Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.117
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38954336

RESUMO

Northeastern Algeria boasts numerous hot springs, yet these hydrothermal sites remain largely unexplored for their microbial ecology. The present study explores the bacterial abundance and diversity within two distinct Algerian hot springs (Hammam Saïda and Hammam Debagh) and investigates the link between the prevailing bacteria with geochemical parameters. High-throughput 16S rRNA gene sequencing of water and sediment samples revealed a bacterial dominance of 99.85-91.16% compared to Archaea (0.14-0.66%) in both springs. Interestingly, Saïda hot spring, characterized by higher temperatures and sodium content, harbored a community dominated by Pseudomonadota (51.13%), whereas Debagh, a Ca-Cl-SO4 type spring, was primarily populated by Bacillota with 55.33%. Bacteroidota displayed even distribution across both sites. Additional phyla, including Chloroflexota, Deinococcota, Cyanobacteriota, and Chlorobiota, were also present. Environmental factors, particularly temperature, sodium, potassium, and alkalinity, significantly influenced bacterial diversity and composition. These findings shed light on the interplay between distinct microbial communities and their associated geochemical properties, providing valuable insights for future research on biogeochemical processes in these unique ecosystems driven by distinct environmental conditions, including potential applications in bioremediation and enzyme discovery.

2.
Heliyon ; 10(11): e32384, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961890

RESUMO

The mutualistic symbiotic relationship between insects and bacteria greatly influences the growth and development of host insects. Tessaratoma javanica (Thunberg) (Hemiptera: Tessaratomidae), also referred to as the litchi stink bug, has recently been established as an important insect pest of Litchi chinensis Sonn. and causes substantial yield loss in India. To design effective and environmentally safe management strategies, an understanding of the diversity and functions of microbiota harbored across the development stages is very important. The assessment of the diversity of development-associated bacteria in T. javanica and their predicted functions was conducted using 16S rRNA gene sequences obtained by the Illumina MiSeq technology. The result showed that taxonomic analysis of associated bacteria in different developmental stages includes a total of 46 phyla, encompassing 139 classes, 271 orders, 474 families, and 893 genera of bacteria. All developmental stages of T. javanica shared a total of 42.82 percent of operational taxonomic units (OTUs), with a 97 % similarity threshold. Alpha diversity indices showed maximum species richness in the egg and adult stages. The phyla Proteobacteria followed by Firmicutes, Bacteriodetes, and Actinobacteria, exhibited the highest levels of abundance across all the developmental stages of T. javanica. Microbiota were most different between the egg and the 4th nymphal stage (χ2 = 711.67) and least different between the 2nd and 4th nymphal instars (χ2 = 44.45). The predicted functions of the microbiota associated with T. javanica are mainly involved in amino acid metabolism, cell motility, cellular processes and signaling, glycan biosynthesis and metabolism, lipid metabolism, and membrane transport. The present study documentation and information on symbiotic bacteria across T. javanica life stages will prompt the development of novel biological management strategies.

3.
Front Microbiol ; 15: 1358582, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962118

RESUMO

Under a full straw returning system, the relationship between soil bacterial community diversity and straw decomposition, yield, and the combined application of slow-release nitrogen and urea remains unclear. To evaluate these effects and provide an effective strategy for sustainable agricultural production, a 2-year field positioning trial was conducted using maize as the research object. Six experimental treatments were set up: straw returning + no nitrogen fertilizer (S1N0), straw returning + slow-release nitrogen fertilizer:urea = 0:100% (S1N1), straw returning + slow-release nitrogen fertilizer:urea = 30%:70% (S1N2), straw returning + slow-release nitrogen fertilizer:urea = 60%:40% (S1N3), straw returning + slow-release nitrogen fertilizer:urea = 90%:10% (S1N4), and straw removal + slow-release nitrogen fertilizer:urea = 30%:70% (S0N2). Significant differences (p < 0.05) were observed between treatments for Proteobacteria, Acidobacteriota, Myxococcota, and Actinobacteriota at the jointing stage; Proteobacteria, Acidobacteriota, Myxococcota, Bacteroidota, and Gemmatimonadota at the tasseling stage; and Bacteroidota, Firmicutes, Myxococcota, Methylomirabilota, and Proteobacteria at the maturity stage. The alpha diversity analysis of the soil bacterial community showed that the number of operational taxonomic units (OTUs) and the Chao1 index were higher in S1N2, S1N3, and S1N4 compared with S0N2 at each growth stage. Additionally, the alpha diversity measures were higher in S1N3 and S1N4 compared with S1N2. The beta diversity analysis of the soil bacterial community showed that the bacterial communities in S1N3 and S1N4 were more similar or closely clustered together, while S0N2 was further from all treatments across the three growth stages. The cumulative straw decomposition rate was tested for each treatment, and data showed that S1N3 (90.58%) had the highest decomposition rate. At the phylum level, straw decomposition was positively correlated with Proteobacteria, Actinobacteriota, Myxococcota, and Bacteroidota but significantly negatively correlated with Acidobacteriota. PICRUSt2 function prediction results show that the relative abundance of bacteria in soil samples from each treatment differed significantly. The maize yield of S1N3 was 15597.85 ± 1477.17 kg/hm2, which was 12.80 and 4.18% higher than that of S1N1 and S0N2, respectively. In conclusion, a combination of slow-release nitrogen fertilizer and urea can enhance the straw decomposition rate and maize yield by improving the soil bacterial community and structure within a full straw returning system.

4.
Biol Futur ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970754

RESUMO

Epilithic biofilms are ubiquitous in large river environments and are crucial for biogeochemical processes, but their community structures and functions remain poorly understood. In this paper, the seasonal succession in the morphological structure and the taxonomic composition of an epilithic bacterial biofilm community at a polluted site of the Danube River were followed using electron microscopy, high-throughput 16S rRNA gene amplicon sequencing and multiplex/taxon-specific PCRs. The biofilm samples were collected from the same submerged stone and carried out bimonthly in the littoral zone of the Danube River, downstream of a large urban area. Scanning electron microscopy showed that the biofilm was composed of diatoms and a variety of bacteria with different morphologies. Based on amplicon sequencing, the bacterial communities were dominated by the phyla Pseudomonadota and Bacteroidota, while the most abundant archaea belonged to the phyla Nitrososphaerota and Nanoarchaeota. The changing environmental factors had an effect on the composition of the epilithic microbial community. Critical levels of faecal pollution in the water were associated with increased relative abundance of Sphaerotilus, a typical indicator of "sewage fungus", but the composition and diversity of the epilithic biofilms were also influenced by several other environmental factors such as temperature, water discharge and total suspended solids (TSS). The specific PCRs showed opportunistic pathogenic bacteria (e.g. Pseudomonas spp., Legionella spp., P. aeruginosa, L. pneumophila, Stenotrophomonas maltophilia) in some biofilm samples, but extended spectrum ß-lactamase (ESBL) genes and macrolide resistance genes could not be detected.

5.
Ecol Evol ; 14(6): e11481, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835524

RESUMO

The middle and lower reaches of the Yangtze River serve as principal rice production bases in China, yet the biodiversity and ecological processes of bacterial communities in paddy soils are not well understood. This study explores the diversity, composition, ecological function, and assembly processes of abundant and rare bacterial communities in paddy soils. A total of 129 paddy soil samples from 43 sites along the middle and lower reaches of the Yangtze River were collected and analyzed using NovaSeq sequencing. The results showed that the dominant phylum for both abundant and rare taxa was Proteobacteria, with a greater relative abundance of the abundant taxa. The diversity of the abundant community was lower than that of the rare community. Soil properties and geographic variables explained more of the variation in the abundant community than in the rare community. The rare community exhibited a significant distance-decay relationship. The assembly of the abundant community was more influenced by stochastic processes, although both the abundant and rare communities were governed by stochastic processes. It is concluded that both abundant and rare bacterial communities exhibit differing biogeographic patterns, yet they undergo similar ecological processes in the paddy soils along the middle and lower reaches of the Yangtze River. These observations offer a theoretical framework for a deeper comprehension of the function of both abundant and rare bacteria, as well as the development and preservation of soil bacterial diversity within agricultural ecosystems.

6.
Environ Res ; 257: 119272, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38823613

RESUMO

Community coalescence related to bacterial mixing events regulates community characteristics and affects the health of estuary ecosystems. At present, bacterial coalescence and its driving factors are still unclear. The present study used a dataset from the Chesapeake Bay (2017) to address how bacterial community coalescence in response to variable hydrochemistry in estuarine ecosystems. We determined that variable hydrochemistry promoted the deterioration of water quality. Temperature, orthophosphate, dissolved oxygen, chlorophyll a, Secchi disk depth, and dissolved organic phosphorus were the key environmental factors driving community coalescence. Bacteria with high tolerance to environmental change were the primary taxa accumulated in community coalescence, and the significance of deterministic processes to communities was revealed. Community coalescence was significantly correlated with the pathways of metabolism and organismal systems, and promoted the co-occurrence of antibiotic resistance and virulence factor genes. Briefly, community coalescence under variable hydrochemical conditions shaped bacterial diversity and functional traits, to optimise strategies for energy acquisition and lay the foundation for alleviating environmental pressures. However, potential pathogenic bacteria in community coalescence may be harmful to human health and environmental safety. The present study provides a scientific reference for ecological management of estuaries.

7.
PeerJ ; 12: e17421, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827308

RESUMO

Background: Rainfall-induced coastal runoff represents an important environmental impact in near-shore coral reefs that may affect coral-associated bacterial microbiomes. Shifts in microbiome community composition and function can stress corals and ultimately cause mortality and reef declines. Impacts of environmental stress may be site specific and differ between coral microbiome compartments (e.g., tissue versus mucus). Coastal runoff and associated water pollution represent a major stressor for near-shore reef-ecosystems in Guam, Micronesia. Methods: Acropora pulchra colonies growing on the West Hagåtña reef flat in Guam were sampled over a period of 8 months spanning the 2021 wet and dry seasons. To examine bacterial microbiome diversity and composition, samples of A. pulchra tissue and mucus were collected during late April, early July, late September, and at the end of December. Samples were collected from populations in two different habitat zones, near the reef crest (farshore) and close to shore (nearshore). Seawater samples were collected during the same time period to evaluate microbiome dynamics of the waters surrounding coral colonies. Tissue, mucus, and seawater microbiomes were characterized using 16S DNA metabarcoding in conjunction with Illumina sequencing. In addition, water samples were collected to determine fecal indicator bacteria (FIB) concentrations as an indicator of water pollution. Water temperatures were recorded using data loggers and precipitation data obtained from a nearby rain gauge. The correlation structure of environmental parameters (temperature and rainfall), FIB concentrations, and A. pulchra microbiome diversity was evaluated using a structural equation model. Beta diversity analyses were used to investigate spatio-temporal trends of microbiome composition. Results: Acropora pulchra microbiome diversity differed between tissues and mucus, with mucus microbiome diversity being similar to the surrounding seawater. Rainfall and associated fluctuations of FIB concentrations were correlated with changes in tissue and mucus microbiomes, indicating their role as drivers of A. pulchra microbiome diversity. A. pulchra tissue microbiome composition remained relatively stable throughout dry and wet seasons; tissues were dominated by Endozoicomonadaceae, coral endosymbionts and putative indicators of coral health. In nearshore A. pulchra tissue microbiomes, Simkaniaceae, putative obligate coral endosymbionts, were more abundant than in A. pulchra colonies growing near the reef crest (farshore). A. pulchra mucus microbiomes were more diverse during the wet season than the dry season, a distinction that was also associated with drastic shifts in microbiome composition. This study highlights the seasonal dynamics of coral microbiomes and demonstrates that microbiome diversity and composition may differ between coral tissues and the surface mucus layer.


Assuntos
Antozoários , Recifes de Corais , Microbiota , Estações do Ano , Animais , Antozoários/microbiologia , Microbiota/fisiologia , Microbiota/genética , Muco/microbiologia , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação
8.
Front Microbiol ; 15: 1395568, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846576

RESUMO

The wood-feeding termite, Coptotermes formosanus, presents an efficient lignocellulolytic system, offering a distinctive model for the exploration of host-microbial symbiosis towards lignocellulose degradation. Despite decades of investigation, understanding the diversity, community structure, and functional profiles of bacterial symbionts within specific gut regions, particularly the foregut and midgut of C. formosanus, remains largely elusive. In light of this knowledge gap, our efforts focused on elucidating the diversity, community composition and functions of symbiotic bacteria inhabiting the foregut, midgut, and hindgut of C. formosanus via metagenomics. The termite harbored a diverse community of bacterial symbionts encompassing 352 genera and 26 known phyla, exhibiting an uneven distribution across gut regions. Notably, the hindgut displayed a higher relative abundance of phyla such as Bacteroidetes (56.9%) and Spirochetes (23.3%). In contrast, the foregut and midgut were predominantly occupied by Proteobacteria (28.9%) and Firmicutes (21.2%) after Bacteroidetes. The foregut harbored unique phyla like Candidate phylum_TM6 and Armatimonadetes. At the family level, Porphyromonadaceae (28.1, 40.6, and 53.5% abundance in foregut, midgut, and hindgut, respectively) and Spirochaetaceae (foregut = 9%, midgut = 16%, hindgut = 21.6%) emerged as dominant families in the termite's gut regions. Enriched operational taxonomic units (OTUs) were most abundant in the foregut (28), followed by the hindgut (14), while the midgut exhibited enrichment of only two OTUs. Furthermore, the functional analyses revealed distinct influences of bacterial symbionts on various metabolic pathways, particularly carbohydrate and energy metabolisms of the host. Overall, these results underscore significant variations in the structure of the bacterial community among different gut regions of C. formosanus, suggesting unique functional roles of specific bacteria, thereby inspiring further investigations to resolve the crosstalk between host and microbiomes in individual gut-regions of the termite.

9.
Enzyme Microb Technol ; 179: 110468, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38850683

RESUMO

Lignin is an aromatic macromolecule and one of the main constituents of lignocellulosic materials. Kraft lignin is generated as a residual by-product of the lignocellulosic biomass industrial process, and it might be used as a feedstock to generate low molecular weight aromatic compounds. In this study, we seek to understand and explore the potential of ruminal bacteria in the degradation of kraft lignin. We established two consortia, KLY and KL, which demonstrated significant lignin-degrading capabilities. Both consortia reached maximum growth after two days, with KLY showing a higher growth and decolorization rate. Additionally, SEM analysis revealed morphological changes in the residual lignin from both consortia, indicating significant degradation. This was further supported by FTIR spectra, which showed new bands corresponding to the C-H vibrations of guaiacyl and syringyl units, suggesting structural transformations of the lignin. Taxonomic analysis showed enrichment of the microbial community with members of the Dickeya genus. Seven metabolic pathways related to lignin metabolism were predicted for the established consortia. Both consortia were capable of consuming aromatic compounds such as 4-hydroxybenzoic acid, syringaldehyde, acetovanillone, and syringic acid, highlighting their capacity to convert aromatic compounds into commercially valuable molecules presenting antifungal activity and used as food preservatives as 4-hydroxyphenylacetic, 3-phenylacetic, and phenylacetic acids. Therefore, the microbial consortia shown in the present work are models for understanding the process of lignin degradation and consumption in bacterial anaerobic communities and developing biological processes to add value to industrial processes based on lignocellulosic biomass as feedstock.

10.
Front Microbiol ; 15: 1389751, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863755

RESUMO

Tobacco (Nicotiana tabacum L.) is a major cash crop, and soil quality played a significant role in the yield and quality of tobacco. Most farmers cultivate tobacco in rotation with other crops to improve the soil characteristics. However, the effects of different previous crops on the soil's nutrient status and bacterial community for tobacco cultivation still need to be determined. Three treatments were assessed in this study, i.e., tobacco-planting soil without treatment (CK), soil with barley previously cultivated (T1), and soil with rapeseed previously cultivated (T2). The soil physical and chemical properties and the 16S rRNA gene sequence diversity of the bacterial community were analyzed. The effects of different crops on the physical and chemical properties of tobacco-planting soil and the diversity and richness of the bacterial community were comprehensively discussed. The results of this study showed that different previously cultivated crops altered the nutrient status of the soil, with changes in the ratio of NH4 +-N to NO3 --N having the most significant impact on tobacco. In CK, the ratio of NH4 +-N to NO3 --N was 1:24.2, T1-1:9.59, and T2-1:11.10. The composition of the bacterial community in tobacco-planting soil varied significantly depending on the previously cultivated crops. The richness and diversity of the bacterial community with different crops were considerably higher than without prior cultivation of different crops. The dominant bacteria in different treatments were Actinobacteriota, Proteobacteria, and Chloroflexi with their relative abundance differed. In conclusion, our study revealed significant differences in nutrient status, bacterial community diversity, and the richness of tobacco-planting soil after the preceding cultivation of different crops. Suitable crops should be selected to be previously cultivated in tobacco crop rotations in near future for sustainable agriculture.

11.
Huan Jing Ke Xue ; 45(6): 3605-3613, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897780

RESUMO

It is of great significance for the conservation of biodiversity in farmland ecosystems to study the diversity, structure, functions, and biogeographical distribution of soil microbes in farmland and their influencing factors. High-throughput sequencing technology was used to analyze the distribution characteristics of soil bacterial diversity, community structure, and metabolic function along elevation and their responses to soil physicochemical properties in farmland in the loess hilly areas of Ningxia. The results showed that:① The Alpha diversity index of soil bacterial was significantly negatively correlated with elevation (P < 0.05) and showed a trend of decreasing and then slightly increasing along the elevation. ② Seven phyla, including Proteobacteria, Actinobacteria, and Acidobacteria, were the dominant groups, and five of them showed highly significant differences between altitudes (P < 0.01). ③ At the secondary classification level, there were 36 metabolic functions of bacteria, including membrane transport, carbohydrate metabolism, and amino acid metabolism, of which 22 showed significant differences, and 12 showed extremely significant differences among different altitudes. ④ Pearson correlation analysis showed that soil water content, bulk density, pH, and carbon-nitrogen ratio had the most significant effects on bacterial Alpha diversity, whereas soil nutrients such as total organic carbon, total nitrogen, and total phosphorus had significant effects on bacterial Beta diversity. ⑤ Mantel test analysis showed that the soil water content, total organic carbon, and carbon-nitrogen ratio affected bacterial community structure at the phylum level, and soil pH, total organic carbon, total nitrogen, total phosphorus, and carbon-nitrogen ratio were significantly correlated with bacterial metabolic function. Variance partitioning analysis showed that soil water content had the highest explanation for the community structure of soil bacteria, whereas soil pH had the highest explanation for metabolic function. In conclusion, soil water content and pH were the main factors affecting the diversity, community composition, and metabolic function of soil bacteria in farmland in the loess hilly region of Ningxia.


Assuntos
Altitude , Bactérias , Microbiologia do Solo , China , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Solo/química , Biodiversidade , Produtos Agrícolas/crescimento & desenvolvimento , Proteobactérias/isolamento & purificação , Proteobactérias/crescimento & desenvolvimento , Nitrogênio/análise , Actinobacteria/crescimento & desenvolvimento , Ecossistema , Acidobacteria/crescimento & desenvolvimento , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Fósforo/análise
12.
J Med Entomol ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902886

RESUMO

Insects and microorganisms, ubiquitous organisms in the natural world, have developed intricate relationships throughout their evolutionary histories. However, most studies have concentrated on specific time points or life stages, but some limited studies have investigated the dynamics of microbial diversity within insects across life stages. Here, 16S rDNA sequencing technology was used to investigate the gut bacterial community across the life stages of Sarcophaga peregrina (Robineau-Desvoidy) (Diptera: Sarcophagidae). The results revealed that the gut bacterial diversity of S. peregrina varied with life stage and showed similarity in the nearby life stages. Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were the dominant phyla in S. peregrina. Genera such as Providencia, Ignatzschineria, and Myroides are implicated in potentially pivotal roles during the developmental processes of this flesh fly. Furthermore, the effects of amikacin on the growth and development of S. peregrina were not statistically significant. However, we did observe significant changes at the protein level, which suggests a close association between protein-level alterations and growth and development. Additionally, we speculate that S. peregrina regulates its nutritional status during nonfeeding stages to meet the demands of eclosion. This study represents the first comprehensive examination of the intestinal bacterial composition across various life stages of S. peregrina. Our findings deepen our understanding of the gut microbiota in this flesh fly and lay the groundwork for further exploration into the intricate interactions between microorganisms and insects.

13.
Mar Environ Res ; 199: 106615, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38941665

RESUMO

We examine how oxygen levels and the choice of 16S ribosomal RNA (rRNA) tags impact marine bacterial communities using Next-Generation amplicon sequencing. Analyzing V3 and V6 regions, we assess microbial composition in both Oxygen minimum zones (OMZ) and non-OMZ (NOMZ) areas in the Arabian Sea (AS) and the Central Indian Ocean basin (CIOB) respectively. Operational taxonomic units (OTUs) at 97% similarity showed slightly higher richness and diversity with V6 compared to V3. Vertical diversity patterns were consistent across both regions. NOMZ showed greater richness and diversity than OMZ. AS and CIOB exhibited significant differences in bacterial community, diversity, and relative abundance at the order and family levels. Alteromonadaceae dominated the OMZ, while Pelagibacteraceae dominated the NOMZ. Synechococcaceae were found exclusively at 250 m in OMZ. Bacteria putatively involved in nitrification, denitrification, and sulfurylation were detected at both sites. Dissolved oxygen significantly influenced microbial diversity at both sites, while seasonal environmental parameters affected diversity consistently, with no observed temporal variation.

14.
Microorganisms ; 12(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38930544

RESUMO

Soil bacterial communities play a remarkable role in nutrient cycling, significantly affecting soil organic material content, soil fertility, and, in an indirect way, plant succession processes. Conversely, vegetation type influences microbial soil life. The present study compared the bacterial microbiome composition, diversity and catabolic activity profile of topsoil samples collected under three different forest types (a twice-coppiced black locust stand, a young, naturally reforested, and a middle-aged mixed pedunculate oak stand) planted on former arable land in the early 20th century. Diversity indices determined during 16S ribosomal RNA sequencing-based metagenome analysis indicated that the black locust stand had the highest soil bacterial community diversity. At the phylum level, Acidobacteriota, Actinobacteriota, Proteobacteria, Verrucomicrobiota, Bacteroidota, and Gemmatimonadota were the most abundant taxa in the forest soils. Concerning soil parameters, redundancy analysis revealed that pH had the highest impact on bacterial community structure and pH, and soil organic carbon content on the samples' respiration patterns. As for catabolic activity, the recently clearcut oak forest showed the lowest substrate-induced respiration, and citrate was the main driver for the inter-stand variability of microbial activity. Our results confirm that soil parameters and forest type influence the composition and functioning of the soil bacterial microbiome.

15.
Microorganisms ; 12(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930560

RESUMO

Bacterial diversity and its distribution characteristics in sediments are critical to understanding and revealing biogeochemical cycles in sediments. However, little is known about the relationship between biogeochemistry processes and vertical spatial distribution of bacterial communities in sandy sediments. In this study, we used fluorescence quantitative PCR, high-throughput sequencing technology and statistical analysis to explore the vertical distribution pattern of bacterial community diversity and its influencing factors in sandy sediments of the Yangtze River Basin. The aim is to enrich the understanding of the ecological characteristics and functions of bacteria in river ecosystems. The results showed that both sediment bacterial abundance and diversity showed a gradual decrease from surface to bottom in the vertical distribution. The main environmental factors that influenced the bacterial distribution pattern were pore water dissolved oxygen (DO), total nitrogen (TN) concentration and sediment nitrogen (N) content. The dominant bacterial species, Massilia and Flavobacterium, are suitable for growth and reproduction in high oxygen and nutrient-richer environments, while Limnobacter prefers low oxygen or anaerobic conditions. The vertical distribution pattern of bacteria and its influencing factors in river sandy sediment found in this study differ from the results in mud sediment, which may be related to the larger granular gap between sandy sediment and the lower content of organic matter. The findings of this study further our understanding of the distribution patterns and ecological preferences of microbial communities in river sediments, providing insights into how these communities may adapt to varying environmental conditions.

16.
Environ Pollut ; 352: 124131, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38734049

RESUMO

Polyethylene terephthalate (PET) plastic pollution is widely found in deep-sea sediments. Despite being an international environmental issue, it remains unclear whether PET can be degraded through bioremediation in the deep sea. Pelagic sediments obtained from 19 sites across a wide geographic range in the Pacific Ocean were used to screen for bacteria with PET degrading potential. Bacterial consortia that could grow on PET as the sole carbon and energy source were found in 10 of the 19 sites. These bacterial consortia showed PET removal rate of 1.8%-16.2% within two months, which was further confirmed by the decrease of carbonyl and aliphatic hydrocarbon groups using attenuated total reflectance-Fourier-transform infrared analysis (ATR-FTIR). Analysis of microbial diversity revealed that Alcanivorax and Pseudomonas were predominant in all 10 PET degrading consortia. Meanwhile, Thalassospira, Nitratireductor, Nocardioides, Muricauda, and Owenweeksia were also found to possess PET degradation potential. Metabolomic analysis showed that Alcanivorax sp. A02-7 and Pseudomonas sp. A09-2 could turn PET into mono-(2-hydroxyethyl) terephthalate (MHET) even in situ stimulation (40 MPa, 10 °C) conditions. These findings widen the currently knowledge of deep-sea PET biodegrading process with bacteria isolates and degrading mechanisms, and indicating that the marine environment is a source of biotechnologically promising bacterial isolates and enzymes.


Assuntos
Bactérias , Biodegradação Ambiental , Sedimentos Geológicos , Polietilenotereftalatos , Poluentes Químicos da Água , Polietilenotereftalatos/metabolismo , Oceano Pacífico , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Bactérias/metabolismo , Bactérias/isolamento & purificação , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Água do Mar/microbiologia , Pseudomonas/metabolismo
17.
J Environ Manage ; 360: 121188, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759556

RESUMO

Afforestation is an acknowledged method for rehabilitating deteriorated riparian ecosystems, presenting multiple functions to alleviate the repercussions of river damming and climate change. However, how ecosystem multifunctionality (EMF) responds to inundation in riparian afforestation ecosystems remains relatively unexplored. Thus, this article aimed to disclose how EMF alters with varying inundation intensities and to elucidate the key drivers of this variation based on riparian reforestation experiments in the Three Gorges Reservoir Region in China. Our EMF analysis encompassed wood production, carbon storage, nutrient cycling, decomposition, and water regulation under different inundation intensities. We examined their correlation with soil properties and microbial diversity. The results indicated a substantial reduction in EMF with heightened inundation intensity, which was primarily due to the decline in most individual functions. Notably, soil bacterial diversity (23.02%), soil properties such as oxidation-reduction potential (ORP, 11.75%), and temperature (5.85%) emerged as pivotal variables elucidating EMF changes under varying inundation intensities. Soil bacterial diversity and ORP declined as inundation intensified but were positively associated with EMF. In contrast, soil temperature rose with increased inundation intensity and exhibited a negative correlation with EMF. Further insights gleaned from structural equation modeling revealed that inundation reduced EMF directly and indirectly by reducing soil ORP and bacterial diversity and increasing soil temperature. This work underscores the adverse effects of dam inundation on riparian EMF and the crucial role soil characteristics and microbial diversity play in mediating EMF in response to inundation. These insights are pivotal for the conservation of biodiversity and functioning following afforestation in dam-induced riparian habitats.


Assuntos
Ecossistema , Rios , China , Solo/química , Mudança Climática , Microbiologia do Solo , Conservação dos Recursos Naturais
18.
Front Microbiol ; 15: 1362678, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751720

RESUMO

Cryoconite is a granular structure present on the glaciers and ice sheets found in polar regions including the Himalayas. It is composed of organic and inorganic matter which absorb solar radiations and reduce ice surface albedo, therefore impacting the melting and retreat of glaciers. Though climate warming has a serious impact on Himalayan glaciers, the biodiversity of sub-glacier ecosystems is poorly understood. Moreover, cryoconite holes are unique habitats for psychrophile biodiversity hotspots in the NW Himalayas, but unfortunately, studies on the microbial diversity of such habitats remain elusive. Therefore, the current study was designed to explore the bacterial diversity of the Hamtah Glacier Himalaya using both culturable and non-culturable approaches. The culturable bacterial count ranged from 2.0 × 103 to 8.8 × 105 colony-forming units (CFUs)/g at the different locations of the glacier. A total of 88 bacterial isolates were isolated using the culturable approach. Based on the 16S ribosomal RNA gene (16S rRNA), the identified species belong to seven genera, namely, Cryobacterium, Duganella, Janthinobacterium, Pseudomonas, Peribacillus, Psychrobacter, and Sphingomonas. In the non-culturable approach, high-throughput sequencing of 16S rRNA genes (using MiSeq) showed unique bacterial community profiles and represented 440 genera belonging to 20 phyla, namely, Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Acidobacteria, Planctomycetes, Cyanobacteria, Verrucomicrobia, Spirochaetes, Elusimicrobia, Armatimonadetes, Gemmatimonadetes, Deinococcus-Thermus, Nitrospirae, Chlamydiae, Chlorobi, Deferribacteres, Fusobacteria, Lentisphaerae, and others. High relative abundances of Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were observed in the samples. Phototrophic (Cyanobacteria and Chloroflexi) and nitrifier (Nitrospirae) in bacterial populations indicated sustenance of the micro-ecosystem in the oligotrophic glacier environment. The isolates varied in their phenotypic characteristics, enzyme activities, and antibiotic sensitivity. Furthermore, the fatty acid profiles of bacterial isolates indicate the predominance of branched fatty acids. Iso-, anteiso-, unsaturated and saturated fatty acids together constituted a major proportion of the total fatty acid composition. High cold-adapted enzyme activities such as lipase and cellulase expressed by Cryobacterium arcticum (KY783365) and protease and cellulase activities by Pseudomonas sp. strains (KY783373, KY783377-79, KY783382) provide evidence of the possible applications of these organisms. Additionally, antibiotic tests indicated that most isolates were sensitive to antibiotics. In conclusion, the present study contributed for the first time to bacterial diversity and biopotentials of cryoconites of Hamtah Glacier, Himalayas. Furthermore, the cold-adapted enzymes and polyunsaturated fatty acids (PUFAs) may provide an opportunity for biotechnology in the Himalayas. Inductively coupled plasma mass spectrometry (ICPMS) analyses showed the presence of several elements in cryoconites, providing a clue for the accelerating melting and retreating of the Hamtah glacier.

19.
Water Environ Res ; 96(5): e11039, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38787335

RESUMO

This explorative study was aimed at first characterizing the sponge Spongilla lacustris (Linnaeus, 1759) from the sub-Arctic Pasvik River (Northern Fennoscandia), in terms of associated microbial communities and pollutant accumulation. Persistent organic pollutants were determined in sponge mesohyl tissues, along with the estimation of the microbial enzymatic activity rates, prokaryotic abundance and morphometric traits, and the analysis of the taxonomic bacterial diversity by next-generation sequencing techniques. The main bacterial groups associated with S. lacustris were Alphaproteobacteria and Gammaproteobacteria, followed by Chloroflexi and Acidobacteria. The structure of the S. lacustris-associated bacterial communities was in sharp contrast to those of the bacterioplankton, being statistically close to those found in sediments. Dieldrin was measured at higher concentrations in the sponge tissues (3.1 ± 0.4 ng/g) compared to sediment of the same site (0.04 ± 0.03 ng/g). Some taxonomic groups were possibly related to the occurrence of certain contaminants, as was the case of Patescibacteria and dieldrin. Obtained results substantially contribute to the still scarce knowledge of bacterial community diversity, activities, and ecology in freshwater sponges. PRACTITIONER POINTS: Microbial community associated with Spongilla lacustris is probably shaped by the occurrence of certain contaminants, mainly dieldrin and heavy metals. A higher accumulation of dieldrin in the sponge mesohyl tissues than in sediment was determined. S. lacustris is suggested as sponge species to be used as a sentinel of pesticide pollution in the Pasvik River. S. lacustris, living in tight contact with soft substrates, harbored communities more similar to sediment than water communities.


Assuntos
Bactérias , Poríferos , Rios , Poluentes Químicos da Água , Animais , Poríferos/microbiologia , Rios/química , Rios/microbiologia , Poluentes Químicos da Água/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Microbiota , Monitoramento Ambiental
20.
Microorganisms ; 12(5)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38792798

RESUMO

Atmospheric nitrogen deposition can alter soil microbial communities and further impact the structure and function of forest ecosystems. However, most studies are focused on positive or negative effects after nitrogen addition, and few studies pay attention to its interruption. In order to investigate whether interruption after different levels of short-term N additions still benefit soil health, we conducted a 2-year interruption after a 4-year short-term nitrogen addition (10 and 20 kg N·hm-2·yr-1) experiment; then, we compared soil microbial diversity and structure and analyzed soil physicochemical properties and their correlations before and after the interruption in Larix olgensis forest soil in northeast China. The results showed that soil ecological stabilization of Larix olgensis forest further improved after the interruption compared to pre-interruption. The TN, C:P, N:P, and C:N:P ratios increased significantly regardless of the previous nitrogen addition concentration, and soil nutrient cycling was further promoted. The relative abundance of the original beneficial microbial taxa Gemmatimonas, Sphingomonas, and Pseudolabrys increased; new beneficial bacteria Ellin6067, Massilia, Solirubrobacter, and Bradyrhizobium appeared, and the species of beneficial soil microorganisms were further improved. The results of this study elucidated the dynamics of the bacterial community before and after the interruption of short-term nitrogen addition and could provide data support and a reference basis for forest ecosystem restoration strategies and management under the background of global nitrogen deposition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...