Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.244
Filtrar
2.
J Neurosci Methods ; 409: 110215, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38968976

RESUMO

Brain-computer interface (BCI) technology holds promise for individuals with profound motor impairments, offering the potential for communication and control. Motor imagery (MI)-based BCI systems are particularly relevant in this context. Despite their potential, achieving accurate and robust classification of MI tasks using electroencephalography (EEG) data remains a significant challenge. In this paper, we employed the Minimum Redundancy Maximum Relevance (MRMR) algorithm to optimize channel selection. Furthermore, we introduced a hybrid optimization approach that combines the War Strategy Optimization (WSO) and Chimp Optimization Algorithm (ChOA). This hybridization significantly enhances the classification model's overall performance and adaptability. A two-tier deep learning architecture is proposed for classification, consisting of a Convolutional Neural Network (CNN) and a modified Deep Neural Network (M-DNN). The CNN focuses on capturing temporal correlations within EEG data, while the M-DNN is designed to extract high-level spatial characteristics from selected EEG channels. Integrating optimal channel selection, hybrid optimization, and the two-tier deep learning methodology in our BCI framework presents an enhanced approach for precise and effective BCI control. Our model got 95.06% accuracy with high precision. This advancement has the potential to significantly impact neurorehabilitation and assistive technology applications, facilitating improved communication and control for individuals with motor impairments.

3.
J Neural Eng ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996409

RESUMO

Noninvasive brain-computer interfaces (BCIs) allow to interact with the external environment by naturally bypassing the musculoskeletal system. Making BCIs efficient and accurate is paramount to improve the reliability of real-life and clinical applications, from open-loop device control to closed-loop neurorehabilitation. By promoting sense of agency and embodiment, realistic setups including multimodal channels of communication, such as eye-gaze, and robotic prostheses aim to improve BCI performance. However, how the mental imagery command should be integrated in those hybrid systems so as to ensure the best interaction is still poorly understood. To address this question, we performed a hybrid EEG-based BCI training involving healthy volunteers enrolled in a reach-and-grasp action operated by a robotic arm. Main results showed that the hand grasping motor imagery timing significantly affects the BCI accuracy evolution as well as the spatiotemporal brain dynamics. Larger accuracy improvement was obtained when motor imagery is performed just after the robot reaching, as compared to before or during the movement. The proximity with the subsequent robot grasping favored intentional binding, led to stronger motor-related brain activity, and primed the ability of sensorimotor areas to integrate information from regions implicated in higher-order cognitive functions. Taken together, these findings provided fresh evidence about the effects of intentional binding on human behavior and cortical network dynamics that can be exploited to design a new generation of efficient brain-machine interfaces.

4.
Neural Netw ; 179: 106497, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38986186

RESUMO

The non-stationarity of EEG signals results in variability across sessions, impeding model building and data sharing. In this paper, we propose a domain adaptation method called GPL, which simultaneously considers global knowledge and prototype-based local class information to enhance the classification accuracy of motor imagery signals. Depending on the amount of labeled data available in the target domain, the method is implemented in both unsupervised and semi-supervised versions. Specifically, at the global level, we employ the maximum mean difference (MMD) loss to globally constrain the feature space, achieving comprehensive alignment. In the context of class-level operations, we propose two memory banks designed to accommodate class prototypes in each domain and constrain feature embeddings by applying two prototype-based contrastive losses. The source contrastive loss is used to organize source features spatially based on categories, thereby reconciling inter-class and intra-class relationships, while the interactive contrastive loss is employed to facilitate cross-domain information interaction. Simultaneously, in unsupervised scenarios, to mitigate the adverse effects of excessive pseudo-labels, we introduce an entropy-aware strategy that dynamically evaluates the confidence level of target data and personalized constraints on the participation of interactive contrastive loss. To validate our approach, extensive experiments were conducted on a highly regarded public EEG dataset, namely Dataset IIa of the BCI Competition IV, as well as a large-scale EEG dataset called GigaDB. The experiments yielded average classification accuracies of 86.03% and 84.22% respectively. These results demonstrate that our method is an effective EEG decoding model, conducive to advancing the development of motor imagery brain-computer interfaces. The architecture proposed in this study and the code for data partitioning can be found at https://github.com/zhangdx21/GPL.

5.
J Neural Eng ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986469

RESUMO

OBJECTIVE: Although Motor Imagery-based Brain-Computer Interface (MI-BCI) holds significant potential, its practical application faces challenges such as BCI-illiteracy. To mitigate this issue, researchers have attempted to predict BCI-illiteracy by using the resting state, as this was found to be associated with BCI performance. As connectivity's significance in neuroscience has grown, BCI researchers have applied connectivity to it. However, the issues of connectivity have not been considered fully. First, although various connectivity metrics exist, only some have been used to predict BCI-illiteracy. This is problematic because each metric has a distinct hypothesis and perspective to estimate connectivity, resulting in different outcomes according to the metric. Second, the frequency range affects the connectivity estimation. In addition, it is still unknown whether each metric has its own optimal frequency range. Third, the way that estimating connectivity may vary depending upon the dataset has not been investigated. Meanwhile, we still do not know a great deal about how the resting state EEG network differs between BCI-literacy and -illiteracy. APPROACH: To address the issues above, we analysed three large public EEG datasets using three functional connectivity (FC) and three effective connectivity (EC) metrics by employing diverse graph theory measures. Our analysis revealed that the appropriate frequency range to predict BCI-illiteracy varies depending upon the metric. The alpha range was found to be suitable for the metrics of the frequency domain, while alpha + theta were found to be appropriate for Multivariate Granger Causality (MVGC). The difference in network efficiency between BCI-literate and -illiterate groups was constant regardless of the metrics and datasets used. Although we observed that BCI-literacy had stronger connectivity, no other significant constructional differences were found. SIGNIFICANCE: Based upon our findings, we predicted MI-BCI performance for the entire dataset. We discovered that combining several graph features could improve the prediction's accuracy.

6.
J Neural Eng ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39029497

RESUMO

OBJECTIVE: Motor Imagery (MI) represents one major paradigm of Brain-Computer Interfaces (BCIs) in which users rely on their Electroencephalogram (EEG) signals to control the movement of objects. However, due to the inter-subject variability, MI BCIs require recording subject-dependent data to train machine learning classifiers that are used to identify the intended motor action. This represents a challenge in developing MI BCIs as it complicates its calibration and hinders the wide adoption of such a technology. APPROACH: This study focuses on enhancing cross-subject MI EEG classification using EEG spectrum images. The proposed calibration-free approach employs deep learning techniques for MI classification and Wasserstein Generative Adversarial Networks (WGAN) for data augmentation. The proposed WGAN generates synthetic spectrum images from the recorded MI-EEG to expand the training dataset; aiming to enhance the classifier's performance. The proposed approach eliminates the need for any calibration data from the target subject, making it more suitable for real-world applications. MAIN RESULTS: To assess the robustness and efficacy of the proposed framework, we utilized the BCI competition IV-2B, IV-2A, and IV-1 benchmark datasets, employing leave one-subject out validation. Our results demonstrate that using the proposed modified VGG-CNN classifier in addition to WGAN-generated data for augmentation leads to an enhancement in cross-subject accuracy outperforming state-of-the-art methods. SIGNIFICANCE: This approach could represent one step forward towards developing calibration-free BCI systems and hence broaden their applications.

7.
Sci Rep ; 14(1): 16690, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030206

RESUMO

Exoskeleton-based support for patients requires the learning of individual machine-learning models to recognize movement intentions of patients based on the electroencephalogram (EEG). A major issue in EEG-based movement intention recognition is the long calibration time required to train a model. In this paper, we propose a transfer learning approach that eliminates the need for a calibration session. This approach is validated on healthy subjects in this study. We will use the proposed approach in our future rehabilitation application, where the movement intention of the affected arm of a patient can be inferred from the EEG data recorded during bilateral arm movements enabled by the exoskeleton mirroring arm movements from the unaffected to the affected arm. For the initial evaluation, we compared two trained models for predicting unilateral and bilateral movement intentions without applying a classifier transfer. For the main evaluation, we predicted unilateral movement intentions without a calibration session by transferring the classifier trained on data from bilateral movement intentions. Our results showed that the classification performance for the transfer case was comparable to that in the non-transfer case, even with only 4 or 8 EEG channels. Our results contribute to robotic rehabilitation by eliminating the need for a calibration session, since EEG data for training is recorded during the rehabilitation session, and only a small number of EEG channels are required for model training.


Assuntos
Eletroencefalografia , Exoesqueleto Energizado , Intenção , Movimento , Humanos , Eletroencefalografia/métodos , Masculino , Calibragem , Movimento/fisiologia , Adulto , Aprendizado de Máquina , Feminino , Adulto Jovem
8.
Front Hum Neurosci ; 18: 1371631, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957693

RESUMO

Brain-computer interfaces (BCIs) are scientifically well established, but they rarely arrive in the daily lives of potential end-users. This could be in part because electroencephalography (EEG), a prevalent method to acquire brain activity for BCI operation, is considered too impractical to be applied in daily life of end-users with physical impairment as an assistive device. Hence, miniaturized EEG systems such as the cEEGrid have been developed. While they promise to be a step toward bridging the gap between BCI development, lab demonstrations, and home use, they still require further validation. Encouragingly, the cEEGrid has already demonstrated its ability to record visually and auditorily evoked event-related potentials (ERP), which are important as input signal for many BCIs. With this study, we aimed at evaluating the cEEGrid in the context of a BCI based on tactually evoked ERPs. To compare the cEEGrid with a conventional scalp EEG, we recorded brain activity with both systems simultaneously. Forty healthy participants were recruited to perform a P300 oddball task based on vibrotactile stimulation at four different positions. This tactile paradigm has been shown to be feasible for BCI repeatedly but has never been tested with the cEEGrid. We found distinct P300 deflections in the cEEGrid data, particularly at vertical bipolar channels. With an average of 63%, the cEEGrid classification accuracy was significantly above the chance level (25%) but significantly lower than the 81% reached with the EEG cap. Likewise, the P300 amplitude was significantly lower (cEEGrid R2-R7: 1.87 µV, Cap Cz: 3.53 µV). These results indicate that a tactile BCI using the cEEGrid could potentially be operated, albeit with lower efficiency. Additionally, participants' somatosensory sensitivity was assessed, but no correlation to the accuracy of either EEG system was shown. Our research contributes to the growing amount of literature comparing the cEEGrid to conventional EEG systems and provides first evidence that the tactile P300 can be recorded behind the ear. A BCI based on a thus simplified EEG system might be more readily accepted by potential end-users, provided the accuracy can be substantially increased, e.g., by training and improved classification.

9.
BMC Bioinformatics ; 25(1): 227, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956454

RESUMO

BACKGROUND: Multivariate synchronization index (MSI) has been successfully applied for frequency detection in steady state visual evoked potential (SSVEP) based brain-computer interface (BCI) systems. However, the standard MSI algorithm and its variants cannot simultaneously take full advantage of the time-local structure and the harmonic components in SSVEP signals, which are both crucial for frequency detection performance. To overcome the limitation, we propose a novel filter bank temporally local MSI (FBTMSI) algorithm to further improve SSVEP frequency detection accuracy. The method explicitly utilizes the temporal information of signal for covariance matrix estimation and employs filter bank decomposition to exploits SSVEP-related harmonic components. RESULTS: We employed the cross-validation strategy on the public Benchmark dataset to optimize the parameters and evaluate the performance of the FBTMSI algorithm. Experimental results show that FBTMSI outperforms the standard MSI, temporally local MSI (TMSI) and filter bank driven MSI (FBMSI) algorithms across multiple experimental settings. In the case of data length of one second, the average accuracy of FBTMSI is 9.85% and 3.15% higher than that of the FBMSI and the TMSI, respectively. CONCLUSIONS: The promising results demonstrate the effectiveness of the FBTMSI algorithm for frequency recognition and show its potential in SSVEP-based BCI applications.


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Eletroencefalografia , Potenciais Evocados Visuais , Humanos , Potenciais Evocados Visuais/fisiologia , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador
10.
Front Neuroergon ; 5: 1287794, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962279

RESUMO

A recent development in deep learning techniques has attracted attention to the decoding and classification of electroencephalogram (EEG) signals. Despite several efforts to utilize different features in EEG signals, a significant research challenge is using time-dependent features in combination with local and global features. Several attempts have been made to remodel the deep learning convolution neural networks (CNNs) to capture time-dependency information. These features are usually either handcrafted features, such as power ratios, or splitting data into smaller-sized windows related to specific properties, such as a peak at 300 ms. However, these approaches partially solve the problem but simultaneously hinder CNNs' capability to learn from unknown information that might be present in the data. Other approaches, like recurrent neural networks, are very suitable for learning time-dependent information from EEG signals in the presence of unrelated sequential data. To solve this, we have proposed an encoding kernel (EnK), a novel time-encoding approach, which uniquely introduces time decomposition information during the vertical convolution operation in CNNs. The encoded information lets CNNs learn time-dependent features in addition to local and global features. We performed extensive experiments on several EEG data sets-physical human-robot collaborations, P300 visual-evoked potentials, motor imagery, movement-related cortical potentials, and the Dataset for Emotion Analysis Using Physiological Signals. The EnK outperforms the state of the art with an up to 6.5% reduction in mean squared error (MSE) and a 9.5% improvement in F1-scores compared to the average for all data sets together compared to base models. These results support our approach and show a high potential to improve the performance of physiological and non-physiological data. Moreover, the EnK can be applied to virtually any deep learning architecture with minimal effort.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38946233

RESUMO

Motor imagery (MI) stands as a powerful paradigm within Brain-Computer Interface (BCI) research due to its ability to induce changes in brain rhythms detectable through common spatial patterns (CSP). However, the raw feature sets captured often contain redundant and invalid information, potentially hindering CSP performance. Methodology-wise, we propose the Information Fusion for Optimizing Temporal-Frequency Combination Pattern (IFTFCP) algorithm to enhance raw feature optimization. Initially, preprocessed data undergoes simultaneous processing in both time and frequency domains via sliding overlapping time windows and filter banks. Subsequently, we introduce the Pearson-Fisher combinational method along with Discriminant Correlation Analysis (DCA) for joint feature selection and fusion. These steps aim to refine raw electroencephalogram (EEG) features. For precise classification of binary MI problems, an Radial Basis Function (RBF)-kernel Support Vector Machine classifier is trained. To validate the efficacy of IFTFCP and evaluate it against other techniques, we conducted experimental investigations using two EEG datasets. Results indicate a notably superior classification performance, boasting an average accuracy of 78.14% and 85.98% on dataset 1 and dataset 2, which is better than other methods outlined in this article. The study's findings suggest potential benefits for the advancement of MI-based BCI strategies, particularly in the domain of feature fusion.

12.
Int J Speech Lang Pathol ; : 1-9, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028220

RESUMO

PURPOSE: To enable the codesign of a training framework for brain-computer interfaces for augmentative and alternative communications access (BCI-AAC), the aim of this study is to evaluate the initial BCI-AAC training needs and preferred learning strategies of speech-language pathologists (SLPs) with AAC experience. METHOD: Eleven SLPs employed across a broad range of settings completed a semi-structured interview. A grounded theory approach alongside peer debriefing and review, member checking, and triangulation procedures were utilised for thematic analysis to help ensure data reliability and credibility. RESULT: Regarding critical training needs, SLPs identified the subthemes of (a) personalisation of intervention, (b) technical aspects, (c) BCI-AAC system types and access, and (d) how to support stakeholders in BCI-AAC implementation. Regarding learning strategy preferences, participants discussed (a) expert guidance and demonstrations, (b) hands-on experience, alongside (c) media and presentations. CONCLUSION: Findings present a continuum of critical training needs ranging from more foundational information to more personalised assessment and intervention consideration. These thematic results present a first step in developing a basic framework for SLP training in BCI-AAC to utilise and build from as technology development continues, and provides an important initial starting point for the codesign of clinically focused BCI-AAC trainings.

13.
Behav Brain Res ; : 115154, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038519

RESUMO

INTRODUCTION: This research evaluated the feasibility of a hybrid SSVEP + P300 brain computer interface (BCI) for controlling the movement of an avatar in a virtual reality (VR) gaming environment (VR + BCI). Existing VR + BCI gaming environments have limitations, such as visual fatigue, a lower communication rate, minimum accuracy, and poor system comfort. Hence, there is a need for an optimized hybrid BCI system that can simultaneously evoke the strongest P300 and SSVEP potentials in the cortex. METHODS: A BCI headset was coupled with a VR headset to generate a VR + BCI environment. The author developed a VR game in which the avatar's movement is controlled using the user's cortical responses with the help of a BCI headset. Specifically designed visual stimuli were used in the proposed system to elicit the strongest possible responses from the user's brain. The proposed system also includes an auditory feedback mechanism to facilitate precise avatar movement. RESULTS AND CONCLUSIONS: Conventional P300 BCI and SSVEP BCI were also used to control the movements of the avatar, and their performance metrics were compared to those of the proposed system. The results demonstrated that the hybrid SSVEP + P300 BCI system was superior to the other systems for controlling avatar movement.

14.
Bioengineering (Basel) ; 11(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38927850

RESUMO

The application of wearable electroencephalogram (EEG) devices is growing in brain-computer interfaces (BCI) owing to their good wearability and portability. Compared with conventional devices, wearable devices typically support fewer EEG channels. Devices with few-channel EEGs have been proven to be available for steady-state visual evoked potential (SSVEP)-based BCI. However, fewer-channel EEGs can cause the BCI performance to decrease. To address this issue, an attention-based complex spectrum-convolutional neural network (atten-CCNN) is proposed in this study, which combines a CNN with a squeeze-and-excitation block and uses the spectrum of the EEG signal as the input. The proposed model was assessed on a wearable 40-class dataset and a public 12-class dataset under subject-independent and subject-dependent conditions. The results show that whether using a three-channel EEG or single-channel EEG for SSVEP identification, atten-CCNN outperformed the baseline models, indicating that the new model can effectively enhance the performance of SSVEP-BCI with few-channel EEGs. Therefore, this SSVEP identification algorithm based on a few-channel EEG is particularly suitable for use with wearable EEG devices.

15.
Neural Netw ; 178: 106471, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38945115

RESUMO

Brain-computer interfaces (BCIs), representing a transformative form of human-computer interaction, empower users to interact directly with external environments through brain signals. In response to the demands for high accuracy, robustness, and end-to-end capabilities within BCIs based on motor imagery (MI), this paper introduces STaRNet, a novel model that integrates multi-scale spatio-temporal convolutional neural networks (CNNs) with Riemannian geometry. Initially, STaRNet integrates a multi-scale spatio-temporal feature extraction module that captures both global and local features, facilitating the construction of Riemannian manifolds from these comprehensive spatio-temporal features. Subsequently, a matrix logarithm operation transforms the manifold-based features into the tangent space, followed by a dense layer for classification. Without preprocessing, STaRNet surpasses state-of-the-art (SOTA) models by achieving an average decoding accuracy of 83.29% and a kappa value of 0.777 on the BCI Competition IV 2a dataset, and 95.45% accuracy with a kappa value of 0.939 on the High Gamma Dataset. Additionally, a comparative analysis between STaRNet and several SOTA models, focusing on the most challenging subjects from both datasets, highlights exceptional robustness of STaRNet. Finally, the visualizations of learned frequency bands demonstrate that temporal convolutions have learned MI-related frequency bands, and the t-SNE analyses of features across multiple layers of STaRNet exhibit strong feature extraction capabilities. We believe that the accurate, robust, and end-to-end capabilities of the STaRNet will facilitate the advancement of BCIs.

16.
Front Hum Neurosci ; 18: 1400336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873652

RESUMO

Introduction: This study aimed to evaluate the efficacy of visual P300 brain-computer interface use to support rehabilitation of chronic language production deficits commonly experienced by individuals with a left-sided stroke resulting in post-stroke aphasia. Methods: The study involved twelve participants, but five dropped out. Additionally, data points were missing for three participants in the remaining sample of seven participants. The participants underwent four assessments-a baseline, pre-assessment, post-assessment, and follow-up assessment. Between the pre-and post-assessment, the participants underwent at least 14 sessions of visual spelling using a brain-computer interface. The study aimed to investigate the impact of this intervention on attention, language production, and language comprehension and to determine whether there were any potential effects on quality of life and well-being. Results: None of the participants showed a consistent improvement in attention. All participants showed an improvement in spontaneous speech production, and three participants experienced a reduction in aphasia severity. We found an improvement in subjective quality of life and daily functioning. However, we cannot rule out the possibility of unspecific effects causing or at least contributing to these results. Conclusion: Due to challenges in assessing the patient population, resulting in a small sample size and missing data points, the results of using visual P300 brain-computer interfaces for chronic post-stroke aphasia rehabilitation are preliminary. Thus, we cannot decisively judge the potential of this approach.

17.
Brain Inform ; 11(1): 17, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837089

RESUMO

Neuromarketing is an emerging research field that aims to understand consumers' decision-making processes when choosing which product to buy. This information is highly sought after by businesses looking to improve their marketing strategies by understanding what leaves a positive or negative impression on consumers. It has the potential to revolutionize the marketing industry by enabling companies to offer engaging experiences, create more effective advertisements, avoid the wrong marketing strategies, and ultimately save millions of dollars for businesses. Therefore, good documentation is necessary to capture the current research situation in this vital sector. In this article, we present a systematic review of EEG-based Neuromarketing. We aim to shed light on the research trends, technical scopes, and potential opportunities in this field. We reviewed recent publications from valid databases and divided the popular research topics in Neuromarketing into five clusters to present the current research trend in this field. We also discuss the brain regions that are activated when making purchase decisions and their relevance to Neuromarketing applications. The article provides appropriate illustrations of marketing stimuli that can elicit authentic impressions from consumers' minds, the techniques used to process and analyze recorded brain data, and the current strategies employed to interpret the data. Finally, we offer recommendations to upcoming researchers to help them investigate the possibilities in this area more efficiently in the future.

18.
J Clin Med ; 13(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38929887

RESUMO

Background: Blunt carotid injury (BCI) in pediatric trauma is quite rare. Due to the low number of cases, only a few reports and studies have been conducted on this topic. This review will discuss how frequent BCI/blunt cerebrovascular injury (BCVI) on pediatric patients after blunt trauma is, what routine diagnostics looks like, if a computed tomography (CT)/computed tomography angiography (CTA) scan on pediatric patients after blunt trauma is always necessary and if there are any negative health effects. Methods: This narrative literature review includes reviews, systematic reviews, case reports and original studies in the English language between 1999 and 2020 that deal with pediatric blunt trauma and the diagnostics of BCI and BCVI. Furthermore, publications on the risk of radiation exposure for children were included in this study. For literature research, Medline (PubMed) and the Cochrane library were used. Results: Pediatric BCI/BCVI shows an overall incidence between 0.03 and 0.5% of confirmed BCI/BCVI cases due to pediatric blunt trauma. In total, 1.1-3.5% of pediatric blunt trauma patients underwent CTA to detect BCI/BCVI. Only 0.17-1.2% of all CTA scans show a positive diagnosis for BCI/BCVI. In children, the median volume CT dose index on a non-contrast head CT is 33 milligrays (mGy), whereas a computed tomography angiography needs at least 138 mGy. A cumulative dose of about 50 mGy almost triples the risk of leukemia, and a cumulative dose of about 60 mGy triples the risk of brain cancer. Conclusions: Given that a BCI/BCVI could have extensive neurological consequences for children, it is necessary to evaluate routine pediatric diagnostics after blunt trauma. CT and CTA are mostly used in routine BCI/BCVI diagnostics. However, since radiation exposure in children should be as low as reasonably achievable, it should be asked if other diagnostic methods could be used to identify risk groups. Trauma guidelines and clinical scores like the McGovern score are established BCI/BCVI screening options, as well as duplex ultrasound.

19.
Sensors (Basel) ; 24(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38894107

RESUMO

Rapid serial visual presentation (RSVP) is currently a suitable gaze-independent paradigm for controlling visual brain-computer interfaces (BCIs) based on event-related potentials (ERPs), especially for users with limited eye movement control. However, unlike gaze-dependent paradigms, gaze-independent ones have received less attention concerning the specific choice of visual stimuli that are used. In gaze-dependent BCIs, images of faces-particularly those tinted red-have been shown to be effective stimuli. This study aims to evaluate whether the colour of faces used as visual stimuli influences ERP-BCI performance under RSVP. Fifteen participants tested four conditions that varied only in the visual stimulus used: grey letters (GL), red famous faces with letters (RFF), green famous faces with letters (GFF), and blue famous faces with letters (BFF). The results indicated significant accuracy differences only between the GL and GFF conditions, unlike prior gaze-dependent studies. Additionally, GL achieved higher comfort ratings compared with other face-related conditions. This study highlights that the choice of stimulus type impacts both performance and user comfort, suggesting implications for future ERP-BCI designs for users requiring gaze-independent systems.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Potenciais Evocados , Estimulação Luminosa , Humanos , Masculino , Feminino , Adulto , Eletroencefalografia/métodos , Adulto Jovem , Potenciais Evocados/fisiologia , Movimentos Oculares/fisiologia
20.
Brain Res ; : 149092, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897536

RESUMO

INTRODUCTION: This study proposes a hybrid brain-computer interface (BCI) system that simultaneously evokes steady-state visual evoked potentials (SSVEP) and event-related potentials (P300). The goal of this study was to improve the performance of the current hybrid SSVEP + P300 BCI systems by incorporating inverted faces into visual stimuli. METHODS: In this study, upright and inverted faces were added to visual stimulus to elicit stronger cortical responses in a hybrid SSVEP + P300 BCI. We also considered triggering the P300 signals with facial stimuli and the SSVEP signals with non-facial stimuli. We have tested four paradigms: the upright face paradigm (UF), the inverted face paradigm (IF), the upright face and flicker paradigm (UFF), and the inverted face and flicker paradigm (IFF). RESULTS AND CONCLUSIONS: The results showed that the IFF paradigm evoked more robust cortical responses, which led to enhanced system accuracy and ITR. The IFF paradigm had an average accuracy of 96.6% and a system communication rate of 26.45 bits per second. The UFF paradigm is the best candidate for BCI applications among other paradigms because it provides maximum comfort while maintaining a reasonable ITR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...