Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 954: 176365, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39299334

RESUMO

The SARS-CoV-2 BA.2.86 variant, also known as Pirola, has acquired over 30 amino acid changes in the Spike protein, evolving into >150 sublineages within ten months of its emergence. Among these, the JN.1, has been rapidly increasing globally becoming the most prevalent variant. To facilitate the identification of BA.2.86 sublineages, we designed the PiroMet-1 and PiroMet-2 assays in silico and validated them using BA.2.86 viral RNA and clinical samples to ascertain analytical specificity and sensitivity. Both assays resulted very specific with limit of detection of about 1-2 RNA copies/µL. The assays were then applied in a digital RT-PCR format to wastewater samples, combined with the OmMet assay (which identifies Omicron sublineages except BA.2.86 and its descendants) and the JRC-UCE.2 assay (which can universally recognize all SARS-CoV-2 variants). When used together with the OmMet and JRC-CoV-UCE.2 assays, the PiroMet assays accurately quantified BA.2.86 sublineages in wastewater samples. Our findings support the integration of these assays into routine SARS-CoV-2 wastewater surveillance as a timely and cost-effective complement to sequencing for monitoring the prevalence and spread of BA.2.86 sublineages within communities.

2.
Cell Rep Methods ; 4(9): 100856, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39243752

RESUMO

The ongoing co-circulation of multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains necessitates advanced methods such as high-throughput multiplex pseudovirus systems for evaluating immune responses to different variants, crucial for developing updated vaccines and neutralizing antibodies (nAbs). We have developed a quadri-fluorescence (qFluo) pseudovirus platform by four fluorescent reporters with different spectra, allowing simultaneous measurement of the nAbs against four variants in a single test. qFluo shows high concordance with the classical single-reporter assay when testing monoclonal antibodies and human plasma. Utilizing qFluo, we assessed the immunogenicities of the spike of BA.5, BQ.1.1, XBB.1.5, and CH.1.1 in hamsters. An analysis of cross-neutralization against 51 variants demonstrated superior protective immunity from XBB.1.5, especially against prevalent strains such as "FLip" and JN.1, compared to BA.5. Our finding partially fills the knowledge gap concerning the immunogenic efficacy of the XBB.1.5 vaccine against current dominant variants, being instrumental in vaccine-strain decisions and insight into the evolutionary path of SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Animais , Humanos , COVID-19/imunologia , COVID-19/virologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Cricetinae , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Testes de Neutralização/métodos , Fluorescência , Células HEK293 , Antígenos Virais/imunologia , Anticorpos Monoclonais/imunologia , Mesocricetus
3.
EBioMedicine ; 107: 105273, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39146693

RESUMO

BACKGROUND: De novo amino acid substitutions (DNS) frequently emerge among immunocompromised patients with chronic SARS-CoV-2 infection. While previous studies have reported these DNS, their significance has not been systematically studied. METHODS: We performed a review of DNS that emerged during chronic SARS-CoV-2 infection. We searched PubMed until June 2023 using the keywords "(SARS-CoV-2 or COVID-19) and (mutation or sequencing) and ((prolonged infection) or (chronic infection) or (long term))". We included patients with chronic SARS-CoV-2 infection who had SARS-CoV-2 sequencing performed for at least 3 time points over at least 60 days. We also included 4 additional SARS-CoV-2 patients with chronic infection of our hospital not reported previously. We determined recurrent DNS that has appeared in multiple patients and determined the significance of these mutations among epidemiologically-significant variants. FINDINGS: A total of 34 cases were analyzed, including 30 that were published previously and 4 from our hospital. Twenty two DNS appeared in ≥3 patients, with 14 (64%) belonging to lineage-defining mutations (LDMs) of epidemiologically-significant variants and 10 (45%) emerging among chronically-infected patients before the appearance of the corresponding variant. Notably, nsp9-T35I substitution (Orf1a T4175I) emerged in all three patients with BA.2.2 infection in 2022 before the appearance of Variants of Interest that carry nsp9-T35I as LDM (EG.5 and BA.2.86/JN.1). Structural analysis suggests that nsp9-T35I substitution may affect nsp9-nsp12 interaction, which could be critical for the function of the replication and transcription complex. INTERPRETATION: DNS that emerges recurrently in different chronically-infected patients may be used as a marker for potential epidemiologically-significant variants. FUNDING: Theme-Based Research Scheme [T11/709/21-N] of the Research Grants Council (See acknowledgements for full list).


Assuntos
Substituição de Aminoácidos , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/virologia , COVID-19/epidemiologia , SARS-CoV-2/genética , Doença Crônica , Mutação , Feminino , Masculino , Pessoa de Meia-Idade , Idoso
4.
Clin Infect Dis ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107255

RESUMO

BACKGROUND: Assessing variant-specific COVID-19 vaccine effectiveness (VE) and severity can inform public health risk assessments and decisions about vaccine composition. BA.2.86 and its descendants, including JN.1 (referred to collectively as "JN lineages"), emerged in late 2023 and exhibited substantial divergence from co-circulating XBB lineages. METHODS: We analyzed patients hospitalized with COVID-19-like illness at 26 hospitals in 20 U.S. states admitted October 18, 2023-March 9, 2024. Using a test-negative, case-control design, we estimated effectiveness of an updated 2023-2024 (Monovalent XBB.1.5) COVID-19 vaccine dose against sequence-confirmed XBB and JN lineage hospitalization using logistic regression. Odds of severe outcomes, including intensive care unit (ICU) admission and invasive mechanical ventilation (IMV) or death, were compared for JN versus XBB lineage hospitalizations using logistic regression. RESULTS: 585 case-patients with XBB lineages, 397 case-patients with JN lineages, and 4,580 control-patients were included. VE in the first 7-89 days after receipt of an updated dose was 54.2% (95% CI = 36.1%-67.1%) against XBB lineage hospitalization and 32.7% (95% CI = 1.9%-53.8%) against JN lineage hospitalization. Odds of ICU admission (adjusted odds ratio [aOR] 0.80; 95% CI = 0.46-1.38) and IMV or death (aOR 0.69; 95% CI = 0.34-1.40) were not significantly different among JN compared to XBB lineage hospitalizations. CONCLUSIONS: Updated 2023-2024 COVID-19 vaccination provided protection against both XBB and JN lineage hospitalization, but protection against the latter may be attenuated by immune escape. Clinical severity of JN lineage hospitalizations was not higher relative to XBB.

5.
Structure ; 32(8): 1055-1067.e6, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39013463

RESUMO

The recently emerged BA.2.86, JN.1, EG.5, EG.5.1, and HV.1 variants have a growth advantage. In this study, we explore the structural bases of receptor binding and immune evasion for the Omicron BA.2.86, JN.1, EG.5, EG.5.1, and HV.1 sub-variants. Our findings reveal that BA.2.86 exhibits strong receptor binding, whereas its JN.1 sub-lineage displays a decreased binding affinity to human ACE2 (hACE2). Through complex structure analyses, we observed that the reversion of R493Q in BA.2.86 receptor binding domain (RBD) plays a facilitating role in receptor binding, while the L455S substitution in JN.1 RBD restores optimal affinity. Furthermore, the structure of monoclonal antibody (mAb) S309 complexed with BA.2.86 RBD highlights the importance of the K356T mutation, which brings a new N-glycosylation motif, altering the binding pattern of mAbs belonging to RBD-5 represented by S309. These findings emphasize the importance of closely monitoring BA.2.86 and its sub-lineages to prevent another wave of SARS-CoV-2 infections.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Monoclonais , COVID-19 , Evasão da Resposta Imune , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , COVID-19/imunologia , COVID-19/virologia , COVID-19/metabolismo , Sítios de Ligação , Modelos Moleculares , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Mutação
6.
Vaccines (Basel) ; 12(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39066372

RESUMO

We report neutralization titer data against contemporary SARS-CoV-2 sublineages from an ongoing, phase 2/3, open-label, clinical trial of a single dose (30 µg) of an Omicron XBB.1.5-adapted BNT162b2 monovalent mRNA vaccine. The trial included healthy participants who had received at least three previous doses of an mRNA vaccine authorized in the United States, with the most recent authorized vaccine dose being a bivalent Omicron BA.4/BA.5-adapted vaccine given at least 150 days before the study vaccination. In this analysis, Omicron XBB.1.5, BA.2.86, and JN.1 serum neutralizing titers were assessed at baseline and at 1 month after vaccination. Analyses were conducted in a subset of participants who were at least 18 years of age (N = 40) and who had evidence of previous SARS-CoV-2 infection. Immunogenicity was also evaluated in a group of participants who received bivalent BA.4/BA.5-adapted BNT162b2 in another study (ClinicalTrials.gov Identifier: NCT05472038) and who were matched demographically to the participants in the current trial. In this analysis, monovalent XBB.1.5-adapted BNT162b2 vaccine elicited higher XBB.1.5, BA.2.86, and JN.1 neutralizing titers than those elicited by bivalent BA.4/BA.5-adapted BNT162b2. Overall geometric mean fold rises in neutralizing titers from baseline to 1 month after vaccination were higher among participants who received XBB.1.5-adapted BNT162b2 than those who received bivalent BA.4/BA.5-adapted BNT162b2 for XBB.1.5 (7.6 vs. 5.6), slightly higher for JN.1 (3.9 vs. 3.5), and similar for BA.2.86 (4.8 vs. 4.9). ClinicalTrials.gov Identifier: NCT05997290.

7.
Vaccines (Basel) ; 12(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39066413

RESUMO

Recently updated COVID-19 mRNA vaccines encode the spike protein of the omicron subvariant XBB.1.5 and are recommended for patients with inflammatory bowel disease (IBD) on immunosuppressive treatment. Nonetheless, their immunogenicity in patients with IBD against rapidly expanding virus variants remains unknown. This prospective multicenter cohort study is the first study to investigate the immunogenicity of XBB.1.5-adapted vaccines in patients with IBD. Systemic and mucosal antibodies targeting the receptor-binding domains (RBDs) of the omicron subvariants XBB.1.5, EG.5.1, and BA.2.86, as well as their neutralization were quantified before and two to four weeks after vaccination with monovalent XBB.1.5-adapted mRNA vaccines. Vaccination increased levels of serum anti-RBD IgG targeting XBB.1.5, EG.5.1, and BA.2.86 (1.9-fold, 1.8-fold, and 2.6-fold, respectively) and enhanced corresponding neutralization responses (2.3-fold, 3.1-fold, and 3.5-fold, respectively). Following vaccination, anti-TNF-treated patients had reduced virus neutralization compared to patients on treatments with other cellular targets. 11.1% and 16.7% of patients lacked EG.5.1 and BA.2.86 neutralization, respectively; all these patients received anti-TNF treatment. At mucosal sites, vaccination induced variant-specific anti-RBD IgG but failed to induce RBD-targeting IgA. Our findings provide a basis for future vaccine recommendations while highlighting the importance of frequent booster vaccine adaptation and the need for mucosal vaccination strategies in patients with IBD.

8.
Pathog Glob Health ; 118(6): 453-458, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38884317

RESUMO

In the fourth year of the COVID-19 occurrence, a new COVID-19 variant, JN.1, has emerged and spread globally and become the dominant strain in several regions. It has some specific mutations in its spike proteins, empowering it with higher transmissibility. Regarding the significance of the issue, understanding the clinical and immunological traits of JN.1 is critical for enhancing health strategies and vaccination efforts globally, with the ultimate goal of bolstering our collective response to the pandemic. In this study, we take a look at the latest findings of JN.1 characteristics and mutations as well as its consequences on bypassing immune system. We demonstrate the importance of continual surveillance and strategic adaptation within healthcare frameworks along with the significance of wastewater sampling for the rapid identification of emerging SARS-CoV-2 variants.


Assuntos
COVID-19 , Mutação , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/virologia , COVID-19/prevenção & controle , COVID-19/imunologia , Humanos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
9.
Cell Rep ; 43(7): 114387, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38896777

RESUMO

The ongoing emergence of SARS-CoV-2 variants poses challenges to the immunity induced by infections and vaccination. We conduct a 6-month longitudinal evaluation of antibody binding and neutralization of sera from individuals with six different combinations of vaccination and infection against BA.5, XBB.1.5, EG.5.1, and BA.2.86. We find that most individuals produce spike-binding IgG or neutralizing antibodies against BA.5, XBB.1.5, EG.5.1, and BA.2.86 2 months after infection or vaccination. However, compared to ancestral strain and BA.5 variant, XBB.1.5, EG.5.1, and BA.2.86 exhibit comparable but significant immune evasion. The spike-binding IgG and neutralizing antibody titers decrease in individuals without additional antigen exposure, and <50% of individuals neutralize XBB.1.5, EG.5.1, and BA.2.86 during the 6-month follow-up. Approximately 57% of the 107 followed up individuals experienced an additional infection, leading to improved binding IgG and neutralizing antibody levels against these variants. These findings provide insights into the impact of SARS-CoV-2 variants on immunity following repeated exposure.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunoglobulina G , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação , Humanos , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Vacinas contra COVID-19/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Glicoproteína da Espícula de Coronavírus/imunologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Formação de Anticorpos/imunologia
10.
Food Environ Virol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918335

RESUMO

The emergence of new SARS-CoV-2 variants poses challenges to global surveillance efforts, necessitating swift actions in their detection, evaluation, and management. Among the most recent variants, Omicron BA.2.86 and its sub-lineages have gained attention due to their potential immune evasion properties. This study describes the development of a digital PCR assay for the rapid detection of BA.2.86 and its descendant lineages, in wastewater samples. By using this assay, we analyzed wastewater samples collected in Italy from September 2023 to January 2024. Our analysis revealed the presence of BA.2.86 lineages already in October 2023 with a minimal detection rate of 2% which then rapidly increased, becoming dominant by January 2024, accounting for a prevalence of 62%. The findings emphasize the significance of wastewater-based surveillance in tracking emerging variants and underscore the efficacy of targeted digital PCR assays for environmental monitoring.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38939989

RESUMO

COVID-19 pandemic is casting a long shadow, and the appearance of the JN.1 variety calls attention to the necessity of maintaining heightened awareness. It considers the strength that has been developed via immunization programs and the necessity of global collaboration to find a solution in light of the emergence of new strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Phylogenetically, the SARS-CoV-2 Omicron XBB lineages, which include EG.5.1 and HK.3, are different from the SARS-CoV-2 BA.2.86 lineage, which was initially discovered in August 2023. More than 30 mutations in the spike (S) protein are carried by BA.2.86 compared to XBB and BA.2, suggesting a high potential for immune evasion. JN.1 (BA.2.86.1.1), a descendant of BA.2.86, appeared in late 2023 after the format had undergone evolution. JN.1 carries three mutations in proteins that do not include S, as well as S:L455S. As previously demonstrated, the HK.3 and other "FLip" variations possess the S:L455F mutation, which enhances transmissibility and immune escape capacity in comparison to the parental EG.5.1 variety. This mutation is a characteristic of JN.1. The COVID-19 virus is dynamic and evolves over time. New varieties can sometimes spread more quickly or effectively after these alterations. If that happens, the new variant has a chance to outpace the current varieties in terms of frequency.

12.
J Infect Dis ; 230(3): 645-656, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38718223

RESUMO

BACKGROUND: COVID-19 remains a global public health challenge due to new immune-evasive SARS-CoV-2 variants and heterogeneous immunity. METHODS: In this cross-sectional study, we evaluated the adaptive immune responses in US active duty personnel who completed a COVID-19 primary vaccine series and had heterogenous SARS-CoV-2 vaccination and infection histories to 3 previously dominant variants (ancestral, Delta, BA.5) and 3 circulating variants (XBB.1.5, EG.5, and BA.2.86) in late 2023. Analyses were based on the most recent exposure in terms of timing (within or beyond 12 months) and type (vaccine or infection). RESULTS: Significant reduction was observed in binding antibodies, neutralization antibodies, memory B cells, and CD8+ T cells against circulating variants when compared with previous variants. The reduction in antibody response was more pronounced in those whose most recent exposure was >12 months from enrollment. In contrast, the CD4+ T-cell response was largely consistent across all tested variants. The type of most recent exposure was not a significant factor in determining the magnitude of current immune responses. CONCLUSIONS: Administration of the XBB.1.5-based booster is likely to enhance cross-reactive humoral responses against SARS-CoV-2 circulating lineages. Ongoing surveillance of immune responses to emerging variants is needed for informing vaccine composition and timing.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos T CD8-Positivos , Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Estudos Transversais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Masculino , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Feminino , Linfócitos T CD8-Positivos/imunologia , Adulto Jovem , Militares , Células B de Memória/imunologia , Imunidade Adaptativa/imunologia
13.
Acta Microbiol Immunol Hung ; 71(2): 165-171, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38717854

RESUMO

The JN.1 sub-variant is a new variant of the SARS-CoV-2 Omicron strain, derived from the BA.2.86 sub-variant. It was first detected in late 2023 and has quickly spread to many countries, becoming the most prevalent variant in some regions. JN.1 exhibits a unique mutation (L455S) in the spike protein compared to the BA.2.86 lineage, which may affect its transmissibility and immune evasion capabilities. JN.1 has been designated as a "variant of interest" by the World Health Organization due to its rapidly increasing spread and is being closely monitored for its impact on the COVID-19 pandemic. This study describes the emergence of SARS-CoV-2 JN.1 sub-variant in Tunisia, and reports its mutation profiles.Nasopharyngeal samples collected over a four-month period (October 2023 to January 2024) were subjected to RNA extraction and real-time RT-PCR confirmation of SARS-CoV-2 infection. The whole-genome sequencing was performed by an iSeq 100 sequencer and COVIDSeq kit reagents (Illumina, USA).Mutation analysis, using the NextClade platform and GISAID database, revealed the presence of JN.1 in 15 out of 80 positive cases (18.75%) during the study period.The emergence of JN.1 highlights the ongoing evolution of SARS-CoV-2 and the need for continued surveillance and research to better understand the characteristics and impact of emerging variants.


Assuntos
COVID-19 , Mutação , SARS-CoV-2 , Tunísia/epidemiologia , Humanos , COVID-19/virologia , COVID-19/epidemiologia , COVID-19/transmissão , SARS-CoV-2/genética , Masculino , Feminino , Pessoa de Meia-Idade , Glicoproteína da Espícula de Coronavírus/genética , Adulto , Genoma Viral , Idoso , Sequenciamento Completo do Genoma , Filogenia
14.
China CDC Wkly ; 6(15): 332-338, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736992

RESUMO

Introduction: The emergence of the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineage, BA.2.86, has sparked global public health concerns for its potential heightened transmissibility and immune evasion. Utilizing data from Shenzhen's city-wide wastewater surveillance system, we highlight the presence of the BA.2.86 lineage in Shenzhen. Methods: A mediator probe polymerase chain reaction (PCR) assay was developed to detect the BA.2.86 lineage in wastewater by targeting a specific mutation (Spike: A264D). Between September 19 and December 10, 2023, 781 wastewater samples from 38 wastewater treatment plants (WWTPs) and 9 pump stations in ten districts of Shenzhen were examined. Through multiple short-amplicon sequencing, three positive samples were identified. Results: The BA.2.86 lineage was identified in the wastewater of Futian and Nanshan districts in Shenzhen on December 2, 2023. From December 2 to 10, a total of 21 BA.2.86-positive wastewater samples were found across 6 districts (Futian, Nanshan, Longhua, Baoan, Longgang, and Luohu) in Shenzhen. The weighted average viral load of the BA.2.86 lineage in Shenzhen's wastewater was 43.5 copies/L on December 2, increased to 219.8 copies/L on December 4, and then decreased to approximately 100 copies/L on December 6, 8, and 10. Conclusions: The mediator probe PCR assay, designed for swift detection of low viral concentrations of the BA.2.86 lineage in wastewater samples, shows promise for detecting different SARS-CoV-2 variants. Wastewater surveillance could serve as an early detection system for promptly identifying specific SARS-CoV-2 variants as they emerge.

15.
Sci Total Environ ; 933: 173164, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735317

RESUMO

The emergence of the SARS-CoV-2 variant BA.2.86.1 raised a considerable concern, due to the large number of potentially virulent mutations. In this study, we developed a novel assay that specifically detects variant BA.2.86.1, and used it to screen environmental samples from wastewater treatment sites across Israel. By using a multiplex assay that included a general SARS-CoV-2 reaction, together with the BA.2.86.1-specific reaction and a control reaction, we quantified the absolute number of viral copies in each sample and its relative abundance, compared with the total copy number of circulating SARS-CoV-2. Evaluation of the new reactions showed that they are both sensitive and specific, detecting down to four copies per reaction, and maintain specificity in the presence of Omicron variants BA.1, 2 and 4 RNA. Examination of 279 samples from 30 wastewater collection sites during August-September 2023 showed that 35 samples (12.5 %) were positive, from 18 sites. Quantitative analysis of the samples showed that the relative abundance of variant BA.2.86.1 with respect to the total viral load of SARS-CoV-2 was very low and consisted between 0.01 % and 0.6 % of the total SARS-CoV-2 circulation. This study demonstrates the importance of combining wastewater surveillance with the development of specialized diagnostic assays, when clinical testing is insufficient. This approach may be useful for timely response by public health authorities in future outbreaks.


Assuntos
COVID-19 , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2 , Águas Residuárias , Águas Residuárias/virologia , Israel , SARS-CoV-2/genética , COVID-19/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Humanos , Monitoramento Ambiental/métodos
17.
Med ; 5(5): 401-413.e4, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38574739

RESUMO

BACKGROUND: The recently circulating Omicron variants BA.2.86 and JN.1 were identified with more than 30 amino acid changes on the spike protein compared to BA.2 or XBB.1.5. This study aimed to comprehensively assess the immune escape potential of BA.2.86, JN.1, EG.5, and EG.5.1. METHODS: We collected human and murine sera to evaluate serological neutralization activities. The participants received three doses of coronavirus disease 2019 (COVID-19) vaccines or a booster dose of the ZF2022-A vaccine (Delta-BA.5 receptor-binding domain [RBD]-heterodimer immunogen) or experienced a breakthrough infection (BTI). The ZF2202-A vaccine is under clinical trial study (ClinicalTrials.gov: NCT05850507). BALB/c mice were vaccinated with a panel of severe acute respiratory syndrome coronavirus 2 RBD-dimer proteins. The antibody evasion properties of these variants were analyzed with 41 representative human monoclonal antibodies targeting the eight RBD epitopes. FINDINGS: We found that BA.2.86 had less neutralization evasion than EG.5 and EG.5.1 in humans. The ZF2202-A booster induced significantly higher neutralizing titers than BTI. Furthermore, BA.2.86 and JN.1 exhibited stronger antibody evasion than EG.5 and EG.5.1 on RBD-4 and RBD-5 epitopes. Compared to BA.2.86, JN.1 further lost the ability to bind to several RBD-1 monoclonal antibodies and displayed further immune escape. CONCLUSIONS: Our data showed that the currently dominating sub-variant, JN.1, showed increased immune evasion compared to BA.2.86 and EG.5.1, which is highly concerning. This study provides a timely risk assessment of the interested sub-variants and the basis for updating COVID-19 vaccines. FUNDING: This work was funded by the National Key R&D Program of China, the National Natural Science Foundation of China, the Beijing Life Science Academy, the Bill & Melinda Gates Foundation, and the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (CPSF).


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Vacinas contra COVID-19 , COVID-19 , Camundongos Endogâmicos BALB C , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de Subunidades Antigênicas , Humanos , Animais , Anticorpos Monoclonais/imunologia , SARS-CoV-2/imunologia , Camundongos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , COVID-19/prevenção & controle , COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Feminino , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , Masculino , Soros Imunes/imunologia , Adulto , Evasão da Resposta Imune , Testes de Neutralização , Epitopos/imunologia
18.
Int J Infect Dis ; 143: 107028, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583825

RESUMO

OBJECTIVES: An increase evasion of the SARS-CoV-2 virus toward vaccination strategies and natural immunity has been rapidly described notably because of the mutations in the spike receptor binding domain and the N-terminal domain. METHODS: Participants of the CRO-VAX HCP study who received the bivalent booster were followed up at 6 months. A pseudovirus-neutralization test was used to assess the neutralization potency of antibodies against D614G, Delta, BA.1, BA.5, XBB.1.5, BA.2.86, FL.1.5.1, and JN-1. RESULTS: The neutralizing capacity of antibodies against the Omicron variant or its subvariants was significantly reduced compared with D614G and Delta (P <0.0001). The lowest neutralizing response that was observed with JN-1 (geometric mean titers [GMTs] = 22.1) was also significantly lower than XBB.1.5 (GMT = 29.5, P <0.0001), BA.2.86 (GMT = 29.6, P <0.0001), and FL.1.5.1 (GMT = 25.2, P <0.0001). Participants who contracted a breakthrough infection because of XBB.1.5 had significantly higher neutralizing antibodies against all variants than uninfected participants, especially against the Omicron variant and its subvariants. CONCLUSIONS: Our results confirm that JN.1 is one of the most immune-evading variants to date and that the BA.2.86 subvariant did not show an increased immunity escape compared with XBB.1.5. The stronger response in breakthrough infection cases with the Omicron variant and its subvariants supports the need to use vaccine antigens that target circulating variants.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19 , Imunização Secundária , SARS-CoV-2 , Humanos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , SARS-CoV-2/imunologia , Masculino , Feminino , Vacina BNT162/imunologia , Vacina BNT162/administração & dosagem , Adulto , Pessoa de Meia-Idade , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Glicoproteína da Espícula de Coronavírus/imunologia , Testes de Neutralização
20.
Cureus ; 16(3): e56718, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38646375

RESUMO

BACKGROUND: In August 2023, the BA.2.86 SARS-CoV-2 variant, with over 30 spike protein mutations, emerged amidst the global dominance of XBB sub-lineages. It evolved into JN.1 by late 2023, spreading across 71 countries. JN.1, distinct for its L455S mutation, significantly dominated global sequences, raising concerns over its transmission and clinical impact. The study investigates JN.1's clinical severity and its effect on hospital admissions in Maharashtra, India. METHODOLOGY: The present study involved 3,150 curated Indian SARS-CoV-2 whole genome sequences with collection dates between 1st August 2023 and 15th January 2024. Lineage and phylogenetic analysis of sequences was performed using Nextclade. Telephonic interviews were conducted to confirm the demographic details and obtain clinical information on the JN.1* (* indicates JN.1 and all its sub-lineages) cases. The obtained data were recorded and analyzed using Microsoft® Excel (Microsoft Corporation, Redmond, WA). RESULTS: Out of 3,150 sequences analyzed, JN.1* was the most common lineage (2377/3150, 75.46%), followed by XBB.2.3* (281/3150, 8.92%) and XBB.1.16* (187/3150, 5.94%). In India, it was first identified on 6th October 2023, in Kerala. The highest proportion of JN.1* sequences originated from Maharashtra (628/2377, 26.42%), followed by West Bengal (320/2377, 13.46%), Andhra Pradesh (293/2377, 12.33%), Kerala (288/2377, 12.12%), and Karnataka (285/2377, 11.99%). In Maharashtra, the JN.1* variant was first identified on 23rd November 2023. A total of 279 JN.1* cases were included in the clinical study. Of these, 95.34% (266/279) had symptomatic disease with mild symptoms; cold (187/279, 67.03%) being the most common symptom, followed by fever (156/279, 55.91%), cough (114/279, 40.86%), and headache (28/279, 15.64%). Of all the cases, 13.26% (37/279) required institutional quarantine or hospitalization, and the rest were isolated at home. Among the hospitalized patients, 54.05% (20/37) cases were given conservative treatment while 45.95% (17/37) cases required supplemental oxygen therapy. Regarding the vaccination status, 94.26% (263/279) of cases received at least one dose of the COVID-19 vaccine, while 5.02% (14/279) were not vaccinated, of which most were children aged zero to nine years (5/14, 35.71%). The overall recovery rate among JN.1* cases was 98.57% (275/279), with 1.43% (4/279) cases succumbing to the disease. CONCLUSION: The JN.1* variant, the dominant variant in India, exhibits clinical features similar to previous circulating variants in Maharashtra without increased severity. Its notable transmissibility underscores the importance of studying the ongoing viral evolution. The pressing necessity for swift identification and the clinical features of new variants is essential for effective public health response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA