Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 221, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909237

RESUMO

BACKGROUND: Group B Streptococcus (GBS) is a commensal of healthy adults and an important pathogen in newborns, the elderly and immunocompromised individuals. GBS displays several virulence factors that promote colonisation and host infection, including the ST-17 strain-specific adhesin Srr2, previously characterised for its binding to fibrinogen. Another common target for bacterial adhesins and for host colonization is fibronectin, a multi-domain glycoprotein found ubiquitously in body fluids, in the extracellular matrix and on the surface of cells. RESULTS: In this study, fibronectin was identified as a novel ligand for the Srr2 adhesin of GBS. A derivative of the ST-17 strain BM110 overexpressing the srr2 gene showed an increased ability to bind fibrinogen and fibronectin, compared to the isogenic wild-type strain. Conversely, the deletion of srr2 impaired bacterial adhesion to both ligands. ELISA assays and surface plasmon resonance studies using the recombinant binding region (BR) form of Srr2 confirmed a direct interaction with fibronectin with an estimated Kd of 92 nM. Srr2-BR variants defective in fibrinogen binding also exhibited no interaction with fibronectin, suggesting that Srr2 binds this ligand through the dock-lock-latch mechanism, previously described for fibrinogen binding. The fibronectin site responsible for recombinant Srr2-BR binding was identified and localised in the central cell-binding domain of the protein. Finally, in the presence of fibronectin, the ability of a Δsrr2 mutant to adhere to human cervico-vaginal epithelial cells was significantly lower than that of the wild-type strain. CONCLUSION: By combining genetic and biochemical approaches, we demonstrate a new role for Srr2, namely interacting with fibronectin. We characterised the molecular mechanism of this interaction and demonstrated that it plays a role in promoting the adhesion of GBS to human cervico-vaginal epithelial cells, further substantiating the role of Srr2 as a factor responsible for the hypervirulence of GBS ST-17 strains. The discovery of the previously undescribed interaction between Srr2 and fibronectin establishes this adhesin as a key factor for GBS colonisation of host tissues.


Assuntos
Adesinas Bacterianas , Aderência Bacteriana , Fibronectinas , Ligação Proteica , Streptococcus agalactiae , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Streptococcus agalactiae/patogenicidade , Fibronectinas/metabolismo , Humanos , Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/genética , Fibrinogênio/metabolismo , Fibrinogênio/genética , Células Epiteliais/microbiologia , Feminino , Infecções Estreptocócicas/microbiologia , Fatores de Virulência/metabolismo , Fatores de Virulência/genética
2.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 5): 92-97, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699970

RESUMO

The Rib domain, which is often found as tandem-repeat structural modules in surface proteins of Gram-positive bacteria, plays important roles in mediating interactions of bacteria with their environments and hosts. A comprehensive structural analysis of various Rib domains is essential to fully understand their impact on the structure and functionality of these bacterial adhesins. To date, structural information has been limited for this expansive group of domains. In this study, the high-resolution crystal structure of the second member of the long Rib domain, a unique subclass within the Rib-domain family, derived from Limosilactobacillus reuteri is presented. The data not only demonstrate a highly conserved structure within the long Rib domain, but also highlight an evolutionary convergence in structural architecture with other modular domains found in cell-adhesion molecules.


Assuntos
Limosilactobacillus reuteri , Modelos Moleculares , Domínios Proteicos , Limosilactobacillus reuteri/química , Limosilactobacillus reuteri/metabolismo , Limosilactobacillus reuteri/genética , Cristalografia por Raios X , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Cell Rep ; 43(4): 114078, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38598334

RESUMO

The vaginal microbiome's composition varies among ethnicities. However, the evolutionary landscape of the vaginal microbiome in the multi-ethnic context remains understudied. We perform a systematic evolutionary analysis of 351 vaginal microbiome samples from 35 multi-ethnic pregnant women, in addition to two validation cohorts, totaling 462 samples from 90 women. Microbiome alpha diversity and community state dynamics show strong ethnic signatures. Lactobacillaceae have a higher ratio of non-synonymous to synonymous polymorphism and lower nucleotide diversity than non-Lactobacillaceae in all ethnicities, with a large repertoire of positively selected genes, including the mucin-binding and cell wall anchor genes. These evolutionary dynamics are driven by the long-term evolutionary process unique to the human vaginal niche. Finally, we propose an evolutionary model reflecting the environmental niches of microbes. Our study reveals the extensive ethnic signatures in vaginal microbial ecology and evolution, highlighting the importance of studying the host-microbiome ecosystem from an evolutionary perspective.


Assuntos
Lactobacillus , Microbiota , Vagina , Humanos , Vagina/microbiologia , Feminino , Microbiota/genética , Lactobacillus/genética , Adesinas Bacterianas/genética , Etnicidade/genética , Adulto , Evolução Molecular , Gravidez , Seleção Genética , Evolução Biológica
4.
Acta Crystallogr D Struct Biol ; 79(Pt 11): 971-979, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37860959

RESUMO

Cell-surface proteins known as adhesins enable bacteria to colonize particular environments, and in Gram-positive bacteria often contain autocatalytically formed covalent intramolecular cross-links. While investigating the prevalence of such cross-links, a remarkable example was discovered in Mobiluncus mulieris, a pathogen associated with bacterial vaginosis. This organism encodes a putative adhesin of 7651 residues. Crystallography and mass spectrometry of two selected domains, and AlphaFold structure prediction of the remainder of the protein, were used to show that this adhesin belongs to the family of thioester, isopeptide and ester-bond-containing proteins (TIE proteins). It has an N-terminal domain homologous to thioester adhesion domains, followed by 51 immunoglobulin (Ig)-like domains containing ester- or isopeptide-bond cross-links. The energetic cost to the M. mulieris bacterium in retaining such a large adhesin as a single gene or protein construct suggests a critical role in pathogenicity and/or persistence.


Assuntos
Adesinas Bacterianas , Mobiluncus , Feminino , Humanos , Mobiluncus/metabolismo , Adesinas Bacterianas/química , Ésteres/química
5.
Rev. peru. med. exp. salud publica ; 40(3): 348-353, jul. 2023. tab
Artigo em Espanhol | LILACS, INS-PERU | ID: biblio-1522776

RESUMO

Se determinó la presencia de los genotipos de virulencia de Helicobacter pylori y su asociación con las lesiones precursoras de malignidad gástrica y parámetros histológicos en pacientes con síntomas de dispepsia del suroccidente de Colombia. Se realizó reacción en cadena de polimerasa (PCR) para la caracterización genética de vacA, cagA, babA2 y sabA. Se empleó la prueba de chi cuadrado o Fischer para evaluar la asociación de cada genotipo sobre el desenlace clínico. En los pacientes con lesiones precursoras de malignidad gástrica se encontró que el 86,3% presentaron el genotipo vacA s1/m1, el 68,1% cagA+ y los genotipos babA2+ y sabA+ con el 68,8% y 55,8%, respectivamente. También, se demostró la asociación entre los genotipos de virulencia y el grado severo de infiltración de células polimorfonucleares. Además, se encontró una asociación entre la combinación de los genes vacA/cagA, vacA/sabA y babA2/sabA. Este estudio proporciona evidencia acerca de la asociación de los genotipos de virulencia del H. pylori y la inflamación gástrica en pacientes infectados.


The aim of this research was to determine the presence of Helicobacter pylori virulence genotypes and their association with precursor lesions of gastric malignancy and histological parameters in patients with dyspepsia symptoms in southwestern Colombia. Polymerase chain reaction (PCR) was used for the genetic characterization of vacA, cagA, babA2 and sabA. The chi-square or Fischer test were used to evaluate the association between each genotype and the clinical outcome. We found that 86.3% of the patients with precursor lesions of gastric malignancy presented the vacA s1/m1 genotype, 68.1% had the cagA+ genotype and 68.8% and 55.8% had the babA2+ and sabA+ genotypes, respectively. Our results show association between virulence genotypes and severe degree of polymorphonuclear cell infiltration. In addition, we found an association between the combination of vacA/cagA, vacA/sabA and babA2/sabA genes. This study provides evidence about the association of H. pylori virulence genotypes and gastric inflammation in infected patients.


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Distribuição de Qui-Quadrado , Adesinas Bacterianas , Gastrite , Fatores de Virulência , Inflamação
6.
Biomolecules ; 12(9)2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36139097

RESUMO

Intestinal bacterial communities participate in gut homeostasis and are recognized as crucial in bowel inflammation and colorectal cancer (CRC). Fusobacterium nucleatum (Fn), a pathobiont of the oral microflora, has recently emerged as a CRC-associated microbe linked to disease progression, metastasis, and a poor clinical outcome; however, the primary cellular and/or microenvironmental targets of this agent remain elusive. We report here that Fn directly targets putative colorectal cancer stem cells (CR-CSCs), a tumor cell subset endowed with cancer re-initiating capacity after surgery and chemotherapy. A patient-derived CSC line, highly enriched (70%) for the stem marker CD133, was expanded as tumor spheroids, dissociated, and exposed in vitro to varying amounts (range 100-500 MOI) of Fn. We found that Fn stably adheres to CSCs, likely by multiple interactions involving the tumor-associated Gal-GalNac disaccharide and the Fn-docking protein CEA-family cell adhesion molecule 1 (CEACAM-1), robustly expressed on CSCs. Importantly, Fn elicited innate immune responses in CSCs and triggered a growth factor-like, protein tyrosine phosphorylation cascade largely dependent on CEACAM-1 and culminating in the activation of p42/44 MAP kinase. Thus, the direct stimulation of CSCs by Fn may contribute to microbiota-driven colorectal carcinogenesis and represent a target for innovative therapies.


Assuntos
Neoplasias Colorretais , Infecções por Fusobacterium , Células-Tronco Neoplásicas , Antígenos CD , Moléculas de Adesão Celular , Neoplasias Colorretais/patologia , Dissacarídeos , Infecções por Fusobacterium/complicações , Infecções por Fusobacterium/microbiologia , Fusobacterium nucleatum/fisiologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Tirosina
7.
Cell Rep ; 37(7): 110002, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34788627

RESUMO

Infections typically begin with pathogens adhering to host cells. For bacteria, this adhesion can occur through specific ligand-binding domains. We identify a 20-kDa peptide-binding domain (PBD) in a 1.5-MDa RTX adhesin of a Gram-negative marine bacterium that colonizes diatoms. The crystal structure of this Ca2+-dependent PBD suggests that it may bind the C termini of host cell-surface proteins. A systematic peptide library analysis reveals an optimal tripeptide sequence with 30-nM affinity for the PBD, and X-ray crystallography details its peptide-protein interactions. Binding of the PBD to the diatom partner of the bacteria can be inhibited or competed away by the peptide, providing a molecular basis for inhibiting bacterium-host interactions. We further show that this PBD is found in other bacteria, including human pathogens such as Vibrio cholerae and Aeromonas veronii. Here, we produce the PBD ortholog from A. veronii and demonstrate, using the same peptide inhibitor, how pathogens may be prevented from adhering to their hosts.


Assuntos
Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/ultraestrutura , Interações entre Hospedeiro e Microrganismos/fisiologia , Sequência de Aminoácidos/genética , Aderência Bacteriana/genética , Aderência Bacteriana/fisiologia , Sítios de Ligação/genética , Biofilmes , Cristalografia por Raios X/métodos , Escherichia coli , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos/genética
8.
Front Mol Biosci ; 8: 704685, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381814

RESUMO

Glycolipids are present on the surfaces of all living cells and thereby represent targets for many protein receptors, such as lectins. Understanding the interactions between lectins and glycolipids is essential for investigating the functions of lectins and the dynamics of glycolipids in living membranes. This review focuses on lectins binding to the glycosphingolipid globotriaosylceramide (Gb3), an attractive host cell receptor, particularly for pathogens and pathogenic products. Shiga toxin (Stx), from Shigella dysenteriae or Escherichia coli, which is one of the most virulent bacterial toxins, binds and clusters Gb3, leading to local negative membrane curvature and the formation of tubular plasma membrane invaginations as the initial step for clathrin-independent endocytosis. After internalization, it is embracing the retrograde transport pathway. In comparison, the homotetrameric lectin LecA from Pseudomonas aeruginosa can also bind to Gb3, triggering the so-called lipid zipper mechanism, which results in membrane engulfment of the bacterium as an important step for its cellular uptake. Notably, both lectins bind to Gb3 but induce distinct plasma membrane domains and exploit mainly different transport pathways. Not only, several other Gb3-binding lectins have been described from bacterial origins, such as the adhesins SadP (from Streptococcus suis) and PapG (from E. coli), but also from animal, fungal, or plant origins. The variety of amino acid sequences and folds demonstrates the structural versatilities of Gb3-binding lectins and asks the question of the evolution of specificity and carbohydrate recognition in different kingdoms of life.

9.
Cell Microbiol ; 23(5): e13316, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33543826

RESUMO

Cell adhesion molecules mediate cell-to-cell and cell-to-matrix adhesions and play an immense role in a myriad of physiological processes during the growth and development of a multicellular organism. Cadherins belong to a major group of membrane-bound cell surface proteins that, in coordination with nectins, drive the formation and maintenance of adherens junctions for mediating cell to cell adhesion, cellular communication and signalling. Alongside adhesive function, the involvement of cadherins in mediating host-pathogen interactions has been extensively explored in recent years. In this review, we provide an in-depth understanding of microbial pathogens and their virulence factors that exploit cadherins for their strategical invasion into the host cell. Furthermore, macromolecular interactions involving cadherins and various microbial factors such as secretory toxins and adhesins lead to the disintegration of host cell junctions followed by the entry of the pathogen or triggering downstream signalling pathways responsible for successful invasion of the pathogenic microbes are discussed. Besides providing a comprehensive insight into some of the structural complexes involving cadherins and microbial factors to offer the mechanistic details of host-pathogen interactions, the current review also highlights novel constituents of various cell signalling events such as endocytosis machinery elicited upon microbial infections.


Assuntos
Bactérias/patogenicidade , Caderinas/metabolismo , Fungos/patogenicidade , Interações Hospedeiro-Patógeno , Vírus/patogenicidade , Animais , Bactérias/metabolismo , Infecções Bacterianas/microbiologia , Endocitose , Fungos/metabolismo , Humanos , Micoses/microbiologia , Transdução de Sinais , Virulência , Fatores de Virulência/metabolismo , Viroses/virologia
10.
Int J Mol Sci ; 21(23)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276454

RESUMO

We have identified a variety of proteins in species of the Legionella, Aeromonas, Pseudomonas, Vibrio, Nitrosomonas, Nitrosospira, Variovorax, Halomonas, and Rhizobia genera, which feature repetitive modules of different length and composition, invariably ending at the COOH side with Asp-Asp-x-Pro (DDxP) motifs. DDxP proteins range in size from 900 to 6200 aa (amino acids), and contain 1 to 5 different module types, present in one or multiple copies. We hypothesize that DDxP proteins were modeled by the action of specific endonucleases inserting DNA segments into genes encoding DDxP motifs. Target site duplications (TSDs) formed upon repair of staggered ends generated by endonuclease cleavage would explain the DDxP motifs at repeat ends. TSDs acted eventually as targets for the insertion of more modules of the same or different types. Repeat clusters plausibly resulted from amplification of both repeat and flanking TSDs. The proposed growth shown by the insertion model is supported by the identification of homologous proteins lacking repeats in Pseudomonas and Rhizobium. The 85 DDxP repeats identified in this work vary in length, and can be sorted into short (136-215 aa) and long (243-304 aa) types. Conserved Asp-Gly-Asp-Gly-Asp motifs are located 11-19 aa from the terminal DDxP motifs in all repeats, and far upstream in most long repeats.


Assuntos
Motivos de Aminoácidos , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/metabolismo , Domínios Proteicos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Cálcio/metabolismo , Transferência Genética Horizontal , Família Multigênica , Filogenia , Sequências Repetitivas de Ácido Nucleico , Especificidade da Espécie , Sistemas de Secreção Tipo I/genética , Sistemas de Secreção Tipo I/metabolismo
11.
Acta Crystallogr D Struct Biol ; 76(Pt 8): 759-770, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32744258

RESUMO

BibA, a group B streptococcus (GBS) surface protein, has been shown to protect the pathogen from phagocytic killing by sequestering a complement inhibitor: C4b-binding protein (C4BP). Here, the X-ray crystallographic structure of a GBS BibA fragment (BibA126-398) and a low-resolution small-angle X-ray scattering (SAXS) structure of the full-length N-terminal domain (BibA34-400) are described. The BibA126-398 fragment crystal structure displayed a novel and predominantly helical structure. The tertiary arrangement of helices forms four antiparallel three-helix-bundle-motif repeats, with one long helix from a bundle extending into the next. Multiple mutations on recombinant BibA34-400 delayed the degradation of the protein, and circular dichroism spectroscopy of BibA34-400 suggested a similar secondary-structure composition to that observed in the crystallized BibA126-398 fragment. A model was generated for the 92 N-terminal residues (BibA34-125) using structural similarity prediction programs, and a BibA34-400 model was generated by combining the coordinates of BibA34-126 and BibA126-398. The X-ray structure of BibA126-398 and the model of BibA34-400 fitted well into the calculated SAXS envelope. One possible binding site for the BibA N-terminal domain was localized to the N-terminal CCP (complement-control protein) domains of the C4BP α-chain, as indicated by the decreased binding of BibA to a ΔCCP1 C4BP α-chain mutant. In summary, it is suggested that the GBS surface protein BibA, which consists of three antiparallel α-helical-bundle motifs, is unique and belongs to a new class of Gram-positive surface adhesins.


Assuntos
Adesinas Bacterianas/química , Streptococcus agalactiae/metabolismo , Sítios de Ligação , Proteína de Ligação ao Complemento C4b/química , Cristalografia por Raios X , Conformação Proteica em alfa-Hélice
12.
Int Microbiol ; 23(4): 597-605, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32451737

RESUMO

Human infection by Legionella pneumophila (Lpn) only occurs via contaminated water from man-made sources, and eradication of these bacteria from man-made water systems is complicated by biofilm colonization. Using a continuously fed biofilm reactor model, we grew a biofilm consortium from potable water that was able to prolong recovery of Lpn CFU from biofilms. This effect was recreated using a subset of those species in a simplified consortium composed of eight bacterial isolates from the first biofilm reactor. In the reactor with the eight-species consortium, Lpn biofilm CFU was relatively stable over a 12-day trial. An isolate of Acidovorax from the consortium was, as a single species biofilm, able to promote Lpn surface attachment. Other isolates from the Pelomonas genus grew as equally robust biofilms alone, but did not promote surface attachment of Lpn. This attachment was disrupted by cationic polysaccharides and loss of the Lpn Lcl collagen-like adhesin protein. This work demonstrates that, while Lpn was fairly incompetent at attachment to surfaces to form a biofilm alone, pre-existing biofilms allowed attachment of Lpn as secondary colonizers. In addition, we demonstrate that initial attachment of Lpn to Acidovorax biofilms is likely via the Lcl-adhesin protein.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana/fisiologia , Biofilmes/crescimento & desenvolvimento , Comamonadaceae/metabolismo , Legionella pneumophila/metabolismo , Adesinas Bacterianas/genética , Água Potável/microbiologia , Humanos , Polissacarídeos Bacterianos/metabolismo , Microbiologia da Água
13.
Int J Mol Sci ; 21(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252300

RESUMO

The biofilm component poly-N-acetylglucosamine (PNAG) is an important virulence determinant in medical-device-related infections caused by ESKAPE group pathogens including Gram-positive Staphylococcus aureus and Gram-negative Acinetobacter baumannii. PNAG presentation on bacterial cell surfaces and its accessibility for host interactions are not fully understood. We employed a lectin microarray to examine PNAG surface presentation and interactions on methicillin-sensitive (MSSA) and methicillin-resistant S. aureus (MRSA) and a clinical A. baumannii isolate. Purified PNAG bound to wheatgerm agglutinin (WGA) and succinylated WGA (sWGA) lectins only. PNAG was the main accessible surface component on MSSA but was relatively inaccessible on the A. baumannii surface, where it modulated the presentation of other surface molecules. Carbohydrate microarrays demonstrated similar specificities of S. aureus and A. baumannii for their most intensely binding carbohydrates, including 3' and 6'sialyllactose, but differences in moderately binding ligands, including blood groups A and B. An N-acetylglucosamine-binding lectin function which binds to PNAG identified on the A. baumannii cell surface may contribute to biofilm structure and PNAG surface presentation on A. baumannii. Overall, these data indicated differences in PNAG presentation and accessibility for interactions on Gram-positive and Gram-negative cell surfaces which may play an important role in biofilm-mediated pathogenesis.


Assuntos
Acinetobacter baumannii/metabolismo , Biofilmes , Glicômica , Análise em Microsséries , Polissacarídeos Bacterianos/metabolismo , Staphylococcus aureus/metabolismo , Acetilglucosamina/metabolismo , Membrana Externa Bacteriana/metabolismo , Glicômica/métodos , Humanos , Análise em Microsséries/métodos , Modelos Biológicos , Estrutura Molecular , Polissacarídeos Bacterianos/química , Fatores de Virulência/metabolismo
14.
Front Immunol ; 10: 1775, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31402921

RESUMO

Brucella enters their hosts mostly through mucosae from where it spreads systemically. Adhesion to extracellular matrix (ECM) components or to host cells is important for the infectious process, and is mediated by several adhesins, including the BtaF trimeric autotransporter. Although Th1 responses and gamma interferon (IFN-γ) are important for protection, antibodies able to block adhesions might also contribute to prevent Brucella infection. We evaluated the importance of BtaF for respiratory Brucella infection, and characterized the immune response and protection from mucosal challenge induced by nasal vaccination with recombinant BtaF. While lung CFU numbers did not differ at day 1 p.i. between mice intratracheally inoculated with B. suis M1330 (wild type) and those receiving a ΔbtaF mutant, they were reduced in the latter group at 7 and 30 days p.i. For vaccination studies the BtaF passenger domain was engineered and expressed as a soluble trimeric protein. Mice were immunized by the nasal route with BtaF or saline (control group) plus the mucosal adjuvant c-di-AMP. Specific anti-BtaF antibodies (IgG and IgA) were increased in serum, including a mixed IgG2a/IgG1 response. In vitro, these antibodies reduced bacterial adhesion to A549 alveolar epithelial cells. Specific IgA antibodies were also increased in several mucosae. Spleen cells from BtaF immunized mice significantly increased their IL-2, IL-5, IL-17, and IFN-γ secretion upon antigen stimulation. In cervical draining lymph nodes, antigen-experienced CD4+ T cells were maintained mainly as central memory cells. A BtaF-specific delayed-type hypersensitivity response was detected in BtaF immunized mice. Lung cells from the latter produced high levels of IFN-γ upon antigen stimulation. Although nasal immunization with BtaF did not protect mice against B. suis respiratory challenge, it conferred significant protection from intragastric challenge; the splenic load of B. suis was reduced by 3.28 log CFU in immunized mice. This study shows that nasal vaccination with BtaF+c-di-AMP protects against intragastric challenge with B. suis by inducing local and systemic antibody responses, central memory CD4+ T cells and strong Th1 responses. Therefore, although BtaF vaccination did not protect from B. suis respiratory infection, this adhesin constitutes a promising immunogen against mucosal B. suis infection.


Assuntos
Adesinas Bacterianas/genética , Antígenos de Bactérias/imunologia , Brucella suis/fisiologia , Brucelose/imunologia , Brucelose/microbiologia , Imunidade Adaptativa , Adesinas Bacterianas/metabolismo , Administração Intranasal , Animais , Linfócitos T CD4-Positivos , Fosfatos de Dinucleosídeos/metabolismo , Feminino , Humanos , Imunidade nas Mucosas/imunologia , Imunização/métodos , Camundongos , Virulência
15.
Anal Bioanal Chem ; 411(25): 6549-6559, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31410537

RESUMO

Cell surface receptors, often called transmembrane receptors, are key cellular components as they control and mediate cell communication and signalling, converting extracellular signals into intracellular signals. Elucidating the molecular details of ligand binding (cytokine, growth factors, hormones, pathogens,...) to cell surface receptors and how this binding triggers conformational changes that initiate intracellular signalling is needed to improve our understanding of cellular processes and for rational drug design. Unfortunately, the molecular complexity and high hydrophobicity of membrane proteins significantly hamper their structural and functional characterization in conditions mimicking their native environment. With its piconewton force sensitivity and (sub)nanometer spatial resolution, together with the capability of operating in liquid environment and at physiological temperature, atomic force microscopy (AFM) has proven to be one of the most powerful tools to image and quantify receptor-ligand bonds in situ under physiologically relevant conditions. In this article, a brief overview of the rapid evolution of AFM towards quantitative biological mapping will be given, followed by selected examples highlighting the main advances that AFM-based ligand-receptor studies have brought to the fields of cell biology, immunology, microbiology, and virology, along with future prospects and challenges. Graphical abstract.


Assuntos
Microscopia de Força Atômica/métodos , Receptores de Superfície Celular/metabolismo , Animais , Membrana Celular/metabolismo , Desenho de Equipamento , Humanos , Ligantes , Microscopia de Força Atômica/instrumentação , Ligação Proteica
16.
Beilstein J Org Chem ; 14: 2607-2617, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30410623

RESUMO

The rapid development of antimicrobial resistance is threatening mankind to such an extent that the World Health Organization expects more deaths from infections than from cancer in 2050 if current trends continue. To avoid this scenario, new classes of anti-infectives must urgently be developed. Antibiotics with new modes of action are needed, but other concepts are also currently being pursued. Targeting bacterial virulence as a means of blocking pathogenicity is a promising new strategy for disarming pathogens. Furthermore, it is believed that this new approach is less susceptible towards resistance development. In this review, recent examples of anti-infective compounds acting on several types of bacterial targets, e.g., adhesins, toxins and bacterial communication, are described.

17.
Artigo em Inglês | MEDLINE | ID: mdl-29535975

RESUMO

Mycoplasma hyopneumoniae, an agriculturally important porcine pathogen, disrupts the mucociliary escalator causing ciliostasis, loss of cilial function, and epithelial cell death within the porcine lung. Losses to swine production due to growth rate retardation and reduced feed conversion efficiency are severe, and antibiotics are used heavily to control mycoplasmal pneumonia. Notably, little is known about the repertoire of host receptors that M. hyopneumoniae targets to facilitate colonization. Here we show, for the first time, that actin exists extracellularly on porcine epithelial monolayers (PK-15) using surface biotinylation and 3D-Structured Illumination Microscopy (3D-SIM), and that M. hyopneumoniae binds to the extracellular ß-actin exposed on the surface of these cells. Consistent with this hypothesis we show: (i) monoclonal antibodies that target ß-actin significantly block the ability of M. hyopneumoniae to adhere and colonize PK-15 cells; (ii) microtiter plate binding assays show that M. hyopneumoniae cells bind to monomeric G-actin in a dose dependent manner; (iii) more than 100 M. hyopneumoniae proteins were recovered from affinity-chromatography experiments using immobilized actin as bait; and (iv) biotinylated monomeric actin binds directly to M. hyopneumoniae proteins in ligand blotting studies. Specifically, we show that the P97 cilium adhesin possesses at least two distinct actin-binding regions, and binds monomeric actin with nanomolar affinity. Taken together, these observations suggest that actin may be an important receptor for M. hyopneumoniae within the swine lung and will aid in the future development of intervention strategies against this devastating pathogen. Furthermore, our observations have wider implications for extracellular actin as an important bacterial receptor.


Assuntos
Actinas/metabolismo , Adesinas Bacterianas/metabolismo , Células Epiteliais/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Mycoplasma hyopneumoniae/metabolismo , Mycoplasma hyopneumoniae/patogenicidade , Ligação Proteica , Actinas/efeitos dos fármacos , Animais , Anticorpos Monoclonais/farmacologia , Avidina/metabolismo , Biotinilação , Linhagem Celular , Cílios/metabolismo , Células Epiteliais/microbiologia , Pulmão , Proteínas de Membrana/metabolismo , Pneumonia Suína Micoplasmática , Suínos
18.
FEBS J ; 285(10): 1812-1826, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29575515

RESUMO

Repeats-in-toxin (RTX) adhesins are present in many Gram-negative bacteria to facilitate biofilm formation. Previously, we reported that the 1.5-MDa RTX adhesin (MpIBP) from the Antarctic bacterium, Marinomonas primoryensis, is tethered to the bacterial cell surface via its N-terminal Region I (RI). Here, we show the detailed structural features of RI. It has an N-terminal periplasmic retention domain (RIN), a central domain (RIM) that can insert into the ß-barrel of an outer-membrane pore protein during MpIBP secretion, and three extracellular domains at its C terminus (RIC) that transition the protein into the extender region (RII). RIN has a novel ß-sandwich fold with a similar shape to ßγ-crystallins and tryptophan RNA attenuation proteins. Because RIM undergoes fast and extensive degradation in vitro, its narrow cylindrical shape was rapidly measured by small-angle X-ray scattering before proteolysis could occur. The crystal structure of RIC comprises three tandem ß-sandwich domains similar to those in RII, but increasing in their hydrophobicity with proximity to the outer membrane. In addition, the key Ca2+ ion that rigidifies the linkers between RII domains is not present between the first two of these RIC domains. This more flexible RI linker near the cell surface can act as a 'pivot' to help the 0.6-µm-long MpIBP sweep over larger volumes to find its binding partners. Since the physical features of RI are well conserved in the RTX adhesins of many Gram-negative bacteria, our detailed structural and bioinformatic analyses serve as a model for investigating the surface retention of biofilm-forming bacteria, including human pathogens.


Assuntos
Adesinas Bacterianas/química , Biofilmes , Sequência Conservada , Marinomonas/química , Sequência de Aminoácidos , Cálcio/química , Biologia Computacional , Interações Hidrofóbicas e Hidrofílicas , Magnésio/química , Periplasma/química , Conformação Proteica , Proteólise
19.
Annu Rev Physiol ; 80: 353-387, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29433414

RESUMO

Cells need to be anchored to extracellular matrix (ECM) to survive, yet the role of ECM in guiding developmental processes, tissue homeostasis, and aging has long been underestimated. How ECM orchestrates the deterioration of healthy to pathological tissues, including fibrosis and cancer, also remains poorly understood. Inquiring how alterations in ECM fiber tension might drive these processes is timely, as mechanobiology is a rapidly growing field, and many novel mechanisms behind the mechanical forces that can regulate protein, cell, and tissue functions have recently been deciphered. The goal of this article is to review how forces can switch protein functions, and thus cell signaling, and thereby inspire new approaches to exploit the mechanobiology of ECM in regenerative medicine as well as for diagnostic and therapeutic applications. Some of the mechanochemical switching concepts described here for ECM proteins are more general and apply to intracellular proteins as well.


Assuntos
Matriz Extracelular/fisiologia , Transdução de Sinais/fisiologia , Animais , Biofísica , Receptores ErbB/metabolismo , Humanos
20.
Int J Mol Sci ; 17(11)2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27834807

RESUMO

The mucus layer covering the gastrointestinal (GI) epithelium is critical in selecting and maintaining homeostatic interactions with our gut bacteria. However, the molecular details of these interactions are not well understood. Here, we provide mechanistic insights into the adhesion properties of the canonical mucus-binding protein (MUB), a large multi-repeat cell-surface adhesin found in Lactobacillus inhabiting the GI tract. We used atomic force microscopy to unravel the mechanism driving MUB-mediated adhesion to mucins. Using single-molecule force spectroscopy we showed that MUB displayed remarkable adhesive properties favouring a nanospring-like adhesion model between MUB and mucin mediated by unfolding of the multiple repeats constituting the adhesin. We obtained direct evidence for MUB self-interaction; MUB-MUB followed a similar binding pattern, confirming that MUB modular structure mediated such mechanism. This was in marked contrast with the mucin adhesion behaviour presented by Galectin-3 (Gal-3), a mammalian lectin characterised by a single carbohydrate binding domain (CRD). The binding mechanisms reported here perfectly match the particular structural organization of MUB, which maximizes interactions with the mucin glycan receptors through its long and linear multi-repeat structure, potentiating the retention of bacteria within the outer mucus layer.


Assuntos
Adesinas Bacterianas/química , Galectina 3/química , Limosilactobacillus reuteri/metabolismo , Mucina-3/química , Proteínas Recombinantes/química , Adesinas Bacterianas/isolamento & purificação , Adesinas Bacterianas/metabolismo , Animais , Aderência Bacteriana , Meios de Cultivo Condicionados/química , Galectina 3/genética , Galectina 3/metabolismo , Expressão Gênica , Humanos , Mucosa Intestinal/química , Limosilactobacillus reuteri/crescimento & desenvolvimento , Microscopia de Força Atômica , Modelos Moleculares , Mucina-3/isolamento & purificação , Mucina-3/metabolismo , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...