexplored. This review emphatically summarized recent progress in the extraction and purification methods, structural characteristics, biological activities, structure-to-function associations and the potential application status of OPs. Different materials and isolation methods can result in the differences in the structure and bioactivity of OPs. OPs are mainly composed of various monosaccharide constituents, including glucose, arabinose and mannose, along with galactose, xylose and rhamnose in different molar ratios and types of glycosidic bonds. OPs exhibited a broad molecular weight distribution, ranging from 1.34 × 105 Da to 4.1 × 106 Da. Moreover, structure-activity relationships demonstrated that the monosaccharide composition, molecular weight, linkage types, and chemical modifications are closely related to their multiple bioactivities, including immunomodulatory activity, antioxidant effect, anti-inflammatory activity, antitumor effects etc. This work can provide comprehensive knowledge, update information and promising directions for future exploitation and application of OPs as therapeutic agents and multifunctional food additives.


Assuntos
Avena , Polissacarídeos , Polissacarídeos/química , Antioxidantes/farmacologia , Antioxidantes/química , Monossacarídeos/química , Aditivos Alimentares
9.
Heliyon ; 10(2): e24552, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312573

RESUMO

Oat (Avena sativa) is a cereal grain rich in fibers, proteins, vitamins and minerals. Oats have been linked to several health benefits, such as lowering blood cholesterol levels, counteracting cardiovascular disease and regulating blood sugar levels. This study aimed to characterize two new oat lines with high ß-glucan content emanating from ethyl methyl sulphonate mutagenesis on the Lantmännen elite variety Belinda. Two of the mutated lines, and the mother variety Belinda, were profiled for ß-glucan, arabinoxylan, total dietary fiber and starch composition. In addition, total lipid and protein content, amino acid composition and ß-glucan molecular weights were analyzed. The high levels of ß-glucan resulted in a significant increase in total dietary fiber, but no correlation could be established between higher or lower levels of the assayed macromolecules, i.e., between arabinoxylan-, starch-, lipid- or protein levels in the mutated lines compared to the reference. The results indicate separate biosynthetic pathways for ß-glucans and other macromolecules and an independent regulation of the different polysaccharides studied. Therefore, ethyl methyl sulphonate mutagenesis can be used to increase levels of multiple macromolecules in the same line.

10.
Front Plant Sci ; 15: 1327390, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328705

RESUMO

Introduction: Wheat stem sawfly (WSS), Cephus cinctus Norton, is a major pest of common bread wheat (Triticum aestivum L.) and other cultivated cereals in North America. Planting of cultivars with solid stems has been the primary management strategy to prevent yield loss due to WSS infestation, however expression of this phenotype can vary depending on environmental conditions and solid stems hinder biological control of WSS via braconid parasitoids Bracon cephi (Gahan) and Bracon lissogaster Muesebeck. In the hollow stems of oat (Avena sativa L.), WSS larvae experience 100% mortality before they reach late instars, but the mechanisms for this observed resistance have not been characterized. Objective: The objective of this study was to explore additional sources of resistance outside of the historic solid stem phenotype. Methods: Here, we use an untargeted metabolomics approach to examine the response of the metabolome of two cultivars of oat and four cultivars of spring wheat to infestation by WSS. Using liquid chromatography-mass spectrometry (LC-MS), differentially expressed metabolites were identified between oat and wheat which were associated with the phenylpropanoid pathway, phospholipid biosynthesis and signaling, the salicylic acid signaling pathway, indole-3-acetic acid (IAA) degradation, and biosynthesis of 1,4-benzoxazin-3-ones (Bxs). Several phospho- and galacto- lipids were found in higher abundance in oat, and with the exception of early stem solidness cultivar Conan, both species experienced a decrease in abundance once infested. In all wheat cultivars except Conan, an increase in abundance was observed for Bxs HMDBOA-glc and DIBOA-ß-D-glucoside after infestation, indicating that this pathway is involved in wheat response to infestation in both solid and hollow stemmed cultivars. Differences between species in compounds involved in IAA biosynthesis, degradation and inactivation suggest that wheat may respond to infestation by inactivating IAA or altering the IAA pool in stem tissue. Conclusion: We propose that the species differences found here likely affect the survival of WSS larvae and may also be associated with differences in stem architecture at the molecular level. Our findings suggest pathways to focus on for future studies in elucidating plant response to WSS infestation.

11.
Bioengineered ; 15(1): 2305029, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38258524

RESUMO

Oats (Avena sativa L.) are one of the worldwide cereal crops. Avenanthramides (AVNs), the unique plant alkaloids of secondary metabolites found in oats, are nutritionally important for humans and animals. Numerous bioactivities of AVNs have been investigated and demonstrated in vivo and in vitro. Despite all these, researchers from all over the world are taking efforts to learn more knowledge about AVNs. In this work, we highlighted the recent updated findings that have increased our understanding of AVNs bioactivity, distribution, and especially the AVNs biosynthesis. Since the limits content of AVNs in oats strictly hinders the demand, understanding the mechanisms underlying AVN biosynthesis is important not only for developing a renewable, sustainable, and environmentally friendly source in both plants and microorganisms but also for designing effective strategies for enhancing their production via induction and metabolic engineering. Future directions for improving AVN production in native producers and heterologous systems for food and feed use are also discussed. This summary will provide a broad view of these specific natural products from oats.


• Avenanthramides are unique nutritional alkaloids in oats• AVN bioactivity, distribution, and the potential AVNs biosynthesis are discussed• AVNs can be produced via induction and metabolic engineering.


Assuntos
Avena , Grão Comestível , Animais , Humanos , ortoaminobenzoatos , Amidas , Fenóis
12.
PeerJ ; 12: e16759, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38274325

RESUMO

Background: Traditional spring-summer sown oat is a typical long-day crop that cannot head under short-day conditions. The creation of photoperiod-insensitive oats overcomes this limitation. MADS-box genes are a class of transcription factors involved in plant flowering signal transduction regulation. Previous transcriptome studies have shown that MADS-box genes may be related to the oat photoperiod. Methods: Putative MADS-box genes were identified in the whole genome of oat. Bioinformatics methods were used to analyze their classification, conserved motifs, gene structure, evolution, chromosome localization, collinearity and cis-elements. Ten representative genes were further screened via qRT‒PCR analysis under short days. Results: In total, sixteen AsMADS genes were identified and grouped into nine subfamilies. The domains, conserved motifs and gene structures of all AsMADS genes were conserved. All members contained light-responsive elements. Using the photoperiod-insensitive oat MENGSIYAN4HAO (MSY4) and spring-summer sown oat HongQi2hao (HQ2) as materials, qRT‒PCR analysis was used to analyze the AsMADS gene at different panicle differentiation stages under short-day conditions. Compared with HQ2, AsMADS3, AsMADS8, AsMADS11, AsMADS13, and AsMADS16 were upregulated from the initial stage to the branch differentiation stage in MSY4, while AsMADS12 was downregulated. qRT‒PCR analysis was also performed on the whole panicle differentiation stages in MSY4 under short-day conditions, the result showed that the expression levels of AsMADS9 and AsMADS11 gradually decreased. Based on the subfamily to which these genes belong, the above results indicated that AsMADS genes, especially SVP, SQUA and Mα subfamily members, regulated panicle development in MSY4 by responding to short-days. This work provides a foundation for revealing the function of the AsMADS gene family in the oat photoperiod pathway.


Assuntos
Avena , Fotoperíodo , Avena/genética , Fatores de Transcrição/genética , Genoma de Planta/genética , Plantas/genética
13.
Plants (Basel) ; 12(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37960051

RESUMO

Through the degradation of reactive oxygen species (ROS), different antioxidant enzymes, such as catalase (CAT), defend organisms against oxidative stress. These enzymes are crucial to numerous biological functions, like plant development and defense against several biotic and abiotic stresses. However, despite the major economic importance of Avena sativa around the globe, little is known about the CAT gene's structure and organization in this crop. Thus, a genome-wide investigation of the CAT gene family in oat plants has been carried out to characterize the potential roles of those genes under different stressors. Bioinformatic approaches were used in this study to predict the AvCAT gene's structure, secondary and tertiary protein structures, physicochemical properties, phylogenetic tree, and expression profiling under diverse developmental and biological conditions. A local Saudi oat variety (AlShinen) was used in this work. Here, ten AvCAT genes that belong to three groups (Groups I-III) were identified. All identified CATs harbor the two conserved domains (pfam00199 and pfam06628), a heme-binding domain, and a catalase activity motif. Moreover, identified AvCAT proteins were located in different compartments in the cell, such as the peroxisome, mitochondrion, and cytoplasm. By analyzing their promoters, different cis-elements were identified as being related to plant development, maturation, and response to different environmental stresses. Gene expression analysis revealed that three different AvCAT genes belonging to three different subgroups showed noticeable modifications in response to various stresses, such as mannitol, salt, and ABA. As far as we know, this is the first report describing the genome-wide analysis of the oat catalase gene family, and these data will help further study the roles of catalase genes during stress responses, leading to crop improvement.

14.
Plants (Basel) ; 12(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38005689

RESUMO

Zirconium (Zr) is one of the toxic metals that are heavily incorporated into the ecosystem due to intensive human activities. Their accumulation in the ecosystem disrupts the food chain, causing undesired alterations. Despite Zr's phytotoxicity, its impact on plant growth and redox status remains unclear, particularly if combined with elevated CO2 (eCO2). Therefore, a greenhouse pot experiment was conducted to test the hypothesis that eCO2 can alleviate the phytotoxic impact of Zr upon oat (Avena sativa) plants by enhancing their growth and redox homeostasis. A complete randomized block experimental design (CRBD) was applied to test our hypothesis. Generally, contamination with Zr strikingly diminished the biomass and photosynthetic efficiency of oat plants. Accordingly, contamination with Zr triggered remarkable oxidative damage in oat plants, with concomitant alteration in the antioxidant defense system of oat plants. Contrarily, elevated levels of CO2 (eCO2) significantly mitigated the adverse effect of Zr upon both fresh and dry weights as well as the photosynthesis of oat plants. The improved photosynthesis consequently quenched the oxidative damage caused by Zr by reducing the levels of both H2O2 and MDA. Moreover, eCO2 augmented the total antioxidant capacity with the concomitant accumulation of molecular antioxidants (e.g., polyphenols, flavonoids). In addition, eCO2 not only improved the activities of antioxidant enzymes such as peroxidase (POX), superoxide dismutase (SOD) and catalase (CAT) but also boosted the ASC/GSH metabolic pool that plays a pivotal role in regulating redox homeostasis in plant cells. In this regard, our research offers a novel perspective by delving into the previously unexplored realm of the alleviative effects of eCO2. It sheds light on how eCO2 distinctively mitigates oxidative stress induced by Zr, achieving this by orchestrating adjustments to the redox balance within oat plants.

15.
Plants (Basel) ; 12(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38005722

RESUMO

In accordance with the postulates of integrated plant protection, the use of cultivars with genetically determined resistance is one of the main strategies for preventing losses caused by fungal pathogens. The development of breeding programs aimed at increasing resistance to pathogens should be preceded by a characterization of the resistance of cultivars grown in a given area. This allows us to determine the number of genes used in breeding and their effectiveness. It also allows us to estimate the pressure that the pathogen may exert on varieties with specific resistance genes. The presented work aimed to determine the level of resistance of oat varieties currently cultivated in Central Europe and the number of effective powdery mildew resistance genes currently used in oat breeding programs. The research showed that out of 46 varieties, only 5 were resistant to powdery mildew. Analysis of the infection profiles allowed us to postulate the presence of the Pm7 gene in four of them. In the Merlin variety from the Czech Republic, it was not possible to determine which of the previously described genes determines resistance to powdery mildew. Due to the observed climate changes and the rapid adaptation of pathogens to new environmental conditions, it is crucial to introduce a wider pool of genes that determine the pathogen resistance of cultivars.

16.
J Nematol ; 55(1): 20230041, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37868787

RESUMO

Rotylenchulus reniformis (reniform nematode, RN) is among the most important nematodes affecting cotton. Cultural practices, such as rotation and soil amendment, are established methods for managing RN. Management may be enhanced if crop residue has biofumigant properties against RN. The objective was to evaluate the efficacy of winter crop amendments for managing RN in the greenhouse. Reniform nematode-infested soil was amended with dry or fresh organic matter (OM, 2% w/w) from winter crops - canola, carinata, hairy vetch, oat, or no crop. Cotton was subsequently grown in this soil. Independent of the crop, dry OM amendments were more effective than no amendment at managing RN, while fresh OM amendments were not. Soil and root RN abundances and reproduction factors were generally lower in Trials 1 and 3 for dry OM than fresh OM amendments or control without OM. In Trial 2, none of the OM treatments reduced RN parameters compared with no OM control. In general, when compared to plants without RN or OM, RN did not produce significant changes in growth parameters but did affect physiology (Soil Plant Analysis Development, or SPAD, values). In conclusion, dry OM amendments can help manage RN, crop growth does not always relate to RN abundances, and SPAD values could help indicate RN presence.

17.
J Agric Food Chem ; 71(41): 14838-14852, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37797345

RESUMO

Oat (Avena sativa L.), an annual herbaceous plant belonging to the Gramineae family, is widely grown in various regions including EU, Canada, America, Australia, etc. Due to the nutritional and pharmacological values, oats have been developed into various functional food including fermented beverage, noodle, cookie, etc. Meanwhile, numerous studies have demonstrated that oats may effectively improve metabolic syndrome, such as dyslipidemia, hyperglycemia, atherosclerosis, hypertension, and obesity. However, the systematic pharmacological mechanisms of oats on metabolic syndrome have not been fully revealed. Therefore, in order to fully explore the benefits of oat in food industry and clinic, this review aims to provide up-to-date information on oat and its constituents, focusing on the effects on metabolic syndrome.


Assuntos
Avena , Síndrome Metabólica , Avena/metabolismo , Síndrome Metabólica/tratamento farmacológico , Grão Comestível , Austrália , Canadá
18.
PeerJ ; 11: e16181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810776

RESUMO

Abscisic acid (ABA) is a phytohormone that plays an important role in plant growth and development. Meanwhile, ABA also plays a key role in the plant response to abiotic stressors such as drought and high salinity. The pyrabactin resistance 1-like (PYR/PYL) protein family of ABA receptors is involved in the initial step of ABA signal transduction. However, no systematic studies of the PYL family in "Avena sativa, a genus Avena in the grass family Poaceae," have been conducted to date. Thus, in this study, we performed a genome-wide screening to identify PYL genes in oat and characterized their responses to drought stress. A total of 12 AsPYL genes distributed on nine chromosomes were identified. The phylogenetic analysis divided these AsPYLs into three subfamilies, based on structural and functional similarities. Gene and motif structure analysis of AsPYLs revealed that members of each subfamily share similar gene and motif structure. Segmental duplication appears to be the driving force for the expansion of PYLs, Furthermore, stress-responsive AsPYLs were detected through RNA-seq analysis. The qRT-PCR analysis of 10 AsPYL genes under drought, salt, and ABA stress revealed that AsPYL genes play an important role in stress response. These data provide a reference for further studies on the oat PYL gene family and its function.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Avena/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Filogenia , Proteínas de Transporte/genética
19.
J Nematol ; 55(1): 20230035, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37712053

RESUMO

Rotylenchulus reniformis (reniform nematode, RN) is an important pathogen in cotton production. Cultural practices such as crop rotation and biofumigation-management of soil pathogens by biocidal compounds from crop residues-may help manage RN. The objective of this study was to evaluate the efficacy of winter crops for RN management through combinations of rotation and crop residue incorporation in a cotton greenhouse experiment. A total of 10 treatments were evaluated in soil inoculated with RN: three winter crops (carinata, oat, or hairy vetch) grown in rotation with no shoot organic matter (OM) incorporated (1-3), fresh shoot OM incorporated (4-6), or dry shoot OM incorporated (7-9), and a fallow control (10). Roots were re-incorporated in all treatments except fallow. Subsequently, cotton was grown. Oat and fallow were better rotation crops to lower soil RN abundances at winter crop termination than hairy vetch and carinata. After the OM incorporation treatments and cotton growth, oat was generally more effective at managing RN in cotton than carinata or hairy vetch. Within each crop, incorporation treatment generally did not affect RN management. Cotton growth was not consistently affected by the treatments.

20.
Plants (Basel) ; 12(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687311

RESUMO

This paper reports an evaluation of eleven oat genotypes in four environments for two consecutive years to identify high-biomass-yielding, stable, and broadly adapted genotypes in selected parts of Ethiopia. Genotypes were planted and evaluated with a randomized complete block design, which was repeated three times. The additive main effect and multiplicative interaction analysis of variances revealed that the environment, genotype, and genotype-environment interaction had a significant (p ≤ 0.001) influence on the biomass yield in the dry matter base (t ha-1). The interaction of the first and second principal component analysis accounted for 73.43% and 14.97% of the genotype according to the environment interaction sum of squares, respectively. G6 and G5 were the most stable and widely adapted genotypes and were selected as superior genotypes. The genotype-by-environment interaction showed a 49.46% contribution to the total treatment of sum-of-squares variation, while genotype and environment effects explained 34.94% and 15.60%, respectively. The highest mean yield was obtained from G6 (12.52 kg/ha), and the lowest mean yield was obtained from G7 (8.65 kg/ha). According to the additive main effect and multiplicative interaction biplot, G6 and G5 were high-yielding genotypes, whereas G7 was a low-yielding genotype. Furthermore, according to the genotype and genotype-environment interaction biplot, G6 was the winning genotype in all environments. However, G7 was a low-yielding genotype in all environments. Finally, G6 was an ideal genotype with a higher mean yield and relatively good stability. However, G7 was a poor-yielding and unstable genotype. The genotype, environment, and genotype x environment interaction had extremely important effects on the biomass yield of oats. The findings of the graphic stability methods (additive main effect and multiplicative interaction and the genotype and genotype-environment interaction) for identifying high-yielding and stable oat genotypes were very similar.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...