Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Hum Exp Toxicol ; 43: 9603271241265105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39291962

RESUMO

The purpose of this study was to investigate the regulatory role and underlying mechanisms of circRNA_001373 in the hepatic stellate cell (HSC) activation. Quantitative real-time polymerase chain reaction was used to detect the expression of circRNA_001373, miR-142a-5p and Becn1. The viability of JS-1 cells was measured by Cell Counting Kit-8. The targeting relationship between miR-142a-5p and CircRNA_001373, as well as between miR-142a-5p and Becn1 was predicted using CircInteractome and TargetScan databases, respectively, and validated by dual-luciferase reporter assay. Western blot was utilized to determine the expression levels of proteins related to autophagy and the activation if HSCs in JS-1 cells. After activation by platelet-derived growth factor-BB, an increase was observed in the expression of collagen I and α-smooth muscle actin proteins. The expression of CircRNA_001373 was up-regulated in the activated HSCs. Knockdown of CircRNA_001373 significantly inhibited cell viability and activation of JS-1 cells, as well as autophagy in the activated HSCs. CircRNA_001373 could sponge miR-142a-5p in the activated HSCs, which in turn elevated the Becn1 expression. Concurrent knockdown of both CircRNA_001373 and miR-142a-5p reversed the inhibitory effects of the knockdown of CircRNA_001373 alone on cell viability and autophagy in activated JS-1 cells. CircRNA_ 001373 promotes cell viability and autophagy as well as the activation of JS-1 cells by regulating the miR-142a-5p/Becn1 axis.


Assuntos
Autofagia , Proteína Beclina-1 , Células Estreladas do Fígado , Cirrose Hepática , MicroRNAs , RNA Circular , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Autofagia/efeitos dos fármacos , RNA Circular/genética , RNA Circular/metabolismo , Proteína Beclina-1/metabolismo , Proteína Beclina-1/genética , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/induzido quimicamente , Linhagem Celular , Animais , Camundongos , Sobrevivência Celular/efeitos dos fármacos
2.
Autophagy ; : 1-23, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39193909

RESUMO

Individuals with genetic elimination of MLKL (mixed lineage kinase domain like pseudokinase) exhibit an increased susceptibility to neurodegenerative diseases like Alzheimer disease (AD). However, the mechanism is not yet fully understood. Here, we observed significant compromise in macroautophagy/autophagy in the brains of mlkl knockout (KO) mice, as evidenced by the downregulation of BECN1/Beclin1 and ULK1 (unc-51 like autophagy activating kinase 1). We identified UBA52 (ubiquitin A-52 residue ribosomal protein fusion product 1) as the binding partner of MLKL under physiological conditions. Loss of Mlkl induced a decrease in ubiquitin levels by preventing UBA52 cleavage. Furthermore, we demonstrated that the deubiquitinase (DUB) USP7 (ubiquitin specific peptidase 7) mediates the processing of UBA52, which is regulated by MLKL. Moreover, our results indicated that the reduction of BECN1 and ULK1 upon Mlkl loss is attributed to a decrease in their lysine 63 (K63)-linked polyubiquitination. Additionally, single-nucleus RNA sequencing revealed that the loss of Mlkl resulted in the disruption of multiple neurodegenerative disease-related pathways, including those associated with AD. These results were consistent with the observation of cognitive impairment in mlkl KO mice and exacerbation of AD pathologies in an AD mouse model with mlkl deletion. Taken together, our findings demonstrate that MLKL-USP7-UBA52 signaling is required for autophagy in brain through maintaining ubiquitin homeostasis, and highlight the contribution of Mlkl loss-induced ubiquitin deficits to the development of neurodegeneration. Thus, the maintenance of adequate levels of ubiquitin may provide a novel perspective to protect individuals from multiple neurodegenerative diseases through regulating autophagy.Abbreviations: 4HB: four-helix bundle; AAV: adeno-associated virus; AD: Alzheimer disease; AIF1: allograft inflammatory factor 1; APOE: apolipoprotein E; APP: amyloid beta precursor protein; Aß: amyloid ß; BECN1: beclin 1; co-IP: co-immunoprecipitation; DEGs: differentially expressed genes; DLG4: discs large MAGUK scaffold protein 4; DUB: deubiquitinase; EBSS: Earle's balanced salt solution; GFAP: glial fibrillary acidic protein; HRP: horseradish peroxidase; IL1B: interleukin 1 beta; IL6: interleukin 6; IPed: immunoprecipitated; KEGG: Kyoto Encyclopedia of Genes and Genomes; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MLKL: mixed lineage kinase domain like pseudokinase; NSA: necrosulfonamide; OPCs: oligodendrocyte precursor cells; PFA: paraformaldehyde; PsKD: pseudo-kinase domain; SYP: synaptophysin; UB: ubiquitin; UBA52: ubiquitin A-52 residue ribosomal protein fusion product 1; UCHL3: ubiquitin C-terminal hydrolase L3; ULK1: unc-51 like autophagy activating kinase 1; UMAP: uniform manifold approximation and projection; UPS: ubiquitin-proteasome system; USP7: ubiquitin specific peptidase 7; USP9X: ubiquitin specific peptidase 9 X-linked.

3.
J Leukoc Biol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934654

RESUMO

Genetic association between SUMO-specific protease 1 (SENP1) and acute myeloid leukemia (AML) has been validated. However, the mechanism by which SENP1 affects AML proliferation, apoptosis, and autophagy remains unknown. The levels of SENP1 and polypyrimidine tract-binding protein 1 (PTBP1) were measured in AML patients, AML cell lines, and xenograft tissues. The effects of SENP1 on AML proliferation, apoptosis, and BECN1-dependent autophagy were assessed through in vitro and in vivo loss- or gain-of-function experiments. SUMOylation analysis using immunoprecipitation (IP), RNA pull-down, RIP, and RNA stability assays were used to explore the molecular mechanism of SENP1 in AML development. The SENP1 level was elevated in AML samples. Silencing SENP1 impeded the development of AML, as evidenced by the inhibition of proliferation and promotion of G1 phase arrest and apoptosis resulting from SENP1 depletion in AML cells. Moreover, silencing of SENP1 restrained BECN1-depentent autophagy in AML cells. In addition, the overexpression of BECN1 or PTBP1 partially neutralized the effect of SENP1 knockdown on AML cell behavior. Mechanistically, SENP1 mediated PTBP1 deSUMOylation, which then directly interacted with BECN1 mRNA and enhanced its stability. In vivo experiments further confirmed the repressive effects of SENP1 suppression on AML development. Collectively, the SENP1/PTBP1/BECN1 signaling axis has been identified as a significant therapeutic target for enhancing AML treatment.

4.
Acta Pharm Sin B ; 14(5): 2026-2038, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799643

RESUMO

Growing evidences indicate that dysfunction of autophagy contributes to the disease pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two neurodegenerative disorders. The GGGGCC·GGCCCC repeat RNA expansion in chromosome 9 open reading frame 72 (C9orf72) is the most genetic cause of both ALS and FTD. According to the previous studies, GGGGCC·GGCCCC repeat undergoes the unconventional repeat-associated non-ATG translation, which produces dipeptide repeat (DPR) proteins. Although there is a growing understanding that C9orf72 DPRs have a strong ability to harm neurons and induce C9orf72-linked ALS/FTD, whether these DPRs can affect autophagy remains unclear. In the present study, we find that poly-GR and poly-PR, two arginine-containing DPRs which display the most cytotoxic properties according to the previous studies, strongly inhibit starvation-induced autophagy. Moreover, our data indicate that arginine-rich DPRs enhance the interaction between BCL2 and BECN1/Beclin 1 by inhibiting BCL2 phosphorylation, therefore they can impair autophagic clearance of neurodegenerative disease-associated protein aggregates under starvation condition in cells. Importantly, our study not only highlights the role of C9orf72 DPR in autophagy dysfunction, but also provides novel insight that pharmacological intervention of autophagy using SW063058, a small molecule compound that can disrupt the interaction between BECN1 and BCL2, may reduce C9orf72 DPR-induced neurotoxicity.

5.
Autophagy ; 20(9): 2041-2054, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38762759

RESUMO

Macroautophagy/autophagy is essential for the degradation and recycling of cytoplasmic materials. The initiation of this process is determined by phosphatidylinositol-3-kinase (PtdIns3K) complex, which is regulated by factor BECN1 (beclin 1). UFMylation is a novel ubiquitin-like modification that has been demonstrated to modulate several cellular activities. However, the role of UFMylation in regulating autophagy has not been fully elucidated. Here, we found that VCP/p97 is UFMylated on K109 by the E3 UFL1 (UFM1 specific ligase 1) and this modification promotes BECN1 stabilization and assembly of the PtdIns3K complex, suggesting a role for VCP/p97 UFMylation in autophagy initiation. Mechanistically, VCP/p97 UFMylation stabilizes BECN1 through ATXN3 (ataxin 3)-mediated deubiquitination. As a key component of the PtdIns3K complex, stabilized BECN1 facilitates assembly of this complex. Re-expression of VCP/p97, but not the UFMylation-defective mutant, rescued the VCP/p97 depletion-induced increase in MAP1LC3B/LC3B protein expression. We also showed that several pathogenic VCP/p97 mutations identified in a variety of neurological disorders and cancers were associated with reduced UFMylation, thus implicating VCP/p97 UFMylation as a potential therapeutic target for these diseases. Abbreviation: ATG14:autophagy related 14; Baf A1:bafilomycin A1;CMT2Y: Charcot-Marie-Toothdisease, axonal, 2Y; CYB5R3: cytochromeb5 reductase 3; DDRGK1: DDRGK domain containing 1; DMEM:Dulbecco'smodified Eagle's medium;ER:endoplasmic reticulum; FBS:fetalbovine serum;FTDALS6:frontotemporaldementia and/or amyotrophic lateral sclerosis 6; IBMPFD1:inclusion bodymyopathy with early-onset Paget disease with or withoutfrontotemporal dementia 1; LC-MS/MS:liquid chromatography tandem mass spectrometry; MAP1LC3B/LC3B:microtubule associated protein 1 light chain 3 beta; MS: massspectrometry; NPLOC4: NPL4 homolog, ubiquitin recognition factor;PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3;PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PtdIns3K:phosphatidylinositol 3-kinase; RPL26: ribosomal protein L26; RPN1:ribophorin I; SQSTM1/p62: sequestosome 1; UBA5: ubiquitin likemodifier activating enzyme 5; UFC1: ubiquitin-fold modifierconjugating enzyme 1; UFD1: ubiquitin recognition factor in ERassociated degradation 1; UFL1: UFM1 specific ligase 1; UFM1:ubiquitin fold modifier 1; UFSP2: UFM1 specific peptidase 2; UVRAG:UV radiation resistance associated; VCP/p97: valosin containingprotein; WT: wild-type.


Assuntos
Autofagia , Proteína Beclina-1 , Ubiquitinação , Proteína com Valosina , Autofagia/fisiologia , Autofagia/genética , Humanos , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Proteína Beclina-1/metabolismo , Ataxina-3/metabolismo , Ataxina-3/genética , Ubiquitina-Proteína Ligases/metabolismo , Células HeLa , Fosfatidilinositol 3-Quinases/metabolismo , Estabilidade Proteica , Células HEK293 , Peptídeos e Proteínas de Sinalização Intracelular
6.
Autophagy ; 20(8): 1798-1814, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38705725

RESUMO

Macroautophagy/autophagy is a catabolic process crucial for degrading cytosolic components and damaged organelles to maintain cellular homeostasis, enabling cells to survive in extreme extracellular environments. ENAH/MENA, a member of the Ena/VASP protein family, functions as a highly efficient actin elongation factor. In this study, our objective was to explore the role of ENAH in the autophagy process. Initially, we demonstrated that depleting ENAH in cancer cells inhibits autophagosome formation. Subsequently, we observed ENAH's colocalization with MAP1LC3/LC3 during tumor cell starvation, dependent on actin cytoskeleton polymerization and the interaction between ENAH and BECN1 (beclin 1). Additionally, mammalian ATG9A formed a ring-like structure around ENAH-LC3 puncta during starvation, relying on actin cytoskeleton polymerization. Furthermore, ENAH's EVH1 and EVH2 domains were found to be indispensable for its colocalization with LC3 and BECN1, while the PRD domain played a crucial role in the formation of the ATG9A ring. Finally, our study revealed ENAH-led actin comet tails in autophagosome trafficking. In conclusion, our findings provide initial insights into the regulatory role of the mammalian actin elongation factor ENAH in autophagy.Abbreviations: 3-MA 3-methyladenine; ABPs actin-binding proteins; ATG autophagy related; ATG9A autophagy related 9A; Baf A1 bafilomycin A1; CM complete medium; CytERM endoplasmic reticulum signal-anchor membrane protein; Cyto D cytochalasin D; EBSS Earl's balanced salt solution; ENAH/MENA ENAH actin regulator; EVH1 Ena/VASP homology 1 domain; EVH2 Ena/VASP homology 2 domain; GAPDH glyceraldehyde-3-phosphate dehydrogenase; Lat B latrunculin B; LC3-I unlipidated form of LC3; LC3-II phosphatidylethanolamine-conjugated form of LC3; MAP1LC3/LC3 microtubule associated protein 1 light chain 3; mEGFP monomeric enhanced green fluorescent protein; mTagBFP2 monomeric Tag blue fluorescent protein 2; OSER organized smooth endoplasmic reticulum; PRD proline-rich domain; PtdIns3K class III phosphatidylinositol 3-kinase; WM wortmannin.


Assuntos
Actinas , Autofagossomos , Proteínas Relacionadas à Autofagia , Autofagia , Autofagia/fisiologia , Humanos , Autofagossomos/metabolismo , Actinas/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Animais , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Beclina-1/metabolismo , Citoesqueleto de Actina/metabolismo , Células HeLa , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo
7.
Int J Cardiol ; 408: 132158, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38744338

RESUMO

BACKGROUND: Cardiomyocyte apoptosis plays a vital role in myocardial ischemia-reperfusion (MI/R) injury; however, the role of beclin1 (BECN1) remains unclear. This study aimed at revealing the function of BECN1 during cardiomyocyte apoptosis after MI/R injury. METHODS: In vivo, TTC and Evan's blue double staining was applied to verify the gross morphological alteration in both wild type (WT) mice and BECN1 transgene mice (BECN1-TG), and TUNEL staining and western blot were adopted to evaluate the cardiomyocyte apoptosis. In vitro, a hypoxia/reoxygenation (H/R) model was established in H9c2 cells to simulate MI/R injury. Proteomics analysis was preformed to verify if apoptosis occurs in the H/R cellular model. And apoptosis factors, RIPK1, Caspase-1, Caspase-3, and cleaved Caspase-3, were investigated using western bolting. In addition, the mRNA level were verified using RT-PCR. To further investigate the protein interactions small interfering RNA and lentiviral transfection were used. To continue investigate the protein interactions, immunofluorescence and coimmunoprecipitation were applied. RESULTS: Morphologically, BECN1 significantly attenuated the apoptosis from TTC-Evan's staining, TUNEL, and cardiac tissue western blot. After H/R, a RIPK1-induced complex (complex II) containing RIPK1, Caspase-8, and FADD was formed. Thereafter, cleaved Caspase-3 was activated, and myocyte apoptosis occurred. However, BECN1 decreased the expression of RIPK1, Caspase-8, and FADD. Nevertheless, BECN1 overexpression increased RIPK1 ubiquitination before apoptosis by inhibiting OTUD1. CONCLUSIONS: BECN1 regulates FADD/RIPK1/Caspase-8 complex formation via RIPK1 ubiquitination by downregulating OTUD1 in C-Caspase-3-induced myocyte apoptosis after MI/R injury. Therefore, BECN1 can function as a cardioprotective candidate.


Assuntos
Apoptose , Proteína Beclina-1 , Caspase 8 , Regulação para Baixo , Proteína de Domínio de Morte Associada a Fas , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Proteína Serina-Treonina Quinases de Interação com Receptores , Ubiquitinação , Animais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Apoptose/fisiologia , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Caspase 8/metabolismo , Proteína Beclina-1/metabolismo , Ubiquitinação/fisiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Regulação para Baixo/fisiologia , Masculino , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Células Cultivadas
8.
Cell Mol Biol Lett ; 29(1): 13, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38225560

RESUMO

TRIM proteins are characterized by their conserved N-terminal RING, B-box, and coiled-coil domains. These proteins are efficient regulators of autophagy, apoptosis, and innate immune responses and confer immunity against viruses and bacteria. TRIMs function as receptors or scaffold proteins that target substrates for autophagy-mediated degradation. Most TRIMs interact with the BECN1-ULK1 complex to form TRIMosomes, thereby efficiently targeting substrates to autophagosomes. They regulate the functions of ATG proteins through physical interactions or ubiquitination. TRIMs affect the lipidation of MAP1LC3B1 to form MAP1LC3B2, which is a prerequisite for phagophore and autophagosome formation. In addition, they regulate MTOR kinase and TFEB, thereby regulating the expression of ATG genes. TRIM proteins are efficient regulators of apoptosis and are crucial for regulating cell proliferation and tumor formation. Many TRIM proteins regulate intrinsic and extrinsic apoptosis via the cell surface receptors TGFBR2, TNFRSF1A, and FAS. Mitochondria modulate the anti- and proapoptotic functions of BCL2, BAX, BAK1, and CYCS. These proteins use a multipronged approach to regulate the intrinsic and extrinsic apoptotic pathways, culminating in coordinated activation or inhibition of the initiator and executor CASPs. Furthermore, TRIMs can have a dual effect in determining cell fate and are therefore crucial for cellular homeostasis. In this review, we discuss mechanistic insights into the role of TRIM proteins in regulating autophagy and apoptosis, which can be used to better understand cellular physiology. These findings can be used to develop therapeutic interventions to prevent or treat multiple genetic and infectious diseases.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Proteínas com Motivo Tripartido/química , Proteínas com Motivo Tripartido/metabolismo , Ubiquitinação , Autofagia
9.
Curr Med Chem ; 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38251697

RESUMO

AIM: Providing insights into the chemoresistance of esophageal squamous cell carcinoma (ESCC) and its dependence on chemotherapy-induced autophagy. BACKGROUND: Autophagy is induced during chemotherapy of cancer cells, promoting resistance to anti-cancer treatments. OBJECTIVE: The objective of this study is to investigate the modulation of microRNA-30a (miR-30a), a known regulator of autophagy, in ESCC cells by all-trans retinoic acid (ATRA). METHODS: Treatment involved ESCC cells KYSE-30 and TE8 with cis-dichloro-diamine platinum (CDDP), enriching CDDP-surviving cells (CDDP-SCs). qRT-PCR and dual luciferase reporter assay (DLRA) were employed to evaluate miR-30a expression and its interaction with Beclin-1 (BECN1) in both CDDP-SCs and those treated with ATRA. RESULTS: Chemotherapy using CDDP led to a significant decrease in miR-30a expression within ESCC cells. Increased autophagy levels were identified in cancer cells exhibiting stem cell-like properties, characterized by the overexpression of specific stem cell markers. These results suggest that the downregulation of miR-30a induced by CDDP treatment may represent a potential underlying mechanism for increased autophagic activity, as evidenced by the upregulation of autophagy-related proteins, such as BECN1 and an elevated LC3-II/LC3-I ratio. ATRA treatment elevated miR-30a expression and disrupted hallmark cancer stem cell (CSC) features in ESCC cells. Further investigations demonstrated that increased miR-30a expression led to a reduction in the expression of its target gene, BECN1, and attenuated BECN1-mediated autophagy. This resulted in an augmentation of CDDP-induced apoptosis in ESCC cells and a G2/M cell cycle arrest. CONCLUSION: CDDP chemotherapy reduced miR-30a, promoting ESCC cell resistance through autophagy and CSC-like features, a process that may be modulated by ATRA.

10.
Autophagy ; 20(2): 380-396, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37791766

RESUMO

ABBREVIATIONS: AFM: aromatic finger mutant; BH3D: BCL2 homology 3 domain; CCD: coiled-coil domain; CD: circular dichroism spectroscopy; [CysDM1]: C18S and C21S double mutant; [CysDM2]: C137S, and C140S double mutant; [CysTM], C18S, C21S, C137S, and C140S tetrad mutant; Dmax: maximum particle diameter; dRI, differential refractive index; EFA: evolving factor analysis; FHD: flexible helical domain; FL: full length; GFP: green fluorescent protein; HDX-MS: hydrogen/deuterium exchange mass spectrometry; ICP-MS: inductively coupled plasma mass spectrometry; IDR: intrinsically disordered region; ITC, isothermal titration calorimetry; MALS, multi angle light scattering; MBP: maltose-binding protein; MoRFs: molecular recognition features; P(r): pairwise-distance distribution; PtdIns3K: class III phosphatidylinositol 3-kinase; Rg: radius of gyration; SASBDB: small angle scattering biological data bank; SEC: size-exclusion chromatography; SEC-SAXS: size-exclusion chromatography in tandem with small angle X-ray scattering; TEV: tobacco-etch virus; TFE: 2,2,2-trifluoroethanol; TPEN: N,N,N,N-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine; Vc: volume of correlation; WT: wild-type.


Assuntos
Autofagia , Zinco , Espalhamento a Baixo Ângulo , Difração de Raios X , Autofagia/fisiologia , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA