Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.897
Filtrar
1.
Biodivers Data J ; 12: e127190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39360178

RESUMO

Tipulidae, commonly known as true crane flies, represent one of the most species-rich dipteran families, boasting approximately 4,500 known species globally. Their larvae serve as vital decomposers across diverse ecosystems, prompting their frequent and close observation in biomonitoring programs. However, traditional morphological identification methods are laborious and time-consuming, underscoring the need for a comprehensive DNA barcode reference library to speed up species determination. In this study, we present the outcomes of the German Barcode of Life initiative focused on Tipulidae. Our DNA barcode library comprises 824 high-quality cytochrome c oxidase I (COI) barcodes encompassing 76 crane fly species, counting for ca. 54% of the German tipulid fauna. Our results significantly increased the number of European tipulid species available in the Barcode of Life Data System (BOLD) by 14%. Additionally, the number of barcodes from European tipulid specimens more than doubled, with an increase of 118%, bolstering the DNA resource for future identification inquiries. Employing diverse species delimitation algorithms - including the multi-rate Poisson tree processes model (mPTP), Barcode Index Number assignments (BIN), Assemble Species by Automatic Partitioning (ASAP), and the TaxCI R-script - we successfully match 76-86% of the morphologically identified species. Further validation through neighbor-joining tree topology analysis and comparison with 712 additional European tipulid barcodes yield a remarkable 89% success rate for the species identification of German tipulids based on COI barcodes. This comprehensive DNA barcode dataset not only enhances species identification accuracy but also serves as a pivotal resource for ecological and biomonitoring studies, fostering a deeper understanding of crane fly diversity and distribution across terrestrial landscapes.

2.
J Fish Biol ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39351591

RESUMO

Recent collecting efforts in the upper Malagarazi basin (2013-2022) allowed for an integrative study based on qualitative (colour), quantitative (meristic and metric), and barcoding gene [mtDNA, cytochrome c oxidase (COI)] data of specimens similar to Enteromius sp. 'ascutelatus', being a previously identified, potentially, new species. Based on these data, the present study confirms its identification as a new species for science, which is here formally described as Enteromius nzigidaherai sp. nov. This new species belongs to the group of Enteromius species for which the last unbranched ray of the dorsal fin is flexible and devoid of serrations along its posterior edge. This species has a horizontal series of black spots at the midlateral level of the sides. Three congeneric species, known from the Congo basin sensu lato, with two of them also found in the upper Malagarazi basin, are most similar to it. However, E. nzigidaherai sp. nov. is distinguished from the two sympatric upper Malagarazi species, that is, E. quadrilineatus and E. lineomaculatus, at least by two meristics and two morphometrics. It is also distinguished from E. urostigma, known from the upper Congo basin, by two meristics and one, apparently related, morphometric. In addition, a barcoding (mtDNA, COI) study revealed that the specimens of E. nzigidaherai sp. nov. form a well-supported, separate lineage, with a K2P genetic distance of more than 10% with specimens identified as E. quadrilineatus and E. lineomaculatus, both originating from the upper Malagarazi basin and for which tissue samples were available. Finally, the new species was found to be endemic to the upper reaches of two left bank affluents of the upper Malagarazi basin: the Muyovozi and the Kinwa. However, both affluents are threatened by human activities, which seem to have resulted in its local disappearance as recent intensive collecting efforts in the latter affluent have remained unsuccessful. The species should thus be considered Critically Endangered (CR) according to IUCN criteria B1ab(ii,iv)c(i,iii). Therefore, it is hoped that the present description draws renewed attention to the importance of aquatic protection in the region by highlighting the need for the effective establishment of the Malagarazi Nature Reserve and concern for its optimal delimitation to efficiently protect the entire ichthyofauna of the upper Malagarazi, without excluding the fish species confined to its affluent rivers.

