Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(3): 4439-4452, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103135

RESUMO

Herbal medicine is one of the most common fields explored for combating colon cancers, and Pimpinella anisum L. seeds (PAS) have been utilized widely as medicinal agents because of their increased essential oil (trans-anethole) contents. In this essence, our study investigates the toxic effect and chemoprotective potentials of PAS against azoxymethane (AOM)-induced colon cancer in rats. The toxicity trial for PAS conducted by clustering fifteen rats into three groups (five rats each): A, normal control had 10% Tween 20; B, ingested with 2 g/kg PAS; and C, supplemented with 4 g/kg PAS. The in vivo cancer trial was performed by using 30 rats (Sprague-Dawley) that were randomly adapted in five steel cages (six rats each): group A, normal controls received two subcutaneous injections of normal saline 0.09% and ingested orally 10% Tween 20; groups B-E, rats received two injections of 15 mg/kg of azoxymethane (AOM) subcutaneously in 2 weeks and treated orally with 10% Tween 20 (group B) or intraperitoneal injection of 5-fluorouracil (35 mg/kg) (group C), or orally given 200 mg/kg PAS (group D) and 400 mg/kg PAS (group E) for 8 weeks. After the scarification of rats, the colon tissues were dissected for gross and histopathological evaluations. The acute toxicity trial showed the absence of any toxic signs in rats even after 14 days of ingesting 4 g/kg of PAS. The chemoprotective experiment revealed significant inhibitory potentials (65.93%) of PAS (400 mg/kg) against aberrant crypto foci incidence that could be correlated with its positive modulation of the immunohistochemically proteins represented by a significant up-regulation of the Bax protein and a decrease of the Bcl-2 protein expressions in colon tissues. Furthermore, PAS-treated rats had notably lower oxidative stress in colon tissues evidenced by decreased MDA levels and increased antiradical defense enzymes (SOD, CAT, and GPx). The outcomes suggest 400 mg/kg PAS as a viable additive for the development of potential pharmaceuticals against colorectal cancer.


Assuntos
Neoplasias do Colo , Pimpinella , Ratos , Animais , Antioxidantes/metabolismo , Azoximetano/toxicidade , Azoximetano/uso terapêutico , Pimpinella/química , Ratos Sprague-Dawley , Polissorbatos , Neoplasias do Colo/induzido quimicamente , Anti-Inflamatórios
2.
Curr Issues Mol Biol ; 45(4): 2895-2907, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37185713

RESUMO

Inflammatory bowel diseases (IBDs), such as Crohn's disease or ulcerative colitis, can be treated with anti TNF-alpha (TNF-α) antibodies (Abs), but they also put patients with IBDs at risk of cancer. We aimed to determine whether the anti TNF-α Ab induces colon cancer development in vitro and in vivo, and to identify the genes involved in colitis-associated cancer. We found that TNF-α (50 ng/mL) inhibited the proliferation, migration, and invasion of HCT8 and COLO205 colon cancer cell lines and that anti TNF-α Ab neutralized TNF-α inhibition in vitro. The effects of anti TNF-α Ab, infliximab (10 mg/kg) were investigated in mouse models of colitis-associated cancer induced by intraperitoneally injected azoxymethane (AOM: 10 mg/kg)/orally administered dextran sodium sulfate (DSS: 2.5%) (AOM/DSS) in vivo. Infliximab significantly attenuated the development of colon cancer in these mice. Microarray analyses and RT-qPCR revealed that mast cell protease 1, mast cell protease 2, and chymase 1 were up-regulated in cancer tissue of AOM/DSS mice; however, those mast cell related genes were downregulated in cancer tissue of AOM/DSS mice with infliximab. These results suggested that mast cells play a pivotal role in the development of cancer associated with colitis in AOM/DSS mice.

3.
Oncoimmunology ; 11(1): 2127271, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185806

RESUMO

Janus kinase Tyk2 is implicated in cancer immune surveillance, but its role in solid tumors is not well defined. We used Tyk2 knockout mice (Tyk2Δ/Δ) and mice with conditional deletion of Tyk2 in hematopoietic (Tyk2ΔHem) or intestinal epithelial cells (Tyk2ΔIEC) to assess their cell type-specific functions in chemically induced colorectal cancer. All Tyk2-deficient mouse models showed a higher tumor burden after AOM-DSS treatment compared to their corresponding wild-type controls (Tyk2+/+ and Tyk2fl/fl), demonstrating tumor-suppressive functions of Tyk2 in immune cells and epithelial cancer cells. However, specific deletion of Tyk2 in hematopoietic cells or in intestinal epithelial cells was insufficient to accelerate tumor progression, while deletion in both compartments promoted carcinoma formation. RNA-seq and proteomics revealed that tumors of Tyk2Δ/Δ and Tyk2ΔIEC mice were immunoedited in different ways with downregulated and upregulated IFNγ signatures, respectively. Accordingly, the IFNγ-regulated immune checkpoint Ido1 was downregulated in Tyk2Δ/Δ and upregulated in Tyk2ΔIEC tumors, although both showed reduced CD8+ T cell infiltration. These data suggest that Tyk2Δ/Δ tumors are Ido1-independent and poorly immunoedited while Tyk2ΔIEC tumors require Ido1 for immune evasion. Our study shows that Tyk2 prevents Ido1 expression in CRC cells and promotes CRC immune surveillance in the tumor stroma. Both of these Tyk2-dependent mechanisms must work together to prevent CRC progression.


Assuntos
Colite , Neoplasias Colorretais , Animais , Colite/induzido quimicamente , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Janus Quinases/metabolismo , Camundongos , Camundongos Knockout
4.
Cells ; 10(8)2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34440829

RESUMO

Many researchers have argued that Western diet (WD)-induced obesity accelerates inflammation and that inflammation is a link between obesity and colorectal cancer (CRC). This study investigated the effect of WDs on the development and progression of colitis-associated colon cancer (CAC) and the efficacy of the anti-obesity agent orlistat on WD-driven CAC in mice. The results revealed that the WD exacerbated CAC in azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced mice, which showed increased mortality, tumor formation, and aggravation of tumor progression. Furthermore, WD feeding also upregulated inflammation, hyperplasia, and tumorigenicity levels through the activation of STAT3 and NF-κB signaling in an AOM/DSS-induced mouse model. In contrast, treatment with orlistat increased the survival rate and alleviated the symptoms of CAC, including a recovery in colon length and tumor production decreases in WD-driven AOM/DSS-induced mice. Additionally, orlistat inhibited the extent of inflammation, hyperplasia, and tumor progression via the inhibition of STAT3 and NF-κB activation. Treatment with orlistat also suppressed the ß-catenin, slug, XIAP, Cdk4, cyclin D, and Bcl-2 protein levels in WD-driven AOM/DSS-induced mice. The results of this study indicate that orlistat alleviates colon cancer promotion in WD-driven CAC mice by suppressing inflammation, especially by inhibiting STAT3 and NF-κB activation.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Neoplasias Associadas a Colite/tratamento farmacológico , Dieta Ocidental/efeitos adversos , NF-kappa B/metabolismo , Orlistate/uso terapêutico , Fator de Transcrição STAT3/metabolismo , Animais , Antineoplásicos/uso terapêutico , Azoximetano/toxicidade , Neoplasias Associadas a Colite/etiologia , Neoplasias Associadas a Colite/metabolismo , Neoplasias Associadas a Colite/patologia , Sulfato de Dextrana/toxicidade , Inflamação , Camundongos , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo
5.
PeerJ ; 7: e6372, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30713822

RESUMO

Colorectal cancer (CRC), also known as colon cancer, is the third most common form of cancer worldwide in men and the second in women and is characterized by several genetic alterations, among them the expression of several genes. 1,2-dimethylhydrazine (DMH) and its metabolite azoxymethane (AOM) are procarcinogens commonly used to induce colon cancer in rats (DMH/AOM rat model). This rat model has been used to study changes in mRNA expression in genes involved in this pathological condition. However, a lack of proper detailed PCR primer design in the literature limits the reproducibility of the published data. The present study aims to design, optimize and validate the qPCR, in accordance with the MIQE (Minimum Information for Publication of Quantitative Real-Time PCR Experiments) guidelines, for seventeen genes commonly used in the DMH/AOM rat model of CRC (Apc, Aurka, Bax, Bcl2, ß-catenin, Ccnd1, Cdkn1a, Cox2, Gsk3beta, IL-33, iNOs, Nrf2, p53, RelA, Smad4, Tnfα and Vegfa) and two reference genes (Actb or ß-actin and B2m). The specificity of all primer pairs was empirically validated on agarose gel, and furthermore, the melting curve inspection was checked as was their efficiency (%) ranging from 90 to 110 with a correlation coefficient of r 2 > 0.980. Finally, a pilot study was performed to compare the robustness of two candidate reference genes.

6.
Methods Mol Biol ; 1884: 189-202, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30465204

RESUMO

Colorectal cancer (CRC) is the third most common malignancy worldwide presenting high mortality due to low treatment efficacy. Existing evidence indicates that inflammatory bowel disease (IBD) is associated with a higher risk of developing CRC. Many murine models of inflammation-related colon carcinogenesis (CAC) have been developed to study colon carcinogenesis and novel treatments. A commonly used model involves the combination of a single dose of azoxymethane (AOM), together with three cycles of the inflammatory agent dextran sodium sulfate (DSS) (5 days in drinking water followed by a two-week rest). Following this protocol, around 50% of the animals develop CRCs after 45 days and almost 100% of animals after 60 days. During CAC development, immune cells, cytokines, and other immune mediators are involved in both tumorigenesis and the elimination of cancer cells during immunotherapy. Thus, the study of mucosal immune responses (including lamina propria mononuclear cells and intraepithelial lymphocytes) is important to understand the role of the immune system during development and therapy in CRC. Single immune cell suspensions from lamina propria and epithelium can be purified combining selective tissue digestion and Percoll gradient centrifugation. Isolated cells can be characterized using flow cytometry by analyzing surface antigens or intracellular cytokines and cytotoxic mediators or employed for further investigations like comparative studies of mRNA expression, cell-proliferation assay, protein analysis, or even functional cytotoxicity assays. The CAC model is useful to study the involvement of immune cells not only during the carcinogenesis process but, in addition, during the treatment with novel immunotherapy protocols.


Assuntos
Separação Celular/métodos , Transformação Celular Neoplásica/imunologia , Colite Ulcerativa/imunologia , Neoplasias Colorretais/imunologia , Citometria de Fluxo/métodos , Animais , Azoximetano/administração & dosagem , Azoximetano/toxicidade , Separação Celular/instrumentação , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/patologia , Centrifugação com Gradiente de Concentração/instrumentação , Centrifugação com Gradiente de Concentração/métodos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Colo/citologia , Colo/imunologia , Colo/patologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Sulfato de Dextrana/administração & dosagem , Sulfato de Dextrana/toxicidade , Citometria de Fluxo/instrumentação , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia
7.
Anticancer Res ; 38(8): 4485-4491, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30061214

RESUMO

BACKGROUND/AIM: The expression of cannabinoid receptor-1 (CB1-R) seems to be modulated by bioactive natural components such as the flavonoid quercetin. The aim of this study was to determine in an animal model of induced-colon cancer, whether quercetin inhibits colon carcinogenesis through changes in the expression of CB1-R. MATERIALS AND METHODS: C57BL/6J male mice were randomly assigned to standard diet or experimental diet supplemented with 0.5% quercetin. Azoxymethane (AOM) (10 mg/kg body weight) or saline solution (PBS) was intraperitoneally injected, once weekly for 6 weeks. RESULTS: The diet supplemented with quercetin induced CB1-R gene expression and protein, inhibiting the protein levels of STAT3 and p-STAT3 (both mediators of cell proliferation). Dietary quercetin also caused a significant increase in Bax/Bcl2 ratio protein expression. CONCLUSION: The anti-proliferative and pro-apoptotic effects of quercetin in AOM-treated mice are mediated by induction of the protein and gene expression levels of CB1-R.


Assuntos
Azoximetano/farmacologia , Quercetina/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Dieta , Suplementos Nutricionais , Flavonoides/farmacologia , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
8.
Cancer Cell ; 34(2): 298-314.e7, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30107178

RESUMO

Over half of colorectal cancers (CRCs) harbor TP53 missense mutations (mutp53). We show that the most common mutp53 allele R248Q (p53Q) exerts gain of function (GOF) and creates tumor dependence in mouse CRC models. mutp53 protein binds Stat3 and enhances activating Stat3 phosphorylation by displacing the phosphatase SHP2. Ablation of the p53Q allele suppressed Jak2/Stat3 signaling, growth, and invasiveness of established, mutp53-driven tumors. Treating tumor-bearing mice with an HSP90 inhibitor suppressed mutp53 levels and tumor growth. Importantly, human CRCs with stabilized mutp53 exhibit enhanced Jak2/Stat3 signaling and are associated with poorer patient survival. Cancers with TP53R248Q/W are associated with a higher patient death risk than are those having nonR248 mutp53. These findings identify GOF mutp53 as a therapeutic target in CRC.


Assuntos
Neoplasias Colorretais/terapia , Mutação , Fator de Transcrição STAT3/fisiologia , Proteína Supressora de Tumor p53/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Janus Quinase 2/fisiologia , Perda de Heterozigosidade , Camundongos , Invasividade Neoplásica , Proteína Supressora de Tumor p53/fisiologia
9.
Methods Mol Biol ; 1765: 79-85, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29589302

RESUMO

Since chromatin-modifying enzymes are involved in most processes needing to access the DNA fiber such as transcription, replication or DNA repair, their involvement in the regulation of gene expression in numerous physiopathological contexts is widely studied. Most of these enzymes are essential for cell growth and survival due to their pleiotropic roles and studying their impact in vivo on organ development or tissue physiopathology is challenging. In this chapter, we describe a chemically-mediated method to induce colorectal carcinogenesis that we have used to identify in vivo the role of two chromatin modifying enzymes belonging to the same multimolecular complex, the histone acetyltransferase Tip60 and the histone variant-incorporating ATPase p400.


Assuntos
Cromatina/metabolismo , Neoplasias Colorretais/patologia , Lisina Acetiltransferase 5/metabolismo , Neoplasias Experimentais/patologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Azoximetano/toxicidade , Benzenoacetamidas/farmacologia , Carcinogênese/induzido quimicamente , Carcinogênese/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Neoplasias Colorretais/induzido quimicamente , DNA Helicases , Proteínas de Ligação a DNA , Sulfato de Dextrana/toxicidade , Histonas/metabolismo , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Lisina Acetiltransferase 5/genética , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/induzido quimicamente , Piridinas/farmacologia , Transativadores/genética , Fatores de Transcrição/genética , Via de Sinalização Wnt/efeitos dos fármacos
10.
Int J Immunopathol Pharmacol ; 29(4): 759-763, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27694612

RESUMO

Inflammatory bowel disease (IBD) has been reported as an important inducer of colorectal cancer (CRC). The most malignant IBD-associated CRC type has been highlighted as colitis-associated cancer (CAC). However, lack of CAC cases and difficulties of the long follow-up research have challenged researchers in molecular mechanism probing. Here, we established pre-CAC mouse models (dextran sulfate sodium [DSS] group and azoxymethane [AOM] group) and CAC mouse model (DSS/AOM group) to mimic human CAC development through singly or combinational treatment with DSS and AOM followed by disease activity index analysis. We found that these CAC mice showed much more severe disease phenotype, including serious diarrhea, body weight loss, rectal prolapse and bleeding, bloody stool, tumor burden, and bad survival. By detecting expression patterns of several therapeutic targets-Apc, p53, Kras, and TNF-α-in these mouse models through western blot, histology analysis, qRT-PCR, and ELISA methods, we found that the oncogene Kras expression remained unchanged, while the tumor suppressors-Apc and p53 expression were both significantly downregulated with malignancy progression from pre-CAC to CAC, and TNF-α level was elevated the most in CAC mice blood which is of potential clinical use. These data indicated the successful establishment of CAC development mouse models, which mimics human CAC well both in disease phenotype and molecular level, and highlighted the promoting role of inflammation in CAC progression. This useful tool will facilitate the further study in CAC molecular mechanism.


Assuntos
Colite/patologia , Neoplasias Colorretais/patologia , Animais , Colite/genética , Colite/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Genes APC , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/metabolismo
11.
Mol Carcinog ; 55(5): 600-10, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25773652

RESUMO

Colon cancer is the second most lethal cancer. It is predicted to claim 50,310 lives in 2014. Chromosome Instability (CIN) is observed in 80-90% of colon cancers, and is thought to contribute to colon cancer progression and recurrence. However, there are no animal models of CIN that have been validated for studies of colon cancer development or drug testing. In this study, we sought to validate a mitotic error-induced CIN model mouse, the Shugoshin1 (Sgo1) haploinsufficient mouse, as a colon cancer study model. Wild-type and Sgo1(-/+) mice were treated with the colonic carcinogen, azoxymethane (AOM). We tracked colon tumor development 12, 24, and 36 wk after treatment to assess progression of colon tumorigenesis. Initially, more precancerous lesions, Aberrant Crypt Foci (ACF), developed in Sgo1(-/+) mice. However, the ACF did not develop straightforwardly into larger tumors. At the 36-wk endpoint, the number of gross tumors in Sgo1(-/+) mice was no different from that in wild-type controls. However, Copy Number Variation (CNV) analysis indicated that fully developed colon tumor in Sgo1(-/+) mice carried 13.75 times more CNV. Immunohistological analyses indicated that Sgo1(-/+) mice differentially expressed IL-6, Bcl2, and p16(INK4A) . We propose that formation of ACF in Sgo1(-/+) mice is facilitated by the IL6-STAT3-SOCS3 oncogenic pathway and by the Bcl2-anti-apoptotic pathway, yet further development of the ACF to tumors is inhibited by the p16(INK4A) tumor suppressor pathway. Manipulating these pathways would be beneficial for inhibiting development of colon cancer with CIN.


Assuntos
Proteínas de Ciclo Celular/genética , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/genética , Haploinsuficiência , Transdução de Sinais , Animais , Azoximetano/toxicidade , Linhagem Celular Tumoral , Instabilidade Cromossômica , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Supressores de Tumor/efeitos dos fármacos , Humanos , Camundongos , Neoplasias Experimentais , Oncogenes/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
12.
Lab Anim Res ; 27(1): 9-18, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21826154

RESUMO

Selenium (Se) is known to prevent several cancers while the relationship between high iron and the risk of colorectal cancer is controversial. To investigate the effects of Se in colon carcinogenesis, we subjected three different levels of Se and high-iron diet to a mouse model of colon cancer in which animals were treated with three azoxymethane (AOM) injections followed by dextran sodium sulfate (DSS) administration. There were five experimental groups including vehicle group [normal-Fe (NFe, 45 ppm)+medium-Se (MSe, 0.1 ppm)], positive control group (AOM/DSS+NFe+MSe), AOM/DSS+high-Fe (HFe, 450 ppm)+low-Se (LSe, 0.02 ppm), AOM/DSS+HFe+MSe, and AOM/DSS+HFe+high-Se (HSe, 0.5 ppm). The animals were fed on the three different Se diets for 24 weeks. The incidence of colon tumor in the high-Se diet group (AOM/DSS+HFe+HSe) showed 19.4% lower than positive control group, 5.9% lower than AOM/DSS+HFe+MSe diet group, and 11.1% lower than AOM/DSS+HFe+LSe group. The tumor multiplicity was significantly higher in the low-Se diet group (AOM/DSS+HFe+LSe) compare to all other AOM/DSS treated groups. In the high-Se diet group, the activity of hepatic GPx was comparable to that of positive control group, and significantly higher than those of low-Se or medium-Se diet groups. Expression level of hepatic GPx-1 showed similar results. Hepatic malondialdehyde (MDA) level (indicator of oxidative stress) in the low-Se diet group showed the highest compared to the other groups, and it was significantly higher than positive control group. In the high-Se diet group the level of MDA in the liver was significantly lower than all other AOM/DSS treated groups. High-Se diet group showed significantly lower proliferative index than low-Se and medium-Se groups. The apoptotic indices in low-Se group and medium-Se group were significantly lower than positive control group. However, apoptotic index of high-Se diet group was significantly higher than all other AOM/DSS treated groups. These findings suggest that dietary Se supplement may have protective effect against colon cancer by decreasing proliferation, increasing apoptosis of tumor cells, and reducing oxidative stress in mice with high iron diet.

13.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-227300

RESUMO

Selenium (Se) is known to prevent several cancers while the relationship between high iron and the risk of colorectal cancer is controversial. To investigate the effects of Se in colon carcinogenesis, we subjected three different levels of Se and high-iron diet to a mouse model of colon cancer in which animals were treated with three azoxymethane (AOM) injections followed by dextran sodium sulfate (DSS) administration. There were five experimental groups including vehicle group [normal-Fe (NFe, 45 ppm)+medium-Se (MSe, 0.1 ppm)], positive control group (AOM/DSS+NFe+MSe), AOM/DSS+high-Fe (HFe, 450 ppm)+low-Se (LSe, 0.02 ppm), AOM/DSS+HFe+MSe, and AOM/DSS+HFe+high-Se (HSe, 0.5 ppm). The animals were fed on the three different Se diets for 24 weeks. The incidence of colon tumor in the high-Se diet group (AOM/DSS+HFe+HSe) showed 19.4% lower than positive control group, 5.9% lower than AOM/DSS+HFe+MSe diet group, and 11.1% lower than AOM/DSS+HFe+LSe group. The tumor multiplicity was significantly higher in the low-Se diet group (AOM/DSS+HFe+LSe) compare to all other AOM/DSS treated groups. In the high-Se diet group, the activity of hepatic GPx was comparable to that of positive control group, and significantly higher than those of low-Se or medium-Se diet groups. Expression level of hepatic GPx-1 showed similar results. Hepatic malondialdehyde (MDA) level (indicator of oxidative stress) in the low-Se diet group showed the highest compared to the other groups, and it was significantly higher than positive control group. In the high-Se diet group the level of MDA in the liver was significantly lower than all other AOM/DSS treated groups. High-Se diet group showed significantly lower proliferative index than low-Se and medium-Se groups. The apoptotic indices in low-Se group and medium-Se group were significantly lower than positive control group. However, apoptotic index of high-Se diet group was significantly higher than all other AOM/DSS treated groups. These findings suggest that dietary Se supplement may have protective effect against colon cancer by decreasing proliferation, increasing apoptosis of tumor cells, and reducing oxidative stress in mice with high iron diet.


Assuntos
Animais , Camundongos , Apoptose , Azoximetano , Colo , Neoplasias do Colo , Neoplasias Colorretais , Dextranos , Dieta , Incidência , Ferro , Fígado , Malondialdeído , Estresse Oxidativo , Selênio , Sódio , Sulfatos
14.
Laboratory Animal Research ; : 339-343, 2010.
Artigo em Coreano | WPRIM (Pacífico Ocidental) | ID: wpr-109629

RESUMO

Indole-3-carbinol (I3C) found in various cruciferous vegetables has been shown to exert anti-carcinogenic activity in several target organs. Our study was conducted to assess the modifying effect of I3C on the development of colon tumor induced by azoxymethane (AOM). Eighty-seven male F344 rats were divided into 5 groups and were treated with AOM followed by I3C 100 or 300 ppm, AOM alone, I3C alone, and non-treatment, respectively. The animals were subcutaneously injected with AOM. Then diet containing I3C were fed to the rats for 37 weeks. All rats were sacrificed at 40 weeks. Liver and kidney weights of rats treated with I3C at doses of 100 or 300 ppm were significantly increased compared to those of the control group. Colonic tumor incidence and multiplicity of rats treated with I3C at doses of 100 and 300 ppm were not significant compared to those of AOM alone group. In the pathological examination, most of tumors were classified with adenoma and adenocarcinoma in the small and large intestine. These results demonstrated that I3C may have not chemopreventive effect on the rat colon carcinogenesis.


Assuntos
Animais , Humanos , Masculino , Ratos , Adenocarcinoma , Adenoma , Azoximetano , Colo , Dieta , Incidência , Indóis , Intestino Grosso , Rim , Fígado , Ratos Endogâmicos F344 , Verduras , Pesos e Medidas
15.
Laboratory Animal Research ; : 293-300, 2010.
Artigo em Coreano | WPRIM (Pacífico Ocidental) | ID: wpr-133074

RESUMO

The role of selenium (Se) in modulating colon carcinogenesis induced by azoxymethane (AOM) followed by dextran sodium sulfate (DSS) was investigated in mice. Five-week old ICR mice were fed on diets containing different concentrations (0.02, 0.1 or 0.5 ppm) of Se for 24 weeks. Animals received three (0-2nd weeks) intraperitoneal injections of AOM (10 mg/kg body weight), followed by 2% DSS with drinking water for additional 1 week. There were 4 experimental groups including vehicle control group, positive control group given AOM/DSS with AIN-93G normal diet containing 0.1% Se (NSe), a low (0.02 ppm)-Se diet group (LSe) and a high (0.5 ppm)-Se diet group (HSe). Hematology was analyzed with a blood cell differential counter. Liver Se was analyzed by inductively coupled plasma-mass spectroscopy. Cell proliferation and apoptosis were determined by using proliferating cell nuclear antigen (PCNA) for proliferative activity and apoptotic index by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), respectively. HSe group showed a low incidence of colonic tumor (64.7%), compared with the NSe positive control (75%) and LSe (77.8%) groups. In contrast, HSe group exhibited lower rate of PCNA-positive cells (39.3+/-6.9%) than positive control (64.3+/-0.3%) and LSe (57.3+/-2.9%) groups. In addition, apoptotic index of HSe group was higher than those of positive control and LSe groups. These results indicate that Se is a chemopreventive agent for colon carcinogenesis induced by AOM+DSS in male ICR mice.


Assuntos
Animais , Humanos , Masculino , Camundongos , Apoptose , Azoximetano , Células Sanguíneas , Proliferação de Células , Colo , Neoplasias do Colo , Dextranos , Dieta , Água Potável , Hematologia , Incidência , Injeções Intraperitoneais , Fígado , Camundongos Endogâmicos ICR , Compostos Organotiofosforados , Antígeno Nuclear de Célula em Proliferação , Selênio , Sódio , Análise Espectral , Sulfatos
16.
Laboratory Animal Research ; : 293-300, 2010.
Artigo em Coreano | WPRIM (Pacífico Ocidental) | ID: wpr-133071

RESUMO

The role of selenium (Se) in modulating colon carcinogenesis induced by azoxymethane (AOM) followed by dextran sodium sulfate (DSS) was investigated in mice. Five-week old ICR mice were fed on diets containing different concentrations (0.02, 0.1 or 0.5 ppm) of Se for 24 weeks. Animals received three (0-2nd weeks) intraperitoneal injections of AOM (10 mg/kg body weight), followed by 2% DSS with drinking water for additional 1 week. There were 4 experimental groups including vehicle control group, positive control group given AOM/DSS with AIN-93G normal diet containing 0.1% Se (NSe), a low (0.02 ppm)-Se diet group (LSe) and a high (0.5 ppm)-Se diet group (HSe). Hematology was analyzed with a blood cell differential counter. Liver Se was analyzed by inductively coupled plasma-mass spectroscopy. Cell proliferation and apoptosis were determined by using proliferating cell nuclear antigen (PCNA) for proliferative activity and apoptotic index by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), respectively. HSe group showed a low incidence of colonic tumor (64.7%), compared with the NSe positive control (75%) and LSe (77.8%) groups. In contrast, HSe group exhibited lower rate of PCNA-positive cells (39.3+/-6.9%) than positive control (64.3+/-0.3%) and LSe (57.3+/-2.9%) groups. In addition, apoptotic index of HSe group was higher than those of positive control and LSe groups. These results indicate that Se is a chemopreventive agent for colon carcinogenesis induced by AOM+DSS in male ICR mice.


Assuntos
Animais , Humanos , Masculino , Camundongos , Apoptose , Azoximetano , Células Sanguíneas , Proliferação de Células , Colo , Neoplasias do Colo , Dextranos , Dieta , Água Potável , Hematologia , Incidência , Injeções Intraperitoneais , Fígado , Camundongos Endogâmicos ICR , Compostos Organotiofosforados , Antígeno Nuclear de Célula em Proliferação , Selênio , Sódio , Análise Espectral , Sulfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...