Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plant Cell Rep ; 41(8): 1693-1706, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35789423

RESUMO

KEY MESSAGE: Seventeen classical MaAGPs and 9 MbAGPs were identified and analyzed. MaAGP1/2/6/9/16/17, the antigens of JIM13 and LM2 antibodies are likely to be involved in banana chilling tolerance. Classical arabinogalactan proteins (AGPs) belong to glycosylphosphatidylinositol-anchored proteins, which are proved to be involved in signaling and cell wall metabolism upon stresses. However, rare information is available on the roles of classical AGPs in low temperature (LT) tolerance. Cultivation of banana in tropical and subtropical region is seriously threatened by LT stress. In the present study, 17 classical MaAGPs and nine MbAGPs in banana A and B genome were identified and characterized, respectively. Great diversity was present among different classical MaAGP/MbAGP members while five members (AGP3/6/11/13/14) showed 100% identity between these two gene families. We further investigated different responses of classical AGPs to LT between a chilling sensitive (CS) and tolerant (CT) banana cultivars. In addition, different changes in the temporal and spatial distribution of cell wall AGP components under LTs between these two cultivars were compared using immunofluorescence labeling. Seven classical MbAGPs were upregulated by LT(s) in the CT cultivar. Classical MaAGP4/6 was induced by LT(s) in both cultivars while MaAGP1/2/9/16/17 only in the CT cultivar. Moreover, these genes showed significantly higher transcription abundance in the CT cultivar than the CS one under LT(s) except classical MaAGP4. Similar results were observed with the epitopes of JIM13 and LM2 antibodies. The antigens of these antibodies and classical MaAGP1/2/6/9/16/17 might be related to LT tolerance of banana. These results provide additional information about plant classical AGPs and their involvement in LT tolerance, as well as their potential as candidate genes to be targeted when breeding CT banana.


Assuntos
Musa , Parede Celular/genética , Parede Celular/metabolismo , Temperatura Baixa , Musa/genética , Musa/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura
2.
Plants (Basel) ; 10(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33435621

RESUMO

The cell wall plays an important role in responses to various stresses. The cellulose synthase-like gene (Csl) family has been reported to be involved in the biosynthesis of the hemicellulose backbone. However, little information is available on their involvement in plant tolerance to low-temperature (LT) stress. In this study, a total of 42 Csls were identified in Musa acuminata and clustered into six subfamilies (CslA, CslC, CslD, CslE, CslG, and CslH) according to phylogenetic relationships. The genomic features of MaCsl genes were characterized to identify gene structures, conserved motifs and the distribution among chromosomes. A phylogenetic tree was constructed to show the diversity in these genes. Different changes in hemicellulose content between chilling-tolerant and chilling-sensitive banana cultivars under LT were observed, suggesting that certain types of hemicellulose are involved in LT stress tolerance in banana. Thus, the expression patterns of MaCsl genes in both cultivars after LT treatment were investigated by RNA sequencing (RNA-Seq) technique followed by quantitative real-time PCR (qPCR) validation. The results indicated that MaCslA4/12, MaCslD4 and MaCslE2 are promising candidates determining the chilling tolerance of banana. Our results provide the first genome-wide characterization of the MaCsls in banana, and open the door for further functional studies.

3.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35008668

RESUMO

Though numerous studies have focused on the cell wall disassembly of bananas during the ripening process, the modification of homogalacturonan (HG) during fruit development remains exclusive. To better understand the role of HGs in controlling banana fruit growth and ripening, RNA-Seq, qPCR, immunofluorescence labeling, and biochemical methods were employed to reveal their dynamic changes in banana peels during these processes. Most HG-modifying genes in banana peels showed a decline in expression during fruit development. Four polygalacturonase and three pectin acetylesterases showing higher expression levels at later developmental stages than earlier ones might be related to fruit expansion. Six out of the 10 top genes in the Core Enrichment Gene Set were HG degradation genes, and all were upregulated after softening, paralleled to the significant increase in HG degradation enzyme activities, decline in peel firmness, and the epitope levels of 2F4, CCRC-M38, JIM7, and LM18 antibodies. Most differentially expressed alpha-1,4-galacturonosyltransferases were upregulated by ethylene treatment, suggesting active HG biosynthesis during the fruit softening process. The epitope level of the CCRC-M38 antibody was positively correlated to the firmness of banana peel during fruit development and ripening. These results have provided new insights into the role of cell wall HGs in fruit development and ripening.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Musa/crescimento & desenvolvimento , Musa/metabolismo , Pectinas/metabolismo , Anticorpos/metabolismo , Epitopos/metabolismo , Frutas/anatomia & histologia , Frutas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Musa/anatomia & histologia , Musa/genética , Fatores de Tempo
4.
Int J Mol Sci ; 21(23)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297477

RESUMO

Banana is one of the most important food and fruit crops in the world and its growth is ceasing at 10-17 °C. However, the mechanisms determining the tolerance of banana to mild (>15 °C) and moderate chilling (10-15 °C) are elusive. Furthermore, the biochemical controls over the photosynthesis in tropical plant species at low temperatures above 10 °C is not well understood. The purpose of this research was to reveal the response of chilling-sensitive banana to mild (16 °C) and moderate chilling stress (10 °C) at the molecular (transcripts, proteins) and physiological levels. The results showed different transcriptome responses between mild and moderate chilling stresses, especially in pathways of plant hormone signal transduction, ABC transporters, ubiquinone, and other terpenoid-quinone biosynthesis. Interestingly, functions related to carbon fixation were assigned preferentially to upregulated genes/proteins, while photosynthesis and photosynthesis-antenna proteins were downregulated at 10 °C, as revealed by both digital gene expression and proteomic analysis. These results were confirmed by qPCR and immunofluorescence labeling methods. Conclusion: Banana responded to the mild chilling stress dramatically at the molecular level. To compensate for the decreased photosynthesis efficiency caused by mild and moderate chilling stresses, banana accelerated its carbon fixation, mainly through upregulation of phosphoenolpyruvate carboxylases.


Assuntos
Resposta ao Choque Frio , Musa/genética , Fotossíntese , Transcriptoma , Regulação da Expressão Gênica de Plantas , Musa/metabolismo , Fosfoenolpiruvato Carboxilase/genética , Fosfoenolpiruvato Carboxilase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação para Cima
5.
Plant Cell Rep ; 39(6): 693-708, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32128627

RESUMO

KEY MESSAGES: Thirty MaFLAs vary in their molecular features. MaFLA14/18/27/29 are likely to be involved in banana chilling tolerance by facilitating the cold signaling pathway and enhancing the cell wall biosynthesis. Although several studies have identified the molecular functions of individual fasciclin-like arabinogalactan protein (FLA) genes in plant growth and development, little information is available on their involvement in plant tolerance to low-temperature (LT) stress, and the related underlying mechanism is far from clear. In this study, the different expression of FLAs of banana (Musa acuminata) (MaFLAs) in the chilling-sensitive (CS) and chilling-tolerant (CT) banana cultivars under natural LT was investigated. Based on the latest banana genome database, a genome-wide identification of this gene family was done and the molecular features were analyzed. Thirty MaFLAs were distributed in 10 out of 11 chromosomes and these clustered into four major phylogenetic groups based on shared gene structure. Twenty-four MaFLAs contained N-terminal signal, 19 possessed predicted glycosylphosphatidylinositol (GPI), while 16 had both. Most MaFLAs were downregulated by LT stress. However, MaFLA14/18/29 were upregulated by LT in both cultivars with higher expression level recorded in the CT cultivar. Interestingly, MaFLA27 was significantly upregulated in the CT cultivar, but the opposite occurred for the CS cultivar. MaFLA27 possessed only N-terminal signal, MaFLA18 contained only GPI anchor, MaFLA29 possessed both, while MaFLA14 had neither. Thus, it was suggested that the accumulation of these FLAs in banana under LT could improve banana chilling tolerance through facilitating cold signal pathway and thereafter enhancing biosynthesis of plant cell wall components. The results provide background information of MaFLAs, suggest their involvement in plant chilling tolerance and their potential as candidate genes to be targeted when breeding CT banana.


Assuntos
Resposta ao Choque Frio/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Estudo de Associação Genômica Ampla , Musa/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Aclimatação , Moléculas de Adesão Celular/genética , Temperatura Baixa , Filogenia , Folhas de Planta , Proteoglicanas/genética , Alinhamento de Sequência
6.
Front Plant Sci ; 11: 617528, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519876

RESUMO

Bananas (Musa spp.) are an important fruit crop worldwide. The fungus Fusarium oxysporum f. sp. cubense (Foc), which causes Fusarium wilt, is widely regarded as one of the most damaging plant diseases. Fusarium wilt has previously devastated global banana production and continues to do so today. In addition, due to the current use of high-density banana plantations, desirable banana varieties with ideal plant architecture (IPA) possess high lodging resistance, optimum photosynthesis, and efficient water absorption. These properties may help to increase banana production. Genetic engineering is useful for the development of banana varieties with Foc resistance and ideal plant architecture due to the sterility of most cultivars. However, the sustained immune response brought about by genetic engineering is always accompanied by yield reductions. To resolve this problem, we should perform functional genetic studies of the Musa genome, in conjunction with genome editing experiments, to unravel the molecular mechanisms underlying the immune response and the formation of plant architecture in the banana. Further explorations of the genes associated with Foc resistance and ideal architecture might lead to the development of banana varieties with both ideal architecture and pathogen super-resistance. Such varieties will help the banana to remain a staple food worldwide.

7.
Electron. j. biotechnol ; 25: 33-38, ene. 2017. tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1008414

RESUMO

Background: Banana (Musa spp.) is an important staple food, economic crop, and nutritional fruit worldwide. Conventional breeding has been seriously hampered by their long generation time, polyploidy, and sterility of most cultivated varieties. Establishment of an efficient regeneration and transformation system for banana is critical to its genetic improvement and functional genomics. Results: In this study, a vigorous and repeatable transformation system for banana using direct organogenesis was developed. The greatest number of shoots per explant for all five Musa varieties was obtained using Murashige and Skoog medium supplemented with 8.9 µM benzylaminopurine and 9.1 µM thidiazuron. One immature male flower could regenerate 380­456, 310­372, 200­240, 130­156, and 100­130 well-developed shoots in only 240­270 d for Gongjiao, Red banana, Rose banana, Baxi, and Xinglongnaijiao, respectively. Longitudinal sections of buds were transformed through particle bombardment combined with Agrobacterium-mediated transformation using a promoterless ß-glucuronidase (GUS) reporter gene; the highest transformation efficiency was 9.81% in regenerated Gongjiao plantlets in an optimized selection medium. Transgenic plants were confirmed by a histochemical assay of GUS, polymerase chain reaction, and Southern blot. Conclusions: Our robust transformation platform successfully generated hundreds of transgenic plants. Such a platform will facilitate molecular breeding and functional genomics of banana.


Assuntos
Musa/crescimento & desenvolvimento , Musa/genética , Regeneração , Transformação Genética , Imuno-Histoquímica , Southern Blotting , Reação em Cadeia da Polimerase , Plantas Geneticamente Modificadas , Agrobacterium tumefaciens/fisiologia , Musa/microbiologia , Organogênese Vegetal , Glucuronidase
8.
Front Plant Sci ; 6: 353, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26074928

RESUMO

Information on the spatial distribution of arabinogalactan proteins (AGPs) in plant organs and tissues during plant reactions to low temperature (LT) is limited. In this study, the extracellular distribution of AGPs in banana leaves and roots, and their changes under LT stress were investigated in two genotypes differing in chilling tolerance, by immuno-techniques using 17 monoclonal antibodies against different AGP epitopes. Changes in total classical AGPs in banana leaves were also tested. The results showed that AGP epitopes recognized by JIM4, JIM14, JIM16, and CCRC-M32 antibodies were primarily distributed in leaf veins, while those recognized by JIM8, JIM13, JIM15, and PN16.4B4 antibodies exhibited predominant sclerenchymal localization. Epitopes recognized by LM2, LM14, and MAC207 antibodies were distributed in both epidermal and mesophyll cells. Both genotypes accumulated classical AGPs in leaves under LT treatment, and the chilling tolerant genotype contained higher classical AGPs at each temperature treatment. The abundance of JIM4 and JIM16 epitopes in the chilling-sensitive genotype decreased slightly after LT treatment, and this trend was opposite for the tolerant one. LT induced accumulation of LM2- and LM14-immunoreactive AGPs in the tolerant genotype compared to the sensitive one, especially in phloem and mesophyll cells. These epitopes thus might play important roles in banana LT tolerance. Different AGP components also showed differential distribution patterns in banana roots. In general, banana roots started to accumulate AGPs under LT treatment earlier than leaves. The levels of AGPs recognized by MAC207 and JIM13 antibodies in the control roots of the tolerant genotype were higher than in the chilling sensitive one. Furthermore, the chilling tolerant genotype showed high immuno-reactivity against JIM13 antibody. These results indicate that several AGPs are likely involved in banana tolerance to chilling injury.

9.
J Exp Bot ; 64(8): 2219-29, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23580752

RESUMO

Recent studies suggest that plant pectin methylesterases (PMEs) are directly involved in plant defence besides their roles in plant development. However, the molecular mechanisms of PME action on pectins are not well understood. In order to understand how PMEs modify pectins during banana (Musa spp.)-Fusarium interaction, the expression and enzyme activities of PMEs in two banana cultivars, highly resistant or susceptible to Fusarium, were compared with each other. Furthermore, the spatial distribution of PMEs and their effect on pectin methylesterification of 10 individual homogalacturonan (HG) epitopes with different degrees of methylesterification (DMs) were also examined. The results showed that, before pathogen treatment, the resistant cultivar displayed higher PME activity than the susceptible cultivar, corresponding well to the lower level of pectin DM. A significant increase in PME expression and activity and a decrease in pectin DM were observed in the susceptible cultivar but not in the resistant cultivar when plants were wounded, which was necessary for successful infection. With the increase of PME in the wounded susceptible cultivar, the JIM5 antigen (low methyestrified HGs) increased. Forty-eight hours after pathogen infection, the PME activity and expression in the susceptible cultivar were higher than those in the resistant cultivar, while the DM was lower. In conclusion, the resistant and the susceptible cultivars differ significantly in their response to wounding. Increased PMEs and thereafter decreased DMs acompanied by increased low methylesterified HGs in the root vascular cylinder appear to play a key role in determination of banana susceptibility to Fusarium.


Assuntos
Hidrolases de Éster Carboxílico/biossíntese , Fusarium/metabolismo , Musa/microbiologia , Doenças das Plantas/microbiologia , Colorimetria , Resistência à Doença/fisiologia , Indução Enzimática , Imunofluorescência , Musa/enzimologia , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...