3.
Vet Parasitol ; 332: 110300, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39270602

RESUMO

Hippoboscid flies (Diptera: Hippoboscidae) are obligate bloodsucking ectoparasites of animals. In Europe, limited research has been conducted on this family until the recent introduction of the deer ked Lipoptena fortisetosa Maa, 1965. A new species of the genus Lipoptena, Lipoptena andaluciensis sp. nov., was found in southern Spain after extensive sampling with carbon-dioxide baited suction traps. A total of 52 females and 32 males were collected at 29 out of 476 sites examined over eight months in 2023. Lipoptena andaluciensis sp. nov. was characterized morphologically and molecularly. The new Lipoptena species can be differentiated from the closely related L. fortisetosa by size, chaetotaxy of the dorsal and ventral thorax, abdominal plates, and genitalia. Based on DNA-barcoding, our specimens showed the highest similarity with Melophagus ovinus (Linnaeus, 1758) (88.4 %) and with L. fortisetosa (86-88 %). Individual screening of Lipoptena specimens (n = 76) for seven important zoonotic pathogens such as bacteria (Anaplasmataceae family: Bartonella spp., Borrelia spp., Coxiella burnetii and Rickettsia spp.) and protozoans (Babesia spp. and Theileria spp.) by conventional PCR and RT-PCR was performed. DNA of C. burnetii was detected in one specimen, while two other specimens harboured Anaplasmataceae (Wolbachia spp., 100 % homology and another endosymbiont probably related to Arsenophonus sp., 95.3 % homology, respectively), all representing the first records of these bacteria in the Lipoptena spp. from Europe. Carbon dioxide traps probed its effectiveness as a reliable passive method for keds surveillance. Our study highlights the existence of a new Lipoptena species, presumably widely distributed in southern Spain. The role of this species in the transmission cycle of pathogens of medical-veterinary relevance needs to be considered in the area.

4.
Mar Pollut Bull ; 208: 116927, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39255672

RESUMO

The introduction of biopollutant species challenge ecosystem health and economy in remote islands. Here we checked the advance of invasive fouling species in five French Polynesian islands. Expansion of invasive species (Acantophora spicifera, Bugula neritina, Chthamalus proteus, Dendostrea frons) was detected using individual barcoding (COI for animals, RBLC for algae), and metabarcoding on biofouling (COI and 18S sequences). They were especially abundant in Port Phaeton (Tahiti), Bora Bora and Rangiroa atoll. Chthamalus proteus is a vector of bacterial diseases and may harm native French Polynesian mollusks. Dendostrea frons is a vector of Perkinsus, a parasite to which black pearl oysters, the mainstay of the Polynesian economy, are susceptible. High ecological and epidemiological risks were estimated for C. proteus and D. frons, and ecological risks also for A. spicifera and especially for B. neritina. Strengthening marine biosecurity measures is highly recommended to conserve these unique ecosystems and their associated services.

5.
Med Vet Entomol ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258880

RESUMO

Sand flies (Diptera: Psychodidae: Phlebotominae) are blood-feeding insects that transmit the protozoan parasites Leishmania spp. and various arboviruses. The Balkan region, including the Republic of Kosovo, harbours a diverse sand fly fauna. Vector species of Leishmania infantum as well as phleboviruses are endemic; however, recent data are scarce. We performed a cross-sectional study to update the current sand fly distribution in Kosovo and assess biological as well as environmental factors associated with sand fly presence. CDC light trapping was conducted at 46 locations in 2022 and 2023, specifically targeting understudied regions in Kosovo. Individual morphological species identification was supported by molecular barcoding. The occurrence data of sand flies was used to create distribution maps and perform environmental analyses, taking elevation, wind speed and climate-related factors into account. In addition, PCR-based blood meal analysis and pathogen screening were conducted. Overall, 303 specimens of six sand fly species were trapped, predominated by Phlebotomus neglectus (97%). Barcodes from eight of nine known endemic sand fly species were obtained. Combining our data with previous surveys, we mapped the currently known sand fly distribution based on more than 4000 specimens at 177 data points, identifying Ph. neglectus and Ph. perfiliewi as the predominant species. Environmental analyses depicted two geographical groups of sand flies in Kosovo, with notable differences between the species. In total, 223 blood meals of five sand fly species were analysed. Of seven identified host species, the predominant blood meal source was observed to be cattle, but the DNA of dogs and humans, among others, was also detected. This study assessed biological as well as ecological factors of sand fly occurrence, which should help better understand and evaluate potential hot spots of disease transmission in Kosovo.

6.
Parasitol Int ; 104: 102964, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39303852

RESUMO

Caligus minimus Otto, 1821 has been known for over two centuries and it is the second oldest of the approximately 275 species of Caligus O. F. Müller, 1985. Despite the numerous records of this species from European waters, it has never been fully described to modern standards. The lack of a comprehensive modern description has resulted in numerous misidentifications, even in recently published reports, and this is especially problematic for a species that is known to have a significant economic impact in aquaculture. This study presents a detailed description of both sexes and documents newly observed features of C. minimus collected from the buccal cavity of farmed European Sea Bass (ESB), Dicentrarchus labrax (Linnaeus, 1758). The morphology of C. minimus was examined using light microscope (LM), scanning electron microscope (SEM), and confocal laser scanning microscope (CLSM), and new details are revealed regarding the structure and ornamentation of the marginal membrane of the cephalothorax, maxilliped, antenna, sternal furca, abdomen, and legs 1, 3, 4, and 6. The ornamentation of the marginal membrane of the cephalothorax is unique and its impact on the functioning of the cephalothoracic sucker requires further investigation. Additionally, partial COI gene region sequences were obtained from four individuals of C. minimus and provided for future references. A phylogenetic analysis was conducted in conjunction with Caligus sequences available in the NCBI GenBank database.

7.
BMC Biol ; 22(1): 215, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334308

RESUMO

BACKGROUND: Zoology's dark matter comprises hyperdiverse, poorly known taxa that are numerically dominant but largely unstudied, even in temperate regions where charismatic taxa are well understood. Dark taxa are everywhere, but high diversity, abundance, and small size have historically stymied their study. We demonstrate how entomological dark matter can be elucidated using high-throughput DNA barcoding ("megabarcoding"). We reveal the high abundance and diversity of scuttle flies (Diptera: Phoridae) in Sweden using 31,800 specimens from 37 sites across four seasonal periods. We investigate the number of scuttle fly species in Sweden and the environmental factors driving community changes across time and space. RESULTS: Swedish scuttle fly diversity is much higher than previously known, with 549 putative specie) detected, compared to 374 previously recorded species. Hierarchical Modelling of Species Communities reveals that scuttle fly communities are highly structured by latitude and strongly driven by climatic factors. Large dissimilarities between sites and seasons are driven by turnover rather than nestedness. Climate change is predicted to significantly affect the 47% of species that show significant responses to mean annual temperature. Results were robust regardless of whether haplotype diversity or species-proxies were used as response variables. Additionally, species-level models of common taxa adequately predict overall species richness. CONCLUSIONS: Understanding the bulk of the diversity around us is imperative during an era of biodiversity change. We show that dark insect taxa can be efficiently characterised and surveyed with megabarcoding. Undersampling of rare taxa and choice of operational taxonomic units do not alter the main ecological inferences, making it an opportune time to tackle zoology's dark matter.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Dípteros , Animais , Dípteros/fisiologia , Dípteros/genética , Suécia , Estações do Ano , Mudança Climática , Distribuição Animal
8.
Mol Ecol ; : e17529, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39290075

RESUMO

Ectomycorrhizal (ECM) fungi are important tree symbionts within forests. The biogeography of ECM fungi remains to be investigated because it is challenging to observe and identify species. Because most ECM plant taxa have a Holarctic distribution, it is difficult to evaluate the extent to which host preference restricts the global distribution of ECM fungi. To address this issue, we aimed to assess whether host preference enhances the endemism of ECM fungi that inhabit dipterocarp rainforests. Highly similar sequences of 175 operational taxonomic units (OTUs) for ECM fungi that were obtained from Lambir Hill's National Park, Sarawak, Malaysia, were searched for in a nucleotide sequence database. Using a two-step binomial model, the probability of presence for the query OTUs and the registration rate of barcode sequences in each country were simultaneously estimated. The results revealed that the probability of presence in the respective countries increased with increasing species richness of Dipterocarpaceae and decreasing geographical distance from the study site (i.e. Lambir). Furthermore, most of the ECM fungi were shown to be endemic to Malaysia and neighbouring countries. These findings suggest that not only dispersal limitation but also host preference are responsible for the high endemism of ECM fungi in dipterocarp rainforests. Moreover, host preference likely determines the areas where ECM fungi potentially expand and dispersal limitation creates distance-decay patterns within suitable habitats. Although host preference has received less attention than dispersal limitation, our findings support that host preference has a profound influence on the global distribution of ECM fungi.

9.
Am J Bot ; : e16401, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267427

RESUMO

PREMISE: Sphagnum magellanicum (Sphagnaceae, Bryophyta) has been considered to be a single semi-cosmopolitan species, but recent molecular analyses have shown that it comprises a complex of at least seven reciprocally monophyletic groups, that are difficult or impossible to distinguish morphologically. METHODS: Newly developed barcode markers and RADseq analyses were used to identify species among 808 samples from 119 sites. Molecular approaches were used to assess the geographic ranges of four North American species, the frequency at which they occur sympatrically, and ecological differentiation among them. Microhabitats were classified with regard to hydrology and shade. Hierarchical modelling of species communities was used to assess climate variation among the species. Climate niches were projected back to 22,000 years BP to assess the likelihood that the North American species had sympatric ranges during the late Pleistocene. RESULTS: The species exhibited parallel morphological variation, making them extremely difficult to distinguish phenotypically. Two to three species frequently co-occurred within peatlands. They had broadly overlapping microhabitat and climate niches. Barcode- versus RADseq-based identifications were in conflict for 6% of the samples and always involved S. diabolicum vs. S. magniae. CONCLUSIONS: These species co-occur within peatlands at scales that could permit interbreeding, yet they remain largely distinct genetically and phylogenetically. The four cryptic species exhibited distinct geographic and ecological patterns. Conflicting identifications from barcode vs. RADseq analyses for S. diabolicum versus S. magniae could reflect incomplete speciation or hybridization. They comprise a valuable study system for additional work on climate adaptation.

10.
Vet Parasitol Reg Stud Reports ; 55: 101105, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39326961

RESUMO

Ticks are arachnid blood-feeding parasites, which infest livestock, wildlife, and humans, transmitting medically and veterinary significant pathogens. Their biodiversity and distribution in wild animals remains complex. This study analysed archived tick samples (n = 48) from the South African Biodiversity Institute (SANBI) Wildlife Biobank utilizing morphology and genetic analyses of the 16S rRNA and COI (DNA barcoding) mitochondrial genes to identify ticks collected among 13 vertebratesavian, reptilian, and mammalian host species. The specimens came from nine localities including nature reserves and captive facilities (zoological garden) in South Africa, Namibia, and Botswana. These ticks were also assessed for associated pathogens with the reverse line blot (RLB) hybridization assay. Seven tick genera, Amblyomma, Hyalomma, Haemaphysalis, Ixodes, Rhipicephalus, Rhipicentor, and Otobius were identified, with Amblyomma being the most prevalent (22.9 %) in our sample set. Obtained sequences were 95-100 % similar to published records of tick species collected from wild and domestic animals, as well as those collected from vegetation, from different southern African areas. However, tick specimens (n = 3) identified morphologically as Hyalomma truncatum, Rhipicephalus e. evertsi, and R. simus, were, on a molecularly level, more closely related to their sister taxa (H. glabrum, R. e. mimeticus, and R. gertrudae, respectively) suggesting a need for taxonomic verification. With the RLB hybridization assay, six samples reacted with the Ehrlichia/Anaplasma genus-specific probe, while two reacted with the Theileria/Babesia genus-specific probe. Sequencing of the RLB amplicons targeting the 18S rRNA gene (n = 2) indicated 100 % similarity to Hepatozoon fitzsimonsi, while one was closely related to He. ingwe with 99.39 % similarity. The results show that wildlife harbour different tick species, and pathogen detection identified novel genotypes, indicating wildlife as potential pathogens reservoirs. This study enhances our understanding of tick biodiversity, distribution and highlights wildlife's role in harbouring diverse tick species and novel pathogens.


Assuntos
Animais Selvagens , RNA Ribossômico 16S , Infestações por Carrapato , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , África do Sul/epidemiologia , Animais Selvagens/parasitologia , Infestações por Carrapato/veterinária , Infestações por Carrapato/parasitologia , Infestações por Carrapato/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/parasitologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/microbiologia , RNA Ribossômico 16S/análise , Carrapatos/parasitologia , Carrapatos/microbiologia , Filogenia , Feminino , Código de Barras de DNA Taxonômico/veterinária , Animais de Zoológico/parasitologia
11.
Zookeys ; 1212: 143-152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39318674

RESUMO

Previously, no records of Syntormon Loew, 1857 species were known from Inner Mongolia (China). The genus is reported here from Inner Mongolia for the first time, with the description of a new species, S.sinicum sp. nov., along with two previously described species, S.dukha Hollis, 1964 and S.henanense Yang & Saigusa, 2000. Syntormonsinicum sp. nov. and S.dukha Hollis, 1964 are barcoded for the first time to support the species delimitation. A key to Syntormon species in China is provided.

12.
Zookeys ; 1212: 153-177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39318675

RESUMO

A doubt has arisen about the taxonomic status of Agabuslotti within the Agabusuliginosus species group due to morphological similarities and lack of molecular data. In this study, a comprehensive morphological and molecular analysis of specimens from Central Europe was conducted, focusing on the Hungarian population. Morphological comparisons of genital structures revealed age-dependent variations, suggesting a gradual transition from A.lotti to A.uliginosus. Molecular analysis of COI sequences further supported this hypothesis, showing minimal genetic differences among most specimens, with only one individual exhibiting distinctiveness. Therefore, A.lotti syn. nov. must be regarded as a junior synonym of A.uliginosus. Our findings also highlight the need for additional multi-marker studies covering a broader geographic range and including both molecular and morphological approaches to elucidate the taxonomic and phylogenetic relationships within this species group. The inclusion of Hungarian samples notably enriched the diversity of haplotypes, emphasizing the importance of expanding sampling efforts in future research.

13.
Zookeys ; 1212: 179-194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39318677

RESUMO

Elachistadimicatella Rebel, 1903, has so far been considered a species in Europe with restricted distribution from Ukraine to western France. The species occurs on mountainous regions. However, the in-depth analysis of a taxonomically uncertain species of Elachista from the Cottian Alps (Italy), especially through DNA barcoding and subsequent morphological studies, led to the realization that individuals previously identified as E.dimicatella from the Cottian Alps and the Pyrenees were misidentified. According to our research, a total of three species can be differentiated: E.dimicatella from Carpathians and its former junior synonym E.niphadophanes Meyrick, 1937, sp. rev., from the Pyrenees, as well as the newly described E.cottiella sp. nov. from southwestern Alps, hitherto incorrectly identified as E.dimicatella. Diagnostic features of the three species are discussed and illustrated. Elachistadimicatella and E.niphadophanes are redescribed.

14.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(4): 352-360, 2024 Aug 05.
Artigo em Chinês | MEDLINE | ID: mdl-39322294

RESUMO

OBJECTIVE: To characterize the species of common sandflies in Henan Province using DNA barcoding with cytochrome c oxidase subunit I (COI) gene as the molecular marker, and to analyze the genetic polymorphisms of sandflies, so as to provide insights into visceral leishmaniasis prevention and control in Henan Province. METHODS: Sandfly specimens were sampled from 13 sandflies surveillance sites from 2021 to 2023 in Anyang City, Zhengzhou, Luoyang and Xuchang cities (Zhengzhou-Luoyang-Xuchang areas) where visceral leishmaniasis cases were reported and in Jiaozuo and Xinxiang cities (Jiaozuo-Xinxiang areas) without visceral leishmaniasis cases reported. Genomic DNA was extracted from a single sandfly, and COI gene was amplified. The amplification product was subjected to bidirectional sequencing. Following sequence assembly, the species of sandflies was characterized through sequence alignment using the BLAST tool. The intra-specific and inter-specific genetic distances of sandflies were estimated among different areas using the software Mega 11, and phylogenetic trees were created. The polymorphisms of nucleotide sequences in the sandflies COI gene were estimated using the software DnaSP. The fixation index (FST) of different geographical isolates of sandflies was calculated using the Arlequin software, and the gene flow value (Nm) was used to measure the gene flow in the sandflies populations. In addition, the population genetic structure of different geographical populations of Phlebotomus chinensis was analyzed using the STRUCTURE software. RESULTS: A total of 978 sandflies were collected from 13 sandflies surveillance sites in Zhengzhou-Luoyang-Xuchang areas, Jiaozuo-Xinxiang areas and Anyang City of Henan Province from 2021 to 2023, and 475 sandflies were randomly sampled for subsequent detections. A total of 304 Ph. chinensis, 162 Se. squamirostris and 9 Se. bailyi were identified based on molecular biological detection of the COI gene, and Se. bailyi was reported for the first time in Henan Province. The intraspecific genetic distances of sandflies were 0.000 to 0.040, and the inter-specific genetic distances ranged from 0.133 to 0.161. Phylogenetic analysis revealed that each of the three sandfly species was clustered into a clade. The genetic polymorphisms of Ph. chinensis populations varied among different areas, with the highest haplotype diversity (0.966 ± 0.007) and the greatest nucleotide diversity (0.011) in Zhengzhou-Luoyang-Xuchang areas, and the lowest haplotype diversity (0.720 ± 0.091) and nucleotide diversity (0.004) in Anyang City. The dominant haplotype of Ph. chinensis populations was Pch_Hap_2 in Anyang City and Jiaozuo-Xinxiang areas, with moderate genetic differentiation (0.05 < FST < 0.15) and frequent gene exchange (Nm value > 1) between Ph. chinensis populations sampled from Anyang City, and Jiaozuo-Xinxiang areas. Population genetic structure analysis showed that the dominant component of Ph. chinensis populations was K5 in Anyang City and Jiaozuo-Xinxiang areas. No obvious dominant haplotype was observed in Ph. chinensis populations sampled from Zhengzhou-Luoyang-Xuchang areas, which had very high genetic differentiation (FST > 0.25) and little gene exchange (Nm value < 1) with Ph. chinensis populations from Anyang City, and Jiaozuo-Xinxiang areas, with K3 as the dominant component. In addition, there was no significant difference in the genetic polymorphism level among Se. squamirostris populations from the three areas. CONCLUSIONS: There are Ph. chinensis, Se. squamirostris and Se. bailyi in Henan Province, and S. bailyi is recorded for the first time in Henan Province by molecular biological assays. There are different levels of genetic differentiation and gene exchange among P. chinensis populations in different areas of Henan Province.


Assuntos
Código de Barras de DNA Taxonômico , Complexo IV da Cadeia de Transporte de Elétrons , Filogenia , Polimorfismo Genético , Psychodidae , Animais , China , Psychodidae/genética , Psychodidae/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética
15.
Insects ; 15(9)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39336651

RESUMO

Psyllids (Hemiptera: Psylloidea) are plant sap-sucking insects whose identification is often difficult for non-experts. Despite the rapid development of DNA barcoding techniques and their widespread use, only a limited number of sequences of psyllids are available in the public databases, and those that are available are often misidentified. Here, we provide 80 sequences of two mitochondrial genes, cytochrome c oxidase I (COI) and cytochrome b (Cytb), for 25 species of Aphalaridae, mainly from Bulgaria. The DNA barcodes for 15 of these species are published for the first time. In cases where standard primers failed to amplify the target gene fragment, we designed new primers that can be used in future studies. The distance-based thresholds for the analysed species were between 0.0015 and 0.3415 for COI and 0.0771 and 0.4721 for Cytb, indicating that the Cytb gene has a higher interspecific divergence, compared to COI, and therefore allows for more accurate species identification. The species delimitation based on DNA barcodes is largely consistent with the differences resulting from morphological and host plant data, demonstrating that the use of DNA barcodes is suitable for successful identification of most aphalarid species studied. The phylogenetic reconstruction based on maximum likelihood and Bayesian inference analyses, while showing similar results at high taxonomic levels to previously published phylogenies, provides additional information on the placement of aphalarids at the species level. The following five species represent new records for Bulgaria: Agonoscena targionii, Aphalara affinis, Colposcenia aliena, Co. bidentata, and Craspedolepta malachitica. Craspedolepta conspersa is reported for the first time from the Czech Republic, while Agonoscena cisti is reported for the first time from Albania.

16.
PeerJ ; 12: e18113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39329133

RESUMO

Background: The mislabeling of seafood, wherein a food product's marketed name does not match its contents, has the potential to mask species of conservation concern. Less discussed is the role of legally ambiguous market names, wherein a single name could be used to sell multiple species. Here we report the first study in Canada to examine mislabeling and ambiguous market names in both invertebrate (e.g., bivalve, cephalopod, shrimp) and finfish products. Methods: A total of 109 invertebrate and 347 finfish products were sampled in Calgary between 2014 and 2020. Market names were documented from the label or equivalent and determined to be precise (the name could apply to only one species) or ambiguous (multiple species could be sold under that name). A region of the cytochrome c oxidase I gene was sequenced and compared to reference sequences from boldsystems.org. Samples were considered mislabeled if the species identified through DNA barcoding did not correspond to the market name, as determined through the Canadian Food Inspection Agency Fish List. Mislabeling was further differentiated between semantic mislabeling, wherein the market name was not found on the Fish List but the barcode identity was in line with what a consumer could reasonably have expected to have purchased; invalid market names, wherein the market name was so unusual that no legitimate inferences as to the product's identity could be made; and product substitution, wherein the DNA barcode identified the product as a species distinct from that associated with the market name. Invalid market names and product substitutions were used to provide conservative estimates of mislabeling. The global conservation status of the DNA-identified invertebrate or finfish was determined through the International Union for the Conservation of Nature Red List. A logistic regression was used to determine the relationship between precision and accuracy in predicting conservation status of the sampled species. Results: There was no significant difference in mislabeling occurrence between invertebrates (33.9% total mislabeling occurrence, 20.2% product substitution) and finfish (32.3% total mislabeling occurrence, 21.3% product substitution/invalid market names). Product substitutions sometimes involved species of conservation concern, such as foods marketed as freshwater eel (Anguilla rostrata) that were determined through DNA barcoding to be European eel (Anguilla anguilla), or cuttlefish balls putatively identified as the Endangered threadfin porgy (Evynnis cardinalis). Product substitutions and ambiguous market names were significantly associated with the sale of species of conservation concern, but ambiguity was a more important predictor. Although preventing the mislabeling of seafoods can and must remain a priority in Canada, our work suggests that moving towards precise names for all seafood products will better support sustainable fisheries goals.


Assuntos
Código de Barras de DNA Taxonômico , Alimentos Marinhos , Animais , Alberta , Alimentos Marinhos/análise , Rotulagem de Alimentos/legislação & jurisprudência , Invertebrados/classificação , Conservação dos Recursos Naturais , Peixes/genética , Espécies em Perigo de Extinção
17.
J Ethnopharmacol ; : 118855, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39332616

RESUMO

The study evaluated 297 carrot germplasm lines, focusing on 52 cultivars to explore their therapeutic potential and address challenges related to the accessibility and affordability of nutraceuticals. The investigation explores the application of DNA barcoding using the ITS region for precise species identification, highlighting genetic diversity among the examined cultivars. Through ITS sequence-based analysis and phylogenetic examination, six diverse Daucus spp. genotypes were differentiated and classified into distinct groups, indicating the presence of vast genetic variation. Evaluation of antioxidant activities using the DPPH radical scavenging assay revealed varying degrees of scavenging ability among genotypes with SKAU-C-15, SKAU-C-17, and SKAU-C-16 exhibiting the highest activity, suggesting their potential for antioxidant-rich products. Thin Layer Chromatography (TLC) bioautography confirmed the presence of bioactive compounds in carrot extracts responsible for their antioxidant properties. In cell culture studies, specific carrot genotype extracts demonstrated potential anti-proliferative and anti-metastatic effects on C4-2 (SKAU-C-30, SKAU-C-10, and SKAU-C-42) and A549 (SKAU-C-18 and SKAU-C-11) cancer cells, as indicated by MTT assay, wound healing assay, and Colony Forming Unit assay. These findings suggest the promising therapeutic potential of carrot genotypes for developing anti-cancer compounds or supplements. Overall, the study contributes to the nutrition and medical fields, paving the way for advancements in functional foods and health applications, particularly in cancer treatment or prevention.

18.
Ann Bot ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349404

RESUMO

BACKGROUND AND AIMS: Elevation gradients provide 'natural experiments' for investigating plant climate change responses, advantageous for the study of protected species and life forms for which transplantation experiments are illegal or unfeasible, such as chasmophytes with perennial rhizomes pervading rock fissures. Elevational climatic differences impact mountain plant reproductive traits (pollen and seed quality, sexual vs. vegetative investment) and pollinator community composition; we investigated the reproductive ecology of a model chasmophyte, Campanula raineri Perp. (Campanulaceae), throughout its current elevational/climatic range to understand where sub-optimal conditions jeopardise survival. We hypothesised that: 1) reproductive fitness measures are positively correlated with elevation, indicative of the relationship between fitness and climate; 2) C. raineri, like other campanulas, is pollinated mainly by Hymenoptera; 3) potential pollinators shift with elevation. METHODS: We measured pollen and seed quality, seed production, the relative investment in sexual vs. vegetative structures and vegetative (Grime's CSR) strategies at different elevations. Potential pollinators were assessed by combining molecular and morphological identification. KEY RESULTS: Whereas CSR strategies were not linked to elevation, pollen and seed quality were positively correlated, as was seed production per fruit (Hypothesis 1 is supported). The main pollinators of C. raineri were Apidae, Andrenidae, Halictidae (Hymenoptera) and Syrphidae (Diptera), probably complemented by a range of occasional pollinators and visitors (Hypothesis 2 partially supported). Potential pollinator communities showed a taxonomic shift towards Diptera with elevation (particularly Anthomyiidae and Muscidae) and away from Hymenoptera (Hypothesis 3 was supported). CONCLUSIONS: Pollinator availability is maintained at all elevations by taxon replacement. However, reduced pollen quality and seed production at lower elevations suggest an impact of climate change on reproduction (especially <1200 m a.s.l., where seed germination was limited). Aside from guiding targeted conservation actions for C. raineri, our results highlight problems that may be common to mountain chasmophytes worldwide.

19.
J Nematol ; 56(1): 20240025, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39221104

RESUMO

Six distinct COI mitochondrial Haplotype Groups (HG) are morphologically, ecologically, and genetically characterized from the aquatic nematode family Tobrilidae. Collection locations included the extreme habitats of the Alkaline Lakes in the western Nebraska Sandhills and the contaminated stream, Johnson Creek, bordering the AltEn 2021 catastrophic pesticide release near the village of Mead in eastern Nebraska. Maximum likelihood and genetic distance metrics supported the genetic integrity of the haplotype groups. Discriminant function analysis of COI haplotype group datasets of combined morphological characters and soil chemistry attributes for both male and female Tobrilidae were classified correctly in all but one case. Scanning electron microscopy revealed new details about amphid apertures, male supplements, and spicules. Partial 18S gene phylogeny suggests that the genus Semitobrilus may not be a member of the subfamily Neotobrilinae, and three specimens in the 226 tobrilid dataset provide evidence of incongruence between COI and 18S derived phylogenies. Given the strong signal provided by the environmental chemistry data, tobrilid mitochondrial haplotypes may well have value as environmental indicators.

20.
Mol Ecol Resour ; 24(8): e14018, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39285627

RESUMO

For two decades, DNA barcoding and, more recently, DNA metabarcoding have been used for molecular species identification and estimating biodiversity. Despite their growing use, few studies have systematically evaluated these methods. This study aims to evaluate the efficacy of barcoding methods in identifying species and estimating biodiversity, by assessing their consistency with traditional morphological identification and evaluating how assignment consistency is influenced by taxonomic group, sequence similarity thresholds and geographic distance. We first analysed 951 insect specimens across three taxonomic groups: butterflies, bumblebees and parasitic wasps, using both morphological taxonomy and single-specimen COI DNA barcoding. An additional 25,047 butterfly specimens were identified by COI DNA metabarcoding. Finally, we performed a systematic review of 99 studies to assess average consistency between insect species identity assigned via morphology and COI barcoding and to examine the distribution of research effort. Species assignment consistency was influenced by taxonomic group, sequence similarity thresholds and geographic distance. An average assignment consistency of 49% was found across taxonomic groups, with parasitic wasps displaying lower consistency due to taxonomic impediment. The number of missing matches doubled with a 100% sequence similarity threshold and COI intraspecific variation increased with geographic distance. Metabarcoding results aligned well with morphological biodiversity estimates and a strong positive correlation between sequence reads and species abundance was found. The systematic review revealed an 89% average consistency and also indicated taxonomic and geographic biases in research effort. Together, our findings demonstrate that while problems persist, barcoding approaches offer robust alternatives to traditional taxonomy for biodiversity assessment.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Insetos , Animais , Código de Barras de DNA Taxonômico/métodos , Insetos/genética , Insetos/classificação , Insetos/anatomia & histologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Vespas/genética , Vespas/classificação , Vespas/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA