Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(40): 17650-17660, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39323293

RESUMO

Aircraft contrails, formed largely on soot particles in current flights, are important for aviation's non-CO2 climate impact. Here we show that the activation of nonvolatile soot particles during contrail formation is likely determined by the sizes of primary soot particles rather than the effective sizes of soot aggregates as assumed in previous studies, which can explain less-than-unity fractions of soot particles forming contrail ice particles as recently observed during ECLIF (Emission and CLimate Impact of alternative Fuels) campaigns. The smaller soot primary sizes compared to aggregate sizes delay the onset of contrail ice formation, increase the maximum plume supersaturation reached in the contrail plume, and thus increase the probability of small volatile particles contributing to the total contrail ice particle number. This study suggests that the range of conditions for volatile plume particles to contribute significantly to the contrail ice number budget is wider than previously thought. As the aviation industry is moving toward sustainable aviation fuel and/or lean-burning engine technology, which is expected to reduce not only the emission index of nonvolatile soot particles but also the sizes of primary soot particles, this study highlights the need to better understand how the combined changes may affect contrail formation, contribution of volatile particles, and climate impacts.


Assuntos
Gelo , Tamanho da Partícula , Aeronaves , Poluentes Atmosféricos , Material Particulado
2.
Sci Total Environ ; 948: 174635, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-38997024

RESUMO

The Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) requires airlines to offset their greenhouse gas (GHG) emissions above 2019 levels by either buying carbon offsets or using Sustainable Aviation Fuels (SAFs). These are drop-in jet fuels made from biomass or other renewable resources that reduce GHG emissions by at least 10 % compared to kerosene and meet certain sustainability criteria. This study assesses the direct land use change (DLUC) emissions of SAF, i.e., GHG emissions from on-site land conversion from previous uses (excluding primary forests, peatlands, wetlands, and protected and biodiversity-rich areas) into alternative feedstocks, considering spatial variability in global yields and land carbon stocks. The results provide DLUC values and carbon payback times at 0.5-degree resolution for six SAF pathways, with and without irrigation and a medium-input intensity, according to CORSIA sustainability criteria. When excluding CORSIA non-compliant areas, soybean SAF shows the highest mean DLUC factor (31.9 ± 20.7 gCO2/MJ), followed by reed canary grass and maize. Jatropha SAF shows the lowest mean DLUC factor (3.6 ± 31.4 gCO2/MJ), followed by miscanthus and switchgrass. The latter feedstocks show potential for reducing GHG emissions over large areas but with relatively greater variability. Country-average DLUC values are higher than accepted ILUC ones for all pathways except for maize. To ensure the GHG benefits of CORSIA, feedstocks must be produced in areas where not only carbon stocks are relatively low but also where attainable yields are sufficiently high. The results help identify locations where the combination of these two factors may be favourable for low-DLUC SAF production. Irrigated miscanthus offers the highest SAF production potential (2.75 EJ globally) if grown on CORSIA-compliant cropland and grassland areas, accounting for ∼1/5 of the total kerosene used in 2019. Quantifying other environmental impacts of SAFs is desirable to understand sustainability trade-offs and financial constraints that may further limit production potentials.

3.
Chemosphere ; 363: 142958, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39069102

RESUMO

Recently, Sustainable Aviation Fuel (SAF) blends and novel combustion technologies have been introduced to reduce aircraft engine emissions. However, there is limited knowledge about the impact of combustion technology and fuel composition on toxicity of primary Particulate Matter (PM) emissions, comparable to regulated non-volatile PM (nvPM). In this study, primary PM was collected on filters using a standardised approach, from both a Rich-Quench-Lean (RQL) combustion rig and a bespoke liquid fuelled Combustion Aerosol Standard (CAST) Generator burning 12 aviation fuels including conventional Jet-A, SAFs, and blends thereof. The fuels varied in aromatics (0-25.2%), sulphur (0-3000 ppm) and hydrogen (13.43-15.31%) contents. Toxicity of the collected primary PM was studied in vitro utilising Air-Liquid Interface (ALI) exposure of lung epithelial cells (Calu-3) in monoculture and co-culture with macrophages (differentiated THP-1 cells). Cells were exposed to PM extracted from filters and nebulised from suspensions using a cloud-based ALI exposure system. Toxicity readout parameters were analysed 24 h after exposure. Results showed presence of genotoxicity and changes in gene expression at dose levels which did not induce cytotoxicity. DNA damage was detected through Comet assay in cells exposed to CAST generated samples. Real-Time PCR performed to investigate the expression profile of genes involved in oxidative stress and DNA repair pathways showed different behaviours after exposure to the various PM samples. No differences were found in pro-inflammatory interleukin-8 secretion. This study indicates that primary PM toxicity is driven by wider factors than fuel composition, highlighting that further work is needed to substantiate the full toxicity of aircraft exhaust PM inclusive of secondary PM emanating from numerous engine technologies across the power range burning conventional Jet-A and SAF.


Assuntos
Poluentes Atmosféricos , Aeronaves , Dano ao DNA , Material Particulado , Emissões de Veículos , Material Particulado/toxicidade , Material Particulado/análise , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Linhagem Celular , Macrófagos/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Aerossóis/toxicidade , Aerossóis/análise , Aviação
4.
Annu Rev Plant Biol ; 75(1): 239-263, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39038247

RESUMO

Despite lignin having long been viewed as an impediment to the processing of biomass for the production of paper, biofuels, and high-value chemicals, the valorization of lignin to fuels, chemicals, and materials is now clearly recognized as a critical element for the lignocellulosic bioeconomy. However, the intended application for lignin will likely require a preferred lignin composition and form. To that end, effective lignin valorization will require the integration of plant biology, providing optimal feedstocks, with chemical process engineering, providing efficient lignin transformations. Recent advances in our understanding of lignin biosynthesis have shown that lignin structure is extremely diverse and potentially tunable, while simultaneous developments in lignin refining have resulted in the development of several processes that are more agnostic to lignin composition. Here, we review the interface between in planta lignin design and lignin processing and discuss the advances necessary for lignin valorization to become a feature of advanced biorefining.


Assuntos
Lignina , Plantas , Lignina/metabolismo , Lignina/química , Plantas/metabolismo , Biocombustíveis , Biomassa
5.
Environ Sci Technol ; 58(26): 11352-11362, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38899559

RESUMO

Cellulosic biomass-based sustainable aviation fuels (SAFs) can be produced from various feedstocks. The breakeven price and carbon intensity of these feedstock-to-SAF pathways are likely to differ across feedstocks and across spatial locations due to differences in feedstock attributes, productivity, opportunity costs of land for feedstock production, soil carbon effects, and feedstock composition. We integrate feedstock to fuel supply chain economics and life-cycle carbon accounting using the same system boundary to quantify and compare the spatially varying greenhouse gas (GHG) intensities and costs of GHG abatement with SAFs derived from four feedstocks (switchgrass, miscanthus, energy sorghum, and corn stover) at 4 km resolution across the U.S. rainfed region. We show that the optimal feedstock for each location differs depending on whether the incentive is to lower breakeven price, carbon intensity, or cost of carbon abatement with biomass or to have high biomass production per unit land. The cost of abating GHG emissions with SAF ranges from $181 Mg-1 CO2e to more than $444 Mg-1 CO2e and is lowest with miscanthus in the Midwest, switchgrass in the south, and energy sorghum in a relatively small region in the Great Plains. While corn stover-based SAF has the lowest breakeven price per gallon, it has the highest cost of abatement due to its relatively high GHG intensity. Our findings imply that different types of policies, such as volumetric targets, tax credits, and low carbon fuel standards, will differ in the mix of feedstocks they incentivize and locations where they are produced in the U.S. rainfed region.


Assuntos
Biomassa , Gases de Efeito Estufa , Celulose , Efeito Estufa , Biocombustíveis , Aviação
6.
Environ Sci Technol ; 58(21): 9135-9146, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38754026

RESUMO

Reducing aviation emissions is important as they contribute to air pollution and climate change. Several alternative aviation fuels that may reduce life cycle emissions have been proposed. Comparative life cycle assessments (LCAs) of fuels are useful for inspecting individual fuels, but systemwide analysis remains difficult. Thus, systematic properties like fleet composition, performance, or emissions and changes to them under alternative fuels can only be partially addressed in LCAs. By integrating the geospatial fuel and emission model, AviTeam, with LCA, we can assess the mitigation potential of a fleetwide use of alternative aviation fuels on 210 000 shorter haul flights. In an optimistic case, liquid hydrogen (LH2) and power-to-liquid fuels, when produced with renewable electricity, may reduce emissions by about 950 GgCO2eq when assessed with the GWP100 metric and including non-CO2 impacts for all flights considered. Mitigation potentials range from 44% on shorter flights to 56% on longer flights. Alternative aviation fuels' mitigation potential is limited because of short-lived climate forcings and additional fuel demand to accommodate LH2 fuel. Our results highlight the importance of integrating system models into LCAs and are of value to researchers and decision-makers engaged in climate change mitigation in the aviation and transport sectors.


Assuntos
Aviação , Emissões de Veículos , Modelos Teóricos , Poluição do Ar , Mudança Climática , Poluentes Atmosféricos/análise
7.
J Environ Manage ; 354: 120418, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382440

RESUMO

The current technical issues related to the conversion of algal biomass into aviation biofuel through hydrothermal liquefaction (HTL) and the upgrading of bio-oil through hydrotreatment have been reviewed and consolidated. HTL is a promising route for converting microalgae into sustainable aviation fuel (SAF). However, HTL must be followed by the hydrotreatment of bio-oil to ensure that its composition and properties are compatible with SAF standards. The fact that microalgae offer the possibility of recovering wastewater treatment resources not only makes them more attractive but also serves as an incentive for wastewater treatment, especially in countries where this service has not been universalized. The combination of SAF and wastewater treatment aligns with the Sustainable Development Goals of the United Nations, representing an advantageous opportunity for both aviation and sanitation. In this context, the utilization of HTL by-products in the concept of a biorefinery is essential for the sustainability of aviation biofuel production through this route. Another important aspect is the recovery and reuse of catalysts, which are generally heterogeneous, allowing for recycling. Additionally, discussions have focused on biomass pretreatment methods, the use of solvents and catalysts in HTL and hydrotreatment reactions, and the operational parameters of both processes. All these issues present opportunities to enhance the quantity and quality of bio-oil and aviation biofuel.


Assuntos
Microalgas , Óleos de Plantas , Polifenóis , Águas Residuárias , Biocombustíveis , Temperatura , Biomassa
8.
Metab Eng ; 82: 157-170, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369052

RESUMO

Sustainable aviation fuel (SAF) will significantly impact global warming in the aviation sector, and important SAF targets are emerging. Isoprenol is a precursor for a promising SAF compound DMCO (1,4-dimethylcyclooctane) and has been produced in several engineered microorganisms. Recently, Pseudomonas putida has gained interest as a future host for isoprenol bioproduction as it can utilize carbon sources from inexpensive plant biomass. Here, we engineer metabolically versatile host P. putida for isoprenol production. We employ two computational modeling approaches (Bilevel optimization and Constrained Minimal Cut Sets) to predict gene knockout targets and optimize the "IPP-bypass" pathway in P. putida to maximize isoprenol production. Altogether, the highest isoprenol production titer from P. putida was achieved at 3.5 g/L under fed-batch conditions. This combination of computational modeling and strain engineering on P. putida for an advanced biofuels production has vital significance in enabling a bioproduction process that can use renewable carbon streams.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Carbono/metabolismo , Engenharia Metabólica
9.
Chemosphere ; 351: 141245, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242513

RESUMO

Water crisis around the world leads to a growing interest in emerging contaminants (ECs) that can affect human health and the environment. Research showed that thousands of compounds from domestic consumers, such as endocrine disrupting chemicals (EDCs), personal care products (PCPs), and pharmaceuticals active compounds (PhAcs), could be found in wastewater in concentration mostly from ng L-1 to µg L-1. However, generally, wastewater treatment plants (WWTPs) are not designed to remove these ECs from wastewater to their discharge levels. Scientists are looking for economically feasible biotreatment options enabling the complete removal of ECs before discharge. Microalgae cultivation in domestic wastewater is likely a feasible approach for removing emerging contaminants and simultaneously removing any residual organic nutrients. Microalgal growth rate and contaminants removal efficiency could be affected by various factors, including light intensity, CO2 addition, presence of different nutrients, etc., and these parameters could greatly help make microalgae treatment more efficient. Furthermore, the algal biomass harvests could be repurposed to produce various bulk chemicals such as sustainable aviation fuel, biofuel, bioplastic, and biochar; this could significantly enhance the economic viability. Therefore, this review summarizes the microalgae-based bioprocess and their mechanisms for removing different ECs from different wastewaters and highlights the different strategies to improve the ECs removal efficiency. Furthermore, this review shows the role of different ECs in biomass profile and the relevance of using ECs-treated microalgae biomass to produce green products, as well as highlights the challenges and future research recommendations.


Assuntos
Microalgas , Águas Residuárias , Humanos , Biomassa
10.
Proc Natl Acad Sci U S A ; 120(51): e2312667120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079557

RESUMO

Biomass-derived sustainable aviation fuel holds significant potential for decarbonizing the aviation sector. Its long-term viability depends on crop choice, longevity of soil organic carbon (SOC) sequestration, and the biomass-to-biojet fuel conversion efficiency. We explored the impact of fuel price and SOC value on viable biojet fuel production scale by integrating an agroecosystem model with a field-to-biojet fuel production process model for 1,4-dimethylcyclooctane (DMCO), a representative high-performance biojet fuel molecule, from Miscanthus, sorghum, and switchgrass. Assigning monetary value to SOC sequestration results in substantially different outcomes than an increased fuel selling price. If SOC accumulation is valued at $185/ton CO2, planting Miscanthus for conversion to DMCO would be economically cost-competitive across 66% of croplands across the continental United States (US) by 2050 if conventional jet fuel remains at $0.74/L (in 2020 US dollars). Cutting the SOC sequestration value in half reduces the viable area to 54% of cropland, and eliminating any payment for SOC shrinks the viable area to 16%. If future biojet fuel prices increase to $1.24/L-Jet A-equivalent, 48 to 58% of the total cultivated land in the United States could support a more diverse set of feedstocks including Miscanthus, sorghum, or switchgrass. Among these options, only 8-14% of the area would be suitable exclusively for Miscanthus cultivation. These findings highlight the intersection of natural solutions for carbon removal and the use of deep-rooted feedstocks for biofuels and biomanufacturing. The results underscore the need to establish clear and consistent values for SOC sequestration to enable the future bioeconomy.

11.
J Environ Manage ; 348: 119418, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37871549

RESUMO

Soil organic carbon (SOC) can be increased by cultivating bioenergy crops to produce low-carbon fuels, improving soil quality and agricultural productivity. This study evaluates the incentives for farmers to sequester SOC by adopting a bioenergy crop, carinata. Two agricultural management scenarios - business as usual (BaU) and a climate-smart (no-till) practice - were simulated using an agent-based modeling approach to account for farmers' carinata adoption rates within their context of traditional crop rotations, the associated profitability, influences of neighboring farmers, as well as their individual attitudes. Using the state of Georgia, US, as a case study, the results show that farmers allocated 1056 × 103 acres (23.8%; 2.47 acres is equivalent to 1 ha) of farmlands by 2050 at a contract price of $6.5 per bushel of carinata seeds and with an incentive of $50 Mg-1CO2e SOC sequestered under the BaU scenario. In contrast, at the same contract price and SOC incentive rate, farmers allocated 1152 × 103 acres (25.9%) of land under the no-till scenario, while the SOC sequestration was 483.83 × 103 Mg CO2e, which is nearly four times the amount under the BaU scenario. Thus, this study demonstrated combinations of seed prices and SOC incentives that encourage farmers to adopt carinata with climate-smart practices to attain higher SOC sequestration benefits.


Assuntos
Carbono , Solo , Carbono/análise , Motivação , Sequestro de Carbono , Agricultura/métodos , Georgia
12.
J Environ Manage ; 345: 118641, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549637

RESUMO

The environmental impact of carbon dioxide emissions is significant, and research is focused on mitigating these emissions and developing eco-friendly technologies in line with green chemistry principles. Waste-to-energy technologies play a crucial role in converting waste into renewable energy and valuable biofuels and bioproducts. This study specifically explores the utilization of waste gas emissions, particularly carbon dioxide, from various sources in the United States for the production of sustainable aviation fuel (SAF) precursors, such as ethanol and acetic acid. The study categorizes and quantifies the volumes of carbon dioxide emissions into three types: non-biogenic, biogenic, and biogenic emissions from ethanol production facilities. Stoichiometric calculations are applied to compare the amounts of carbon dioxide from each category with the available hydrogen production capacity, determining if sufficient hydrogen is present for converting carbon dioxide into SAF precursors. The study reveals two key findings. Firstly, there is a significant reserve of carbon dioxide, approximately 1648 million metric tons per year (MMTy), combining all three categories, which would require a substantial increase of approximately 35-40 times in the existing hydrogen production capacity of 4.988 MMTy. This increased hydrogen production has the potential to yield approximately 1067.82 MMTy of acetic acid and 189.19 MMTy of ethanol annually. Secondly, upon analyzing the quality and application of the three sources of carbon dioxide with the currently available hydrogen production capacity, it is found that biogenic carbon dioxide from ethanol plants is the most suitable choice for immediate production of SAF precursors. This would theoretically result in an annual production of 1.36 MMTy of ethanol and 1.772 MMTy of acetic acid. The other two sources of carbon dioxide can be considered potential reserves for future utilization when additional hydrogen production facilities are established. The study provides a foundation for assessing the aggregation potential required for acetic acid and ethanol production. By optimizing the use of waste gases as raw materials, the study not only enables the production of SAF precursors but also contributes to the passive reduction of greenhouse gas emissions.


Assuntos
Ácido Acético , Dióxido de Carbono , Dióxido de Carbono/análise , Etanol , Gases/análise , Biocombustíveis , Hidrogênio
13.
Adv Sci (Weinh) ; 10(23): e2300889, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271925

RESUMO

Sesquiterpenes have been identified as promising ingredients for aviation fuels due to their high energy density and combustion heat properties. Despite the characterization of numerous sesquiterpene structures, studies testing their performance properties and feasibility as fuels are scarce. In this study, 122 sesquiterpenoid skeleton compounds, obtained from existing literature reports, are tested using group contribution and gaussian quantum chemistry methods to assess their potential as high-energy aviation fuels. Seventeen sesquiterpene compounds exhibit good predictive performance and nine compounds are further selected for overproduction in yeast. Through fed-batch fermentation, all compounds achieve the highest reported titers to date. Subsequently, three representative products, pentalenene, presilphiperfol-1-ene, and α-farnesene, are selected, produced, purified in large quantities, and tested for use as potential fuels. The performance of pentalenene, presilphiperfol-1-ene, and their derivatives reveals favorable prospects as high-energy aviation fuels.

14.
Talanta ; 258: 124451, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36931058

RESUMO

The vacuum ultraviolet detector for gas chromatography can be used to identify structural differences between isomers with similar chromatographic elution times, which adds detail to characterization, valuable for prescreening of sustainable aviation fuel candidates. Although this capability has been introduced elsewhere, vacuum ultraviolet spectroscopy for saturated hydrocarbons has been examined minimally, as the similarities between their spectra are much less significant than their aromatic counterparts. The fidelity with which structural differences can be identified has been unclear. In this work, all possible structural isomers of C8H18 are measured and determined to have unambiguously unique vacuum ultraviolet spectra. Using a statistically based residual comparison approach, the concentration limits at which the spectral differences are interpretable are tested in both a controlled study and a real fuel application. The concentration limit at which the spectral differences between C8H18 isomers are unambiguous is below 0.40% by mass and less than 0.20% with human discretion in our experimental configuration.

15.
Bioresour Technol ; 371: 128582, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36610485

RESUMO

Sustainable aviation fuels (SAFs) can contribute reduce greenhouse gas emissions compared to conventional fuel. With the increasing SAFs demand, various generations of resources have been shifted from the 1st generation (oil crops), the 2nd generation (agricultural waste), to the 3rd generation (microalgae). Microalgae are the most suitable feedstock for jet biofuel production than other resources because of their productivity and capability to capture carbon dioxide. However, microalgae-based biofuel has a limitation of high freezing point. Recently, a jet biofuel derived from Euglena wax ester has been paying attention due to its low freezing point. Challenges still remain to enhance production yields in both upstream and downstream processes. Studies on downstream processes as well as techno-economic analysis on biofuel production using Euglena are highly limited to date. Economic aspects for the biofuel production will be ensured via valorization of industrial byproducts such as food wastes.


Assuntos
Euglena , Microalgas , Biocombustíveis , Dióxido de Carbono , Biomassa
16.
Bioresour Technol ; 369: 128457, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36503094

RESUMO

Demand and consumption of fossil fuels is increasing daily, and oil reserves are depleting. Technological developments are required towards developing sustainable renewable energy sources and microalgae are emerging as a potential candidate for various application-driven research. Molecular understanding attained through omics and system biology approach empowering researchers to modify various metabolic pathways of microalgal system for efficient extraction of biofuel and important biomolecules. This review furnish insight into different "advanced approaches" like optogenetics, systems biology and multi-omics for enhanced production of FAS (Fatty Acid Synthesis) and lipids in microalgae and their associated challenges. These new approaches would be helpful in the path of developing microalgae inspired technological platforms for optobiorefinery, which could be explored as source material to produce biofuels and other valuable bio-compounds on a large scale.


Assuntos
Biocombustíveis , Microalgas , Multiômica , Microalgas/metabolismo , Redes e Vias Metabólicas , Biomassa
17.
Biotechnol Biofuels Bioprod ; 15(1): 143, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539896

RESUMO

BACKGROUND: The overall goal of the present study is to investigate the economics of an integrated biorefinery converting hybrid poplar into jet fuel, xylitol, and formic acid. The process employs a combination of integrated biological, thermochemical, and electrochemical conversion pathways to convert the carbohydrates in poplar into jet fuel, xylitol, and formic acid production. The C5-sugars are converted into xylitol via hydrogenation. The C6-sugars are converted into jet fuel via fermentation into ethanol, followed by dehydration, oligomerization, and hydrogenation into jet fuel. CO2 produced during fermentation is converted into formic acid via electrolysis, thus, avoiding emissions and improving the process's overall carbon conversion. RESULTS: Three different biorefinery scales are considered: small, intermediate, and large, assuming feedstock supplies of 150, 250, and 760 dry ktonne of poplar/year, respectively. For the intermediate-scale biorefinery, a minimum jet fuel selling price of $3.13/gallon was obtained at a discount rate of 15%. In a favorable scenario where the xylitol price is 25% higher than its current market value, a jet fuel selling price of $0.64/gallon was obtained. Co-locating the biorefinery with a power plant reduces the jet fuel selling price from $3.13 to $1.03 per gallon. CONCLUSION: A unique integrated biorefinery to produce jet fuel was successfully modeled. Analysis of the biorefinery scales shows that the minimum jet fuel selling price for profitability decreases with increasing biorefinery scale, and for all scales, the biorefinery presents favorable economics, leading to a minimum jet fuel selling price lower than the current price for sustainable aviation fuel (SAF). The amount of xylitol and formic produced in a large-scale facility corresponds to 43% and 25%, respectively, of the global market volume of these products. These volumes will saturate the markets, making them infeasible scenarios. In contrast, the small and intermediate-scale biorefineries have product volumes that would not saturate current markets, does not present a feedstock availability problem, and produce jet fuel at a favorable price given the current SAF policy support. It is shown that the price of co-products greatly influences the minimum selling price of jet fuel, and co-location can further reduce the price of jet fuel.

18.
Sci Total Environ ; 850: 158089, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985597

RESUMO

Aviation emissions are the only direct source of anthropogenic particulate pollution at high altitudes, which can form contrails and contrail-induced clouds, with consequent effects upon global radiative forcing. In this study, we develop a predictive model, called APMEP-CNN, for aviation non-volatile particulate matter (nvPM) emissions using a convolutional neural network (CNN) technique. The model is established with data sets from the newly published aviation emission databank and measurement results from several field studies on the ground and during cruise operation. The model also takes the influence of sustainable aviation fuels (SAFs) on nvPM emissions into account by considering fuel properties. This study demonstrates that the APMEP-CNN can predict nvPM emission index in mass (EIm) and number (EIn) for a number of high-bypass turbofan engines. The accuracy of predicting EIm and EIn at ground level is significantly improved (R2 = 0.96 and 0.96) compared to the published models. We verify the suitability and the applicability of the APMEP-CNN model for estimating nvPM emissions at cruise and burning SAFs and blend fuels, and find that our predictions for EIm are within ±36.4 % of the measurements at cruise and within ±33.0 % of the measurements burning SAFs in average. In the worst case, the APMEP-CNN prediction is different by -69.2 % from the measurements at cruise for the JT3D-3B engine. Thus, the APMEP-CNN model can provide new data for establishing accurate emission inventories of global aviation and help assess the impact of aviation emissions on human health, environment and climate. SYNOPSIS: The results of this paper provide accurate predictions of nvPM emissions from in-use aircraft engines, which impact airport local air quality and global radiative forcing.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aviação , Poluentes Atmosféricos/análise , Aeronaves , Humanos , Redes Neurais de Computação , Material Particulado/análise , Emissões de Veículos/análise
19.
Sheng Wu Gong Cheng Xue Bao ; 38(7): 2477-2488, 2022 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-35871618

RESUMO

Due to the large amount of greenhouse gas emissions and the high dependence on fossil fuels, the sustainable development of aviation industry has attracted worldwide attention. Bio-jet fuel is considered to be a promising alternative to traditional aviation fuel. This article summarizes the representative technological route, development status, opportunities and challenges faced by the development of bio-jet fuel industry. So far, several bio-jet fuel production technologies have been certified by the American Society for Testing and Materials (ASTM). Hydroprocessed esters and fatty acids is currently the most mature process that can be fully commercialized. Considering economic characteristics and technology maturity, Fischer-Tropsch is promising in near term.


Assuntos
Aviação , Indústrias , Estados Unidos
20.
Artigo em Inglês | MEDLINE | ID: mdl-35627477

RESUMO

Leaded fuel used by piston-engine aircraft is the largest source of airborne lead emissions in the United States. Previous studies have found higher blood lead levels in children living near airports where leaded aviation fuel is used. However, little is known about the health effects on adults. This study is the first to examine the association between exposure to aircraft operations that use leaded aviation fuel and adult cardiovascular mortality. We estimated the association between annual piston-engine air traffic and cardiovascular mortality among adults age 65 and older near 40 North Carolina airports during 2000 to 2017. We used several strategies to minimize the potential for bias due to omitted variables and confounding from other health hazards at airports, including coarsened exact matching, location-specific intercepts, and adjustment for jet-engine and other air traffic that does not use leaded fuel. Our findings are mixed but suggestive of adverse effects. We found higher rates of cardiovascular mortality within a few kilometers downwind of single- and multi-runway airports, though these results are not always statistically significant. We also found significantly higher cardiovascular mortality rates within a few kilometers and downwind of single-runway airports in years with more piston-engine air traffic. We did not consistently find a statistically significant association between cardiovascular mortality rates and piston-engine air traffic near multi-runway airports, where there was greater uncertainty in our measure of the distance between populations and aviation exposures. These results suggest that (i) reducing lead emissions from aviation could yield health benefits for adults, and (ii) more refined data are needed to obtain more precise estimates of these benefits. Subject Areas: Toxic Substances, Health, Epidemiology, Air Pollution, Ambient Air Quality. JEL codes: Q53, I18.


Assuntos
Aviação , Doenças Cardiovasculares , Adulto , Idoso , Aeronaves , Doenças Cardiovasculares/epidemiologia , Criança , Humanos , Chumbo , North Carolina/epidemiologia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA