Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Expert Rev Vaccines ; 22(1): 738-748, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37622470

RESUMO

INTRODUCTION: Neisseria meningitidis serogroup B (NmB) antigens are inherently diverse with variable expression among strains. Prediction of meningococcal B (MenB) vaccine effectiveness therefore requires an assay suitable for use against large panels of epidemiologically representative disease-causing NmB strains. Traditional serum bactericidal antibody assay using exogenous human complement (hSBA) is limited to the quantification of MenB vaccine immunogenicity on a small number of indicator strains. AREAS COVERED: Additional and complementary methods for assessing strain coverage developed previously include the Meningococcal Antigen Typing System (MATS), Meningococcal Antigen Surface Expression (MEASURE) assay, and genotyping approaches, but these do not estimate vaccine effectiveness. We provide a narrative review of these methods, highlighting a more recent approach involving the hSBA assay in conjunction with expanded NmB strain panels: hSBA assay using endogenous complement in each vaccinated person's serum (enc-hSBA) against a 110-strain NmB panel and the traditional hSBA assay against 14 (4 + 10) NmB strains. EXPERT OPINION: The enc-hSBA is a highly standardized, robust method that can be used in clinical trials to measure the immunological effectiveness of MenB vaccines under conditions that mimic real-world settings as closely as possible, through the use of endogenous complement and a diverse, epidemiologically representative panel of NmB strains.


Meningococcal disease refers to illnesses caused by the bacterium Neisseria meningitidis (meningococcus), including infections of the brain lining and spinal cord (meningitis) and bloodstream (septicemia). It is rare but often severe and can be deadly. Invasive meningococcal disease can be prevented through vaccination. Nearly all cases are caused by six serogroups (types) of meningococci, including meningococcal serogroup B. Vaccines are available against meningococcal serogroup B but, because of the uncommonness of the disease, standard clinical trials could not be performed to prove these vaccines are effective. Instead, an indirect measure, called the 'hSBA assay' (serum bactericidal antibody assay using human complement), is used to measure the ability of vaccines to provide protection against specific N. meningitidis strains that have antigens (substances that cause the immune system to react) sharing characteristics with components of the vaccines. However, meningococcal serogroup B strains are diverse in the genetic composition and expression of vaccine antigens. Hence, a large number of N. meningitidis serogroup B strains would have to be tested to make sure that the vaccine is effective against these strains. This is not feasible using the traditional hSBA assay, which requires a human complement (a protein system, which is part of the immune system) that has not come from the vaccinated person and is difficult and time-consuming to source. Recently, an alternative hSBA assay was developed that uses the complement present in each vaccinated person's blood (endogenous complement) and which overcomes these challenges. By allowing testing against a broad panel of N. meningitidis serogroup B strains, this new assay may enable a more accurate estimation of the effectiveness of vaccines against serogroup B meningococci.


Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Neisseria meningitidis Sorogrupo B , Neisseria meningitidis , Humanos , Ensaios de Anticorpos Bactericidas Séricos/métodos , Sorogrupo , Eficácia de Vacinas , Anticorpos Antibacterianos , Antígenos de Bactérias/genética , Neisseria meningitidis Sorogrupo B/genética , Proteínas do Sistema Complemento , Infecções Meningocócicas/prevenção & controle
2.
Vaccine ; 40(42): 6042-6047, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36089429

RESUMO

Invasive meningococcal disease (IMD) affects approximately 1.2 million people worldwide annually. Prevention of IMD is mostly provided through vaccination; however, no licensed vaccine is currently available to protect against meningococcal serogroup X associated infection. Limited data are available on the natural immunity to Neisseria meningitidis serogroup X within the African sub-Saharan meningitis belt. The objective of the study was to provide an overview of natural immunity to serogroup X within a community in the African meningitis belt prior to the introduction of a pentavalent conjugate vaccine (NmCV-5). Prior to its introduction, a validated assay to assess vaccine efficacy was also required. This study therefore incorporated two objectives: a seroprevalence study to assess natural immunity in serum samples (n = 377) collected from Niger, West Africa in 2012, and the validation of a serogroup X serum bactericidal antibody (SBA) assay. Seroprevalence data obtained found that natural immunity to N. meningitidis serogroup X were present in 52.3% of study participants. The highest putative protective titres (≥8) to serogroup X were seen in age group 5-14 years-old (73.9%) and lowest in ages < 1 year old (0%). The SBA assay was successfully validated for selectivity/specificity, precision/reproducibility, linearity, and stability. This study demonstrated the suitability of the serogroup X SBA assay in clinical trials for future meningococcal conjugate vaccines containing serogroup X polysaccharides.


Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Neisseria meningitidis , Adolescente , Anticorpos Antibacterianos , Criança , Pré-Escolar , Humanos , Lactente , Infecções Meningocócicas/prevenção & controle , Níger/epidemiologia , Reprodutibilidade dos Testes , Estudos Soroepidemiológicos , Sorogrupo , Ensaios de Anticorpos Bactericidas Séricos , Vacinas Combinadas , Vacinas Conjugadas
3.
Vaccines (Basel) ; 10(5)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35632534

RESUMO

Here, we evaluated over time in different cohorts of children vaccinated against serogroup C Neisseria meningitidis, the presence of antibodies with neutralizing activity. A total of 348 sera samples of enrolled children by year since vaccination (<1 year- up to 5 years), starting from February 2016 to December 2017, were collected in three collaborating centers. Meningococcal serogroup C (MenC) antibody titers were measured with a serum bactericidal antibody (SBA) assay using rabbit complement (rSBA) following standard operating procedures. The cut-off of rSBA titer ≥ 8 is considered the correlate of protection. We observed a significantly declining of bactericidal rSBA titers by 23% every year, for every 1-year from vaccination (Adjusted PR = 0.77, 95% CI: 0.71−0.84). The proportions of children with bactericidal antibodies, immunized with the meningococcal serogroup C conjugate (MCC) vaccine, declined from 67.7% (95% CI: 48.6−83.3%) one year after vaccination, to 36.7% (95% CI: 19.9−56.1%) five years after vaccination (chi-square for linear trend, p < 0.001). Children vaccinated with the tetravalent meningococcal serogroup ACWY vaccine resulted in a high proportion of bactericidal rSBA MenC titer ≥ 1:8 (90.6%, 95% CI: 79.3−96.9%) after a mean time of seven months. Overall, the results provide some evidences on the evaluation of meningococcal serogroup C bactericidal antibodies after primary vaccination.

4.
Int J Appl Basic Med Res ; 11(3): 160-165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458118

RESUMO

INTRODUCTION: Klebsiella pneumoniae superbug is emerging as a serious health concern as resistance to last-resort antibiotics spreads. To bypass the therapeutic molecules used today, the development of an immunoprophylactic safe approach is of great clinical relevance. This study was conducted to determine the protective efficacy of antibodies elicited by killed vaccine against multidrug-resistant (MDR) K. pneumoniae. MATERIALS AND METHODS: In this study, heat-killed MDR K. pneumoniae isolated from different clinical samples were employed for the intradermal immunization of 10 BALB/c mice. Two weeks after the third dose of immunization, the mice were intraperitoneally challenged with live K. pneumoniae and observed for 14 days. Tail blood was collected 7 days after each booster followed by cardiac puncture 14 days postchallenge. Bactericidal activity and antigen-binding capacity of the serum antibody produced by the vaccine were evaluated by serum bactericidal antibody (SBA) assay and ELISA, respectively. RESULTS: In this study, 80% survival rates were observed at 14 days postchallenge among the immunized mice. Regarding SBA assay, 100% bactericidal activity of the immunized mouse sera was observed using 50% guinea pig complement at 1:10 serum dilution after 3 h of incubation, and all the pre- and postchallenge immunized serum immunoglobulin G antibody had significantly higher optical density values comparing the control mice in ELISA. CONCLUSION: In our study, intradermal immunization with heat-killed MDR K. pneumoniae produced protective antibodies in BALB/c mice. These findings suggest that the use of a first-generation vaccine provides the supply of a larger number of candidate antigens for eliciting required immune response.

5.
J Infect Dis ; 224(12 Suppl 2): S829-S839, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34374425

RESUMO

BACKGROUND: We demonstrated in a randomized placebo-controlled trial that WRSS1, a live oral Shigella sonnei vaccine candidate, is safe in Bangladeshi adults and children, and elicits antigen-specific antibodies. Here, we describe functional antibody and innate immune responses to WRSS1. METHODS: Adults (18-39 years) and children (5-9 years) received 3 doses of 3 × 105 or 3 × 106 colony forming units (CFU) of WRSS1 or placebo, 4 weeks apart; children additionally received 3 × 104 CFU. Blood and stool were collected at baseline and 7 days after each dose. Functional antibodies were measured using serum bactericidal antibody (SBA) assay. Cytokine/chemokine concentrations were measured in lymphocyte cultures. Host defense peptides LL-37, HBD-1, and HD-5 were analyzed in plasma and stool. RESULTS: Children showed increased SBA titers over baseline after the third dose of 3 × 106 CFU (P = .048). Significant increases of Th-17 and proinflammatory cytokines (TNF-α, G-CSF, MIP-1ß), and reduction of anti-inflammatory and Th2 cytokines (IL-10, IL-13, GM-CSF) were observed in children. Plasma HBD-1 and LL-37 decreased in children after vaccination but were increased/unchanged in adults. CONCLUSIONS: Functional antibodies and Th1/Th17 cytokine responses in children may serve as important indicators of immunogenicity and protective potential of WRSS1. Clinical Trials Registration: NCT01813071.


Assuntos
Anticorpos Antibacterianos/sangue , Disenteria Bacilar/prevenção & controle , Imunidade Inata , Imunidade nas Mucosas , Vacinas contra Shigella/administração & dosagem , Shigella sonnei/imunologia , Adolescente , Adulto , Bangladesh , Criança , Pré-Escolar , Citocinas/sangue , Feminino , Humanos , Masculino , Vacinas Atenuadas , Adulto Jovem
6.
Infect Dis Ther ; 10(1): 307-316, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33185849

RESUMO

INTRODUCTION: Invasive meningococcal disease (IMD) is an important public health concern. In developed countries, most IMD is caused by meningococcal serogroup B (MenB) and two protein-based MenB vaccines are currently available: the four-component vaccine 4CMenB (Bexsero, GSK) and the bivalent vaccine MenB-FHbp (Trumenba, Pfizer). Genes encoding the 4CMenB vaccine antigens are also present in strains belonging to other meningococcal serogroups. METHODS: To evaluate the potential of 4CMenB vaccination to protect adolescents against non-MenB IMD, we tested the bactericidal activity of sera from immunized adolescents on 147 (127 European and 20 Brazilian) non-MenB IMD isolates, with a serum bactericidal antibody assay using human complement (hSBA). Serum pools were prepared using samples from randomly selected participants in various clinical trials, pre- and post-vaccination: 12 adolescents who received two doses of 4CMenB 2 months apart, and 10 adolescents who received a single dose of a MenACWY conjugate vaccine (as positive control). RESULTS: 4CMenB pre-immune sera killed 7.5% of the 147 non-MenB isolates at hSBA titers ≥ 1:4. In total, 91 (61.9%) tested isolates were killed by post-dose 2 pooled sera at hSBA titers ≥ 1:4, corresponding to 44/80 (55.0%) MenC, 26/35 (74.3%) MenW, and 21/32 (65.6%) MenY isolates killed. CONCLUSION: 4CMenB vaccination in adolescents induces bactericidal killing of non-MenB isolates, suggesting that mass vaccination could impact IMD due to serogroups other than MenB.

7.
Clinics ; 76: e2902, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1339713

RESUMO

OBJECTIVES: To investigate the expression levels of surface markers of activation (CD38 and HLA-DR), inhibition (PD-1, TIGIT and CD57) and co-stimulation (CD28 and CD127) on CD4+ T cells of children/adolescents with vertical HIV infection (HI patients) and HIV-uninfected (HU) controls vaccinated with the meningococcal C conjugate vaccine (MCC). METHODS: HI patients (n=12), aged 8-17 years, were immunized with two MCC injections, while HU controls (n=9), aged 5.3-10.7 years, received a single MCC dose (as per national recommendation at the time of this study, a single MCC vaccine dose should be given for healthy children and youth aged 1-18 years). The HI patients were categorized according to the combined antiretroviral therapy (cART) treatment. Blood samples were obtained before vaccination, after priming, and after the administration of a booster dose of vaccine to determine the serum bactericidal antibody (SBA) titers and the expression levels of surface markers on CD4+ T cells by flow cytometry. The levels of serum cytokines, IL-4 and CXCL-13 were also measured using Luminex kits. RESULTS: The co-expression of the TIGIT-HLA-DR-CD38 molecules increased in the CD4+ T cells of HI patients/no-cART who also showed a lower frequency of CD127+CD28+ CD4+ T cells than HI patients/cART and HU group subjects. There were significant negative correlations between the frequency of exhausted CD4+ T cells and the SBA response. IL-4 levels were higher in HI patients/cART and positively correlated with SBA titers but negatively associated with the expression of exhaustion markers. Moreover, the CXCL-13 levels were positively correlated with the exhausted CD4+ T cells. CONCLUSION: The results of our study suggest that the co-expression of exhaustion markers and/or loss of co-stimulatory molecules influence the SBA response in HI patients.


Assuntos
Humanos , Criança , Adolescente , Infecções por HIV , Vacinas Meningocócicas , Linfócitos T CD4-Positivos , Formação de Anticorpos
8.
Vaccines (Basel) ; 8(4)2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33113834

RESUMO

Neisseria meningitidis is often asymptomatically carried in the nasopharynx but may cause invasive meningococcal disease, leading to morbidity and mortality. Meningococcal conjugate vaccinations induce functional protective antibodies against capsular antigens, but seroprotection wanes over time. We measured functional antibody titers five years after administration of a single dose of the meningococcal ACWY-polysaccharide-specific tetanus toxoid-conjugated (MenACWY-TT) vaccine in adolescents and middle-aged adults in the Netherlands, using the serum bactericidal antibody with baby rabbit complement (rSBA) assay. Protection was defined as rSBA titer ≥8. The meningococcal ACWY-specific serum IgG concentrations were measured with a multiplex immunoassay. Duration of protection was estimated by a bi-exponential decay model. Sufficient protection for MenC, MenW, and MenY was achieved in 94-96% of the adolescents five years postvaccination, but, in middle-aged adults, only in 32% for MenC, 65% for MenW and 71% for MenY. Median duration of protection for MenCWY was 4, 14, and 21 years, respectively, in middle-aged adults, while, in adolescents, it was 32, 98, and 33 years. Our findings suggest that adolescents, primed in early childhood with MenC conjugate vaccination, remain sufficiently protected after a single dose of MenACWY-TT vaccine. Middle-aged adults without priming vaccination show fast waning of antibodies, particularly MenC, for which protection is lost after four years.

9.
Vaccine ; 38(47): 7542-7550, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33036804

RESUMO

BACKGROUND: The multicomponent meningococcal serogroup B vaccine (4CMenB) is currently indicated for active immunization against invasive meningococcal disease caused by Neisseria meningitidis serogroup B (MenB). However, genes encoding the 4CMenB antigens are also variably present and expressed in strains belonging to other meningococcal serogroups. In this study, we evaluated the ability of antibodies raised by 4CMenB immunisation to induce complement-mediated bactericidal killing of non-MenB strains. METHODS: A total of 227 invasive non-MenB disease isolates were collected between 1 July 2007 and 30 June 2008 from England and Wales, France, and Germany; 41 isolates were collected during 2012 from Brazil. The isolates were subjected to genotypic analyses. A subset of 147 isolates (MenC, MenW and MenY) representative of the meningococcal genetic diversity of the total sample were tested in the human complement serum bactericidal antibody assay (hSBA) using sera from infants immunised with 4CMenB. RESULTS: Serogroup and clonal complex repertoires of non-MenB isolates were different for each country. For the European panel, MenC, MenW and MenY isolates belonged mainly to ST-11, ST-22 and ST-23 complexes, respectively. For the Brazilian panel, most MenC and MenW isolates belonged to the ST-103 and ST-11 complexes, respectively, and most MenY isolates were not assigned to clonal complexes. Of the 147 non-MenB isolates, 109 were killed in hSBA, resulting in an overall coverage of 74%. CONCLUSION: This is the first study in which 147 non-MenB serogroup isolates have been analysed in hSBA to evaluate the potential of a MenB vaccine to cover strains belonging to other serogroups. These data demonstrate that antibodies raised by 4CMenB are able to induce bactericidal killing of 109 non-MenB isolates, representative of non-MenB genetic and geographic diversity. These findings support previous evidence that 4CMenB immunisation can provide cross-protection against non-MenB strains in infants, which represents an added benefit of 4CMenB vaccination.


Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Neisseria meningitidis Sorogrupo B , Antígenos de Bactérias/genética , Brasil , Inglaterra , França , Alemanha , Humanos , Lactente , Infecções Meningocócicas/prevenção & controle , Neisseria meningitidis Sorogrupo B/genética , Sorogrupo , Vacinação , País de Gales
10.
Postgrad Med ; 132(7): 614-623, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32476532

RESUMO

College students in the United States are at an increased risk for meningococcal serogroup B disease or MenB, which causes the majority of invasive meningococcal disease in the country among adolescents and young adults (62%) and also across all age groups (36%) as of 2018. Approximately one-third of MenB cases among college students occur during campus outbreaks, which trigger substantial public health concern and costs associated with conducting rapid mass vaccination campaigns in an emergency setting. Eleven US college outbreaks of MenB disease have occurred since the initial licensure and recommendation of two MenB vaccines in 2014/2015; both vaccines have been used as part of outbreak responses on campuses, but vaccine coverage and multidose series completion among the general adolescent population are very low (approximately 17% of 17-year-olds in the United States received ≥1 dose in 2018). This review recounts shifts in US meningococcal outbreak epidemiology, lessons from immunogenicity evaluations of MenB vaccines with outbreak strains, and recent college outbreak experiences and mass vaccination responses. The challenges of reactive MenB outbreak containment and potential benefits of preventive immunization of US adolescents are also considered.


Assuntos
Surtos de Doenças/prevenção & controle , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/administração & dosagem , Vacinação/estatística & dados numéricos , Adolescente , Tomada de Decisões , Feminino , Humanos , Infecções Meningocócicas/epidemiologia , Participação do Paciente/estatística & dados numéricos , Estudantes/estatística & dados numéricos , Estados Unidos , Universidades , Adulto Jovem
11.
Biosci Rep ; 40(3)2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32159209

RESUMO

BACKGROUND: The C5 complement inhibitor eculizumab is first-line treatment in atypical hemolytic uremic syndrome (aHUS) going along with a highly increased risk of meningococcal infections. Serogroup B meningococci (MenB) are the most frequently encountered cause for meningococcal infections in Europe. Efficacy of the protein-based MenB-vaccine Bexsero in aHUS has not been determined and testing is only possible in patients off-treatment with eculizumab as a human complement source is required. METHODS: Patients with aHUS were vaccinated with two doses of the protein-based MenB-vaccine Bexsero. Serum bactericidal antibody (SBA) titers against factor H binding protein (fHbp) of MenB were determined in 14 patients with aHUS off-treatment with eculizumab. RESULTS: Only 50% of patients showed protective human serum bactericidal antibody (hSBA) titers (≥1:4) against MenB following two vaccinations. Bactericidal antibody titers were relatively low (≤1:8) in three of seven patients with protective titers. While 71% of patients were on immunosuppressive treatment for either thrombotic microangiopathy or renal transplantation at either first or second vaccination, all four patients not receiving any immunosuppressive treatment showed protective bactericidal antibody response. Time between second vaccination and titer measurement was not significantly different between patients with protective titers compared with those with non-protective titers, while time between first and second vaccination was significantly longer in patients with protective titers going along with a tendency for reduction in immunosuppressive treatment. CONCLUSIONS: Efficacy of vaccination against MenB is insufficient in patients with aHUS. Response to vaccination seems to be hampered by immunosuppression. Therefore, implementation of adequate antibiotic prophylaxis seems pivotal.


Assuntos
Síndrome Hemolítico-Urêmica Atípica/imunologia , Vacinas Meningocócicas/farmacologia , Neisseria meningitidis Sorogrupo B/imunologia , Adulto , Anticorpos Monoclonais Humanizados/farmacologia , Síndrome Hemolítico-Urêmica Atípica/complicações , Síndrome Hemolítico-Urêmica Atípica/microbiologia , Proteínas de Bactérias/imunologia , Proteínas de Transporte , Fator H do Complemento/imunologia , Feminino , Alemanha , Humanos , Masculino , Infecções Meningocócicas/prevenção & controle , Pessoa de Meia-Idade , Neisseria meningitidis Sorogrupo B/metabolismo , Sorogrupo , Resultado do Tratamento , Vacinação/métodos
12.
Postgrad Med ; 132(2): 184-191, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32124678

RESUMO

Invasive meningococcal disease (IMD) is a potentially devastating infection associated with high mortality and long-term sequelae; however, vaccines are available to protect against the five common disease-causing serogroups (A, B, C, W, and Y). Because traditional field efficacy clinical trials were not feasible due to low IMD incidence that necessitates a very large number of participants, serum bactericidal antibody (SBA) assays using rabbit (rSBA) or human (hSBA) complement were established as in vitro surrogates of meningococcal vaccine efficacy and are now routinely used to support vaccine licensure. Specifically, rSBA assays have been used to evaluate responses to meningococcal capsular polysaccharide-protein conjugate vaccines against serogroups A, C, W, and Y; the accepted correlate of protection for rSBA assays is a titer ≥1:8. Importantly, because the bacterial capsular polysaccharide antigen is conserved across strains, only one test strain that expresses an invariant polysaccharide capsule for each serogroup is required to assess coverage. rSBA assays are unsuitable for subcapsular protein-based serogroup B (MenB) vaccines, and therefore, hSBA assays have been used for licensure; titers ≥1:4 are considered the correlate of protection against IMD for hSBA. In contrast to MenACWY vaccines, because bacterial surface proteins are antigenically variable, MenB vaccines must be tested with hSBA assays using multiple test strains that represent the antigenic diversity of disease-causing isolates. As this complexity regarding SBA assessment methods can make data interpretation difficult, herein we describe the use of hSBA assays to evaluate MenB vaccine efficacy and to support licensure. In addition, we highlight how the two recently approved MenB vaccines differ in their use of hSBA assays in clinical studies to demonstrate broad protection against MenB IMD.


Assuntos
Infecções Meningocócicas/imunologia , Vacinas Meningocócicas/imunologia , Neisseria meningitidis Sorogrupo B/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Proteínas do Sistema Complemento/imunologia , Humanos , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/administração & dosagem , Coelhos
13.
Vaccine ; 38(10): 2396-2405, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32037226

RESUMO

Detergent-extracted detoxified outer membrane vesicle (dOMV) vaccines are effective at preventing invasive serogroup B meningococcal (MenB) disease caused by the homologous Neisseria meningitidis strain from which they are produced, but offer limited protection from heterologous strains. Differences in vaccine efficacy are partially due to strain-specific variations in the antigenic sequence types and expression levels of outer membrane proteins (OMPs), including the immunodominant OMP PorA. In this study, dOMV vaccines deficient in major OMPs, including PorA, PorB, and RmpM were isolated and used to immunize rabbits and mice. Serum samples were obtained from each animal and tested for antibody responses against five MenB strains. Immunization with wild type dOMVs elicited antibodies to major antigens including PorA, PorB, RmpM, and lipooligosaccharide (LOS), and demonstrated limited bactericidal activity against heterologous strains. In contrast, OMP-deficient dOMV vaccines elicited broadly cross-reactive bactericidal antibodies, with PorA/PorB-dual deficient dOMVs inducing antibodies exhibiting the greatest cross-reactivity. Enhanced killing of heterologous strains correlated with binding to unique protein bands in immunoblots, suggestive of improved immunogenicity of antigens under-represented in the wild type vaccine.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Infecções Meningocócicas , Vacinas Meningocócicas/imunologia , Neisseria meningitidis Sorogrupo B , Porinas/genética , Animais , Anticorpos Antibacterianos , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Reações Cruzadas , Imunogenicidade da Vacina , Infecções Meningocócicas/prevenção & controle , Camundongos , Neisseria meningitidis/imunologia , Neisseria meningitidis Sorogrupo B/genética , Neisseria meningitidis Sorogrupo B/imunologia , Coelhos , Sorogrupo
14.
Hum Vaccin Immunother ; 16(4): 945-948, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-31770063

RESUMO

The Meningococcal Antigen Typing System (MATS) has been developed as an hSBA surrogate to evaluate potential coverage afforded by the 4-component meningococcal serogroup B vaccine (4CMenB: Bexsero, GSK). We investigated whether the lower value of MATS coverage among invasive Meningococcus serogroup B clonal complex 269 strains from the United Kingdom (53% in 2014-2015 versus 73% in 2007-2008) reflected the lower bactericidal activity of the vaccine against these isolates. A total of 34 MATS-negative strains (31 were cc269 or closely related) were tested against pooled sera from 32 or 72 4CMenB-vaccinated infants in a serum bactericidal antibody assay in presence of human complement (hSBA). All infants had received four 4CMenB doses in the first 2 y of life. Baseline sera comprised 180 pooled samples from healthy-unvaccinated 2-month-old infants. Twenty of the 34 (59%) MATS-negative strains were killed in hSBA with titers ≥4 by pooled sera from vaccinated infants. There were 13/34 strains with hSBA titers ≥4 and at least a 4-fold rise in titer with respect to pooled baseline sera, and 10/34 with hSBA titers ≥8 and at least a 4-fold rise in titer with respect to baseline. These data confirm MATS as a conservative estimate for predicting strain coverage by 4CMenB.


Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Neisseria meningitidis Sorogrupo B , Neisseria meningitidis , Antígenos de Bactérias , Humanos , Lactente , Infecções Meningocócicas/epidemiologia , Infecções Meningocócicas/prevenção & controle , Sorogrupo , Reino Unido , Vacinação
15.
J Immunotoxicol ; 16(1): 201-209, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31703545

RESUMO

Early-life exposure to arsenic (As) increases risks of respiratory diseases/infections in children. However, data on the ability of the innate immune system to combat bacterial infections in the respiratory tracts of As-exposed children are scarce. To evaluate whether persistent low-dose As exposure alters innate immune function among children younger than 5 years-of-age, mothers and participating children (N = 51) that were members of the Health Effects of Arsenic Longitudinal Study (HEALS) cohort in rural Bangladesh were recruited. Household water As, past and concurrent maternal urinary As (U-As) as well as child U-As were all measured at enrollment. In addition, U-As metabolites were evaluated. Innate immune function was examined via measures of cathelicidin LL-37 in plasma, ex vivo monocyte-derived-macrophage (MDM)-mediated killing of Streptococcus pneumoniae (Spn), and serum bactericidal antibody (SBA) responses against Haemophilus influenzae type b (Hib). Cyto-/chemokines produced by isolated peripheral blood mononuclear cells (PBMC) were assayed using a Multiplex system. Multivariable linear regression analyses revealed that maternal (p < 0.01) and child (p = 0.02) U-As were positively associated with plasma LL-37 levels. Decreased MDM-mediated Spn killing (p = 0.05) and SBA responses (p = 0.02) were seen to be each associated with fractions of mono-methylarsonic acid (MMA; a U-As metabolite) in the children. In addition, U-As levels were seen to be negatively associated with PBMC formation of fractalkine and IL-7, and positively associated with that for IL-13, IL-17 and MIP-1α. These findings suggested that early-life As exposure may disrupt the innate host defense pathway in these children. It is possible that such disruptions may have health consequences later in life.


Assuntos
Arsênio/toxicidade , Exposição Ambiental/efeitos adversos , Imunidade Inata/efeitos dos fármacos , Macrófagos/imunologia , Monócitos/imunologia , População Rural , Anticorpos Antibacterianos/imunologia , Bangladesh , Pré-Escolar , Feminino , Humanos , Estudos Longitudinais , Macrófagos/patologia , Masculino , Monócitos/patologia , Streptococcus pneumoniae/imunologia
16.
Vaccine ; 37(27): 3562-3567, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31128875

RESUMO

Immune responses to the capsular polysaccharide administered in the polysaccharide-protein conjugate vaccines can be either improved or suppressed by the pre-existence of immunity to the carrier protein. Receiving multiple vaccinations is essential for travellers such as Hajj pilgrims, and the use of conjugated vaccines is recommended. We studied the immune response to meningococcal serogroup W upon prior, concurrent and sequential administration of a quadrivalent meningococcal conjugate vaccine (MCV4) conjugated to CRM197 (coadministered with 13 valent pneumococcal vaccine conjugate CRM197 [PCV13]), and tetanus-diphtheria-acellular pertussis (Tdap) vaccine in Australian adults before attending the Hajj pilgrimage in 2014. Participants were randomly assigned, by computer-generated numbers, to three study arms by 1:1:1 ratio. Group A received Tdap followed by MCV4-CRM197 (+PCV13) 3-4 weeks later. Group B received all three vaccines in a single visit. Group C received MCV4-CRM197 (+PCV13) followed by Tdap 3-4 weeks later. Blood samples obtained prior to and 3-4 weeks after immunisation with MCV4-CRM197 were tested for meningococcal serogroup W-specific serum bactericidal antibody responses using baby rabbit complement (rSBA). One hundred and seven participants aged between 18 and 64 (median 40) years completed the study. No significant difference in meningococcal serogroup W rSBA geometric mean titre (GMT) was observed between the study arms post vaccination with MCV-CRM197 but Group A tended to have a slightly lower GMT (A = 404, B = 984 and C = 1235, p = 0.15). No statistical difference was noticed between the groups in proportions of subjects achieving a ≥4-fold rise in rSBA titres or achieving rSBA titre ≥8 post vaccination. In conclusion, receipt of MCV4-CRM197 vaccine prior, concurrent or subsequent to Tdap has similar immunologic response, and hence concurrent administration is both immunogenic and practical. However, further investigation into whether carrier induced suppression is a public health issue is suggested. Clinical trial registration: ANZCTR no. ACTRN12613000536763.


Assuntos
Vacinas contra Difteria, Tétano e Coqueluche Acelular/administração & dosagem , Vacinas contra Difteria, Tétano e Coqueluche Acelular/imunologia , Esquemas de Imunização , Meningite Meningocócica/prevenção & controle , Vacinas Meningocócicas/administração & dosagem , Vacinas Meningocócicas/imunologia , Neisseria meningitidis Sorogrupo W-135/imunologia , Adolescente , Adulto , Animais , Anticorpos Antibacterianos/sangue , Austrália , Aglomeração , Feminino , Humanos , Masculino , Meningite Meningocócica/imunologia , Religião , Resultado do Tratamento , Adulto Jovem
17.
Methods Mol Biol ; 1969: 169-179, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30877677

RESUMO

Serum bactericidal antibody (SBA) assays measure functional antibody titers against Neisseria meningitidis in sera. Induction of complement-dependent SBA after vaccination with meningococcal polysaccharide or conjugate or protein based vaccines is regarded as the surrogate of protection and thus acceptable evidence of the potential efficacy of these vaccines. This chapter discusses and details SBA assay protocols for measuring the complement-mediated lysis of serogroup A, B, C, W, X, and Y meningococci by human sera, for example, following vaccination or disease.


Assuntos
Anticorpos Antibacterianos/imunologia , Proteínas do Sistema Complemento/imunologia , Infecções Meningocócicas/imunologia , Neisseria meningitidis/imunologia , Sorogrupo , Ensaios de Anticorpos Bactericidas Séricos/métodos , Humanos , Infecções Meningocócicas/microbiologia , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/administração & dosagem , Neisseria meningitidis/classificação , Vacinação
18.
Hum Vaccin Immunother ; 15(10): 2491-2500, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30883271

RESUMO

Invasive meningococcal disease is rare and potentially devastating but often vaccine-preventable. Evaluation of meningococcal vaccine effectiveness is impractical owing to relatively low disease incidence; protection is therefore estimated using serum bactericidal antibody (SBA) assays. Original experiments on natural immunity established a titer of ≥4 as the correlate of protection for SBA assays using human complement (hSBA), but human complement is relatively difficult to obtain and standardize. Use of baby rabbit complement (rSBA assays), per standard guidelines for serogroups A and C, generally results in comparatively higher titers. Postlicensure effectiveness data for serogroup C conjugate vaccines support acceptance of rSBA titers ≥8 as the correlate of protection for this serogroup, but no thresholds have been formally established for serogroups A, W, and Y. Studies evaluating MenACWY-TT (Nimenrix®; Pfizer Inc, Sandwich, UK) immunogenicity have used both hSBA and rSBA assays, and ultimately suggest that rSBA may be more appropriate for these measurements.


Assuntos
Proteínas do Sistema Complemento/análise , Proteínas do Sistema Complemento/imunologia , Vacinas Meningocócicas/imunologia , Ensaios de Anticorpos Bactericidas Séricos/normas , Animais , Anticorpos Antibacterianos/sangue , Humanos , Infecções Meningocócicas/diagnóstico , Infecções Meningocócicas/prevenção & controle , Coelhos/imunologia , Sorogrupo , Ensaios de Anticorpos Bactericidas Séricos/métodos , Fatores de Tempo , Vacinas Conjugadas/imunologia
19.
Hum Vaccin Immunother ; 15(3): 725-731, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30352000

RESUMO

The 4-component vaccine 4CMenB, developed against invasive disease caused by meningococcal serogroup B, is approved for use in infants in several countries worldwide. 4CMenB is mostly used as 3 + 1 schedule, except for the UK, where a 2 + 1 schedule is used, and where the vaccine showed an effectiveness of 82.9%. Here we compared the coverage of two 4CMenB vaccination schedules (3 + 1 [2.5, 3.5, 5, 11 months] versus 2 + 1 [3.5, 5, 11 months of age]) against 40 serogroup B strains, representative of epidemiologically-relevant isolates circulating in England and Wales in 2007-2008, using sera from a previous phase 3b clinical trial. The strains were tested using hSBA on pooled sera of infants, collected at one month post-primary and booster vaccination. 4CMenB coverage was defined as the percentage of strains with positive killing (hSBA titres ≥ 4 after immunisation and negative baseline hSBA titres < 2). Coverage of 4CMenB was 40.0% (95% confidence interval [CI]: 24.9-56.7) and 87.5% (95%CI: 73.2-95.8) at one month post-primary and booster vaccination, respectively, regardless of immunisation schedule. Using a more conservative threshold (post-immunisation hSBA titres ≥ 8; baseline ≤ 2), at one month post-booster dose, strain coverages were 80% (3 + 1) and 70% (2 + 1). We used a linear regression model to assess correlation between post-immunisation hSBA data for each strain in the two groups; Pearson's correlation coefficients were 0.93 and 0.99 at one month post-primary and booster vaccination. Overall, there is no evidence for a difference in strain coverage when 4CMenB is administered according to a 3 + 1 or 2 + 1 infant vaccination schedule.


Assuntos
Anticorpos Antibacterianos/sangue , Esquemas de Imunização , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/administração & dosagem , Neisseria meningitidis Sorogrupo B/imunologia , Sorogrupo , Ensaios Clínicos Fase III como Assunto , Humanos , Imunização Secundária , Lactente , Infecções Meningocócicas/imunologia , Vacinas Meningocócicas/imunologia , Ensaios de Anticorpos Bactericidas Séricos
20.
mSphere ; 3(5)2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305317

RESUMO

Neisseria gonorrhoeae (gonococcus [Ng]) is the causative organism of the sexually transmitted disease gonorrhoea, and no effective vaccine exists currently. In this study, the structure, biological properties, and vaccine potential of the Ng-adhesin complex protein (Ng-ACP) are presented. The crystal structure of recombinant Ng-ACP (rNg-ACP) protein was solved at 1.65 Å. Diversity and conservation of Ng-ACP were examined in different Neisseria species and gonococcal isolates (https://pubmlst.org/neisseria/ database) in silico, and protein expression among 50 gonococcal strains in the Centers for Disease Control and Prevention/Food and Drug Administration (CDCP/FDA) AR Isolate Bank was examined by Western blotting. Murine antisera were raised to allele 10 (strain P9-17)-encoded rNg-ACP protein with different adjuvants and examined by enzyme-linked immunosorbent assay (ELISA), Western blotting, and a human serum bactericidal assay. Rabbit antiserum to rNg-ACP was tested for its ability to prevent Ng-ACP from inhibiting human lysozyme activity in vitro. Ng-ACP is structurally homologous to Neisseria meningitidis ACP and MliC/PliC lysozyme inhibitors. Gonococci expressed predominantly allele 10- and allele 6-encoded Ng-ACP (81% and 15% of isolates, respectively). Murine antisera were bactericidal (titers of 64 to 512, P < 0.05) for the homologous P9-17 strain and heterologous (allele 6) FA1090 strain. Rabbit anti-rNg-ACP serum prevented Ng-ACP from inhibiting human lysozyme with ∼100% efficiency. Ng-ACP protein was expressed by all 50 gonococcal isolates examined with minor differences in the relative levels of expression. rNg-ACP is a potential vaccine candidate that induces antibodies that (i) are bactericidal and (ii) prevent the gonococcus from inhibiting the lytic activity of an innate defense molecule.IMPORTANCENeisseria gonorrhoeae (gonococcus [Ng]) is the causative organism of the sexually transmitted disease gonorrhoea, and the organism is listed by the World Health Organization as a high-priority pathogen for research and development of new control measures, including vaccines. In this study, we demonstrated that the N. gonorrhoeae adhesin complex protein (Ng-ACP) was conserved and expressed by 50 gonococcal strains and that recombinant proteins induced antibodies in mice that killed the bacteria in vitro We determined the structure of Ng-ACP by X-ray crystallography and investigated structural conservation with Neisseria meningitidis ACP and MliC/PliC proteins from other bacteria which act as inhibitors of the human innate defense molecule lysozyme. These findings are important and suggest that Ng-ACP could provide a potential dual target for tackling gonococcal infections.


Assuntos
Adesinas Bacterianas/química , Anticorpos Antibacterianos/sangue , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/imunologia , Animais , Western Blotting , Gonorreia/microbiologia , Gonorreia/prevenção & controle , Humanos , Soros Imunes/imunologia , Vacinas Meningocócicas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Proteínas Recombinantes/química , Ensaios de Anticorpos Bactericidas Séricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...