Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 428
Filtrar
1.
Biomed Pharmacother ; 179: 117385, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39241571

RESUMO

As the research on cancer-related treatment deepens, integrating traditional therapies with emerging interventions reveals new therapeutic possibilities. Melittin and phospholipase A2, the primary anti-cancer components of bee venom, are currently gaining increasing attention. This article reviews the various formulations of melittin in cancer therapy and its potential applications in clinical treatments. The reviewed formulations include melittin analogs, hydrogels, adenoviruses, fusion toxins, fusion peptides/proteins, conjugates, liposomes, and nanoparticles. The article also explored the collaborative therapeutic effects of melittin with natural products, synthetic drugs, radiotherapy, and gene expression regulatory strategies. Phospholipase A2 plays a key role in bee venom anti-cancer strategy due to its unique biological activity. Using an extensive literature review and the latest scientific results, this paper explores the current state and challenges of this field, with the aim to provide new perspectives that guide future research and potential clinical applications. This will further promote the application of bee venom in cancer therapy.

2.
Int J Biol Macromol ; : 135362, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245116

RESUMO

Recently, numerous studies have confirmed the importance of chitosan nanoparticles (CNP) as a viable drug delivery carrier for increasing the efficacy of anticancer drugs in cancer treatment. It is a macromolecule and natural biopolymer compound, more stable and safer in use than metal nanoparticles. Bee venom (BV), a form of defense venom, has been shown to have anti-tumor, neuroprotective, anti-inflammatory, analgesic, and anti-infectivity properties. Moreover, the regulation of cell death has been linked to reactive oxygen species (ROS)-mediated cell apoptosis, which induces mitochondrial damage and ER stress through oxidative stress events. Therefore, this study aimed to illustrate the ROS-mediated effect on the cancer cells treatment with CNP-loaded BV (CNP-BV) and explained the adverse effects of ROS generation on Mitochondria and ER. We have found that the targeted CNP-BV were high in cytotoxicity against MCF-7 (IC50 437.2 µg/mL) and HepG2 (IC50 109.5 µg/mL) through the induction of massive generation of ROS, which in turn results in activating the mitochondrial cascade and ER stress. These results highlighted the role of ROS generation in inducing apoptosis in cancer cells.

3.
Sci Rep ; 14(1): 19013, 2024 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152125

RESUMO

The beekeeping industry plays a crucial role in local economies, contributing significantly to their growth. However, bee colonies often face the threat of American foulbrood (AFB), a dangerous disease caused by the Gram-positive bacterium Paenibacillus larvae (P. l.). While the antibiotic Tylosin has been suggested as a treatment, its bacterial resistance necessitates the search for more effective alternatives. This investigation focused on evaluating the potential of bee venom (BV) and silver nanoparticles (Ag NPs) as antibacterial agents against AFB. In vitro treatments were conducted using isolated AFB bacterial samples, with various concentrations of BV and Ag NPs (average size: 25nm) applied individually and in combination. The treatments were administered under both light and dark conditions. The viability of the treatments was assessed by monitoring the lifespans of treated bees and evaluating the treatment's efficiency within bee populations. Promising results were obtained with the use of Ag NPs, which effectively inhibited the progression of AFB. Moreover, the combination of BV and Ag NPs, known as bee venom/silver nanocomposites (BV/Ag NCs), significantly extended the natural lifespan of bees from 27 to 40 days. Notably, oral administration of BV in varying concentrations (1.53, 3.12, and 6.25 mg/mL) through sugary syrup doubled the bees' lifespan compared to the control group. The study established a significant correlation between the concentration of each treatment and the extent of bacterial inhibition. BV/Ag NCs demonstrated 1.4 times greater bactericidal efficiency under photo-stimulation with visible light compared to darkness, suggesting that light exposure enhances the effectiveness of BV/Ag NCs. The combination of BV and Ag NPs demonstrated enhanced antibacterial efficacy and prolonged honeybee lifespan. These results offer insights that can contribute to the development of safer and more efficient antibacterial agents for maintaining honeybee health.


Assuntos
Antibacterianos , Venenos de Abelha , Nanopartículas Metálicas , Paenibacillus larvae , Prata , Animais , Abelhas/microbiologia , Venenos de Abelha/farmacologia , Nanopartículas Metálicas/química , Prata/farmacologia , Prata/química , Antibacterianos/farmacologia , Paenibacillus larvae/efeitos dos fármacos , Longevidade/efeitos dos fármacos
4.
Front Microbiol ; 15: 1419917, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091304

RESUMO

The prevalent life-threatening microbial and cancer diseases and lack of effective pharmaceutical therapies created the need for new molecules with antimicrobial and anticancer potential. Bee venom (BV) was collected from honeybee workers, and melittin (NM) was extracted from BV and analyzed by urea-polyacrylamide gel electrophoresis (urea-PAGE). The isolated melittin was hydrolyzed with alcalase into new bioactive peptides and evaluated for their antimicrobial and anticancer activity. Gel filtration chromatography fractionated melittin hydrolysate (HM) into three significant fractions (F1, F2, and F3), that were characterized by electrospray ionization mass spectrometry (ESI-MS) and evaluated for their antimicrobial, anti-biofilm, antitumor, and anti-migration activities. All the tested peptides showed antimicrobial and anti-biofilm activities against Gram-positive and Gram-negative bacteria. Melittin and its fractions significantly inhibited the proliferation of two types of cancer cells (Huh-7 and HCT 116). Yet, melittin and its fractions did not affect the viability of normal human lung Wi-38 cells. The IC50 and selectivity index data evidenced the superiority of melittin peptide fractions over intact melittin. Melittin enzymatic hydrolysate is a promising novel product with high potential as an antibacterial and anticancer agent.

5.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39204155

RESUMO

This review aims to present current knowledge on the effects of honey bee products on animals based on in vivo studies, focusing on their application in clinical veterinary practice. Honey's best-proven effectiveness is in treating wounds, including those infected with antibiotic-resistant microorganisms, as evidenced in horses, cats, dogs, mice, and rats. Propolis manifested a healing effect in numerous inflammatory and painful conditions in mice, rats, dogs, and pigs and also helped in oncological cases in mice and rats. Bee venom is best known for its effectiveness in treating neuropathy and arthritis, as shown in dogs, mice, and rats. Besides, bee venom improved reproductive performance, immune response, and general health in rabbits, chickens, and pigs. Pollen was effective in stimulating growth and improving intestinal microflora in chickens. Royal jelly might be used in the management of animal reproduction due to its efficiency in improving fertility, as shown in rats, rabbits, and mice. Drone larvae are primarily valued for their androgenic effects and stimulation of reproductive function, as evidenced in sheep, chickens, pigs, and rats. Further research is warranted to determine the dose and method of application of honey bee products in animals.

6.
Curr Health Sci J ; 50(1): 81-86, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846469

RESUMO

Inflammation and the injuries produced by free radicals are interconnected and influence each other. The underlying mechanisms of inflammation are partially attributed to the release of free radicals by immune cells, prooxidants that can also cause protein alteration. This study was performed in order to assess the potential anti-inflammatory effect of two bee venom samples harvested from Apis mellifera. Free radical scavenging capacity was investigated using DPPH and ABTS.+ tests and protective effect on proteins through the inhibitory activity on thermal denaturation of albumin.

7.
Neuropeptides ; 107: 102451, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38936137

RESUMO

Central nervous system (CNS) disorders are one of the leading health problems today, accounting for a large proportion of global morbidity and mortality. Most these disorders are characterized by high levels of oxidative stress and intense inflammatory responses in degenerated neuronal tissues. While extensive research has been conducted on CNS diseases, but few breakthroughs have been made in treatment methods. To date, there are no disease-modifying drugs available for CNS treatment, underscoring the urgent need for finding effective medications. Bee venom (BV), which is produced by honeybee workers' stingers, has been a subject of interest and study across various cultures. Over the past few decades, extensive research has focused on BV and its therapeutic potentials. BV consists a variety of substances, mainly proteins and peptides like melittin and phospholipase A2 (PLA2). Research has proven that BV is effective in various medical conditions, including pain, arthritis and inflammation and CNS disorders such as Multiple sclerosis, Alzheimer's disease and Parkinson's disease. This review provides a comprehensive overview of the existing knowledge concerning the therapeutic effects of BV and its primary compounds on various CNS diseases. Additionally, we aim to shed light on the potential cellular and molecular mechanisms underlying these effects.


Assuntos
Venenos de Abelha , Doenças do Sistema Nervoso Central , Venenos de Abelha/uso terapêutico , Venenos de Abelha/farmacologia , Humanos , Animais , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/metabolismo , Fosfolipases A2/metabolismo
8.
Fish Shellfish Immunol ; 151: 109713, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38914180

RESUMO

As an environmentally friendly alternative to antibiotics, bee venom holds promise for aquaculture due to its diverse health advantages, including immune-amplifying and anti-inflammatory features. This study investigated the effects of dietary bee venom (BV) on the growth and physiological performance of Thinlip mullet (Liza ramada) with an initial body weight of 40.04 ± 0.11 g for 60 days. Fish were distributed to five dietary treatments (0, 2, 4, 6, and 8 mg BV/kg diet) with three replicates. Growth traits, gut enzyme ability (lipase, protease, amylase), intestinal and liver histology, blood biochemistry, immune responses [lysozyme activity (LYZ), bactericidal activity (BA), nitroblue tetrazolium (NBT%)], and antioxidant status [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), malondialdehyde (MDA)] were evaluated. BV supplementation significantly improved growth performance, digestive enzyme activity, histological integrity of organs, immune responses (LYZ, BA), and antioxidant status (SOD, CAT, GPx), while declining MDA levels. Optimal BV levels were identified between 4.2 and 5.8 mg/kg diet for different parameters. Overall, the findings suggest that BV supplementation can enhance growth and physiological performance in Thinlip mullet, highlighting its potential as a beneficial dietary supplement for fish health and aquaculture management.


Assuntos
Ração Animal , Aquicultura , Venenos de Abelha , Dieta , Suplementos Nutricionais , Smegmamorpha , Animais , Venenos de Abelha/farmacologia , Venenos de Abelha/administração & dosagem , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais/análise , Smegmamorpha/imunologia , Imunidade Inata/efeitos dos fármacos , Relação Dose-Resposta a Droga , Distribuição Aleatória
9.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38794142

RESUMO

Despite past efforts towards therapeutical innovation, cancer remains a highly incident and lethal disease, with current treatments lacking efficiency and leading to severe side effects. Hence, it is imperative to develop new, more efficient, and safer therapies. Bee venom has proven to have multiple and synergistic bioactivities, including antitumor effects. Nevertheless, some toxic effects have been associated with its administration. To tackle these issues, in this work, bee venom-loaded niosomes were developed, for cancer treatment. The vesicles had a small (150 nm) and homogeneous (polydispersity index of 0.162) particle size, and revealed good therapeutic efficacy in in vitro gastric, colorectal, breast, lung, and cervical cancer models (inhibitory concentrations between 12.37 ng/mL and 14.72 ng/mL). Additionally, they also revealed substantial anti-inflammatory activity (inhibitory concentration of 28.98 ng/mL), effects complementary to direct antitumor activity. Niosome safety was also assessed, both in vitro (skin, liver, and kidney cells) and ex vivo (hen's egg chorioallantoic membrane), and results showed that compound encapsulation increased its safety. Hence, small, and homogeneous bee venom-loaded niosomes were successfully developed, with substantial anticancer and anti-inflammatory effects, making them potentially promising primary or adjuvant cancer therapies. Future research should focus on evaluating the potential of the developed platform in in vivo models.

10.
Pharmaceuticals (Basel) ; 17(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794216

RESUMO

Beekeeping provides products with nutraceutical and pharmaceutical characteristics. These products are characterized by abundance of bioactive compounds. For different reasons, honey, royal jelly, propolis, venom, and pollen are beneficial to humans and animals and could be used as therapeutics. The pharmacological action of these products is related to many of their constituents. The main bioactive components of honey include oligosaccharides, methylglyoxal, royal jelly proteins (MRJPs), and phenolics compounds. Royal jelly contains jelleins, royalisin peptides, MRJPs, and derivatives of hydroxy-decenoic acid, particularly 10-hydroxy-2-decenoic acid (10-HDA), which possess antibacterial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome-preventing, and anti-aging properties. Propolis has a plethora of activities that are referable to compounds such as caffeic acid phenethyl ester. Peptides found in bee venom include phospholipase A2, apamin, and melittin. In addition to being vitamin-rich, bee pollen also includes unsaturated fatty acids, sterols, and phenolics compounds that express antiatherosclerotic, antidiabetic, and anti-inflammatory properties. Therefore, the constituents of hive products are particular and different. All of these constituents have been investigated for their properties in numerous research studies. This review aims to provide a thorough screening of the bioactive chemicals found in honeybee products and their beneficial biological effects. The manuscript may provide impetus to the branch of unconventional medicine that goes by the name of apitherapy.

11.
Insect Mol Biol ; 33(4): 312-322, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38767730

RESUMO

Bee venom serves as an essential defensive weapon for bees and also finds application as a medicinal drug. MicroRNAs (miRNAs) serve as critical regulators and have been demonstrated to perform a variety of biological functions. However, the presence of miRNAs in bee venom needs to be confirmed. Therefore, we conducted small RNA sequencing and identified 158 known miRNAs, 15 conserved miRNAs and 4 novel miRNAs. It is noteworthy that ame-miR-1-3p, the most abundant among them, accounted for over a quarter of all miRNA reads. To validate the function of ame-miR-1-3p, we screened 28 candidate target genes using transcriptome sequencing and three target gene prediction software (miRanda, PITA and TargetScan) for ame-miR-1-3p. Subsequently, we employed real-time quantitative reverse transcription PCR (qRT-PCR), Western blot and other technologies to confirm that ame-miR-1-3p inhibits the relative expression of antizyme inhibitor 1 (AZIN1) by targeting the 3' untranslated region (UTR) of AZIN1. This, in turn, caused ODC antizyme 1 (OAZ1) to bind to ornithine decarboxylase 1 (ODC1) and mark ODC1 for proteolytic destruction. The reduction in functional ODC1 ultimately resulted in a decrease in polyamine biosynthesis. Furthermore, we determined that ame-miR-1-3p accelerates cell death through the AZIN1/OAZ1-ODC1-polyamines pathway. Our studies demonstrate that ame-miR-1-3p diminishes cell viability and it may collaborate with sPLA2 to enhance the defence capabilities of honeybees (Apis mellifera L.). Collectively, these data further elucidate the defence mechanism of bee venom and expand the potential applications of bee venom in medical treatment.


Assuntos
Venenos de Abelha , Proteínas de Insetos , MicroRNAs , Animais , Abelhas/genética , Abelhas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Venenos de Abelha/farmacologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Sobrevivência Celular , Poliaminas/metabolismo , Ornitina Descarboxilase/metabolismo , Ornitina Descarboxilase/genética
12.
Life (Basel) ; 14(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38672762

RESUMO

Skin conditions are numerous and often have a major impact on patients' quality of life, and effective and safe treatment is very important. The conventional drugs used for skin diseases are usually corticosteroids and antimicrobial products that can induce various side effects, especially with long-term use, which is why researchers are studying alternatives, especially biologically active natural products. Three products caught our attention: bee venom (BV), due to reported experimental results showing anti-inflammatory, antibacterial, antiviral, antioxidant, antimycotic, and anticancer effects, Ficus carica (FC) due to its demonstrated antioxidant, antibacterial, and anti-inflammatory action, and finally Geranium essential oil (GEO), with proven antifungal, antibacterial, anti-inflammatory, and antioxidant effects. Following a review of the literature, we produced this paper, which presents a review of the potential therapeutic applications of the three products in combating various skin conditions and for skin care, because BV, FC, and GEO have common pharmacological actions (anti-inflammatory, antibacterial, and antioxidant). We also focused on studying the safety of the topical use of BV, FC, and GEO, and new approaches to this. This paper presents the use of these natural therapeutic agents to treat patients with conditions such as vitiligo, melasma, and melanoma, as well as their use in treating dermatological conditions in patients with diabetes.

13.
Explore (NY) ; 20(5): 102994, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38637265

RESUMO

INTRODUCTION: Eczema and contact dermatitis are relatively common, non-life-threatening disease, but can reduce the patient's quality-of-life when it becomes chronic. This study describes two cases of bee venom acupuncture (BVA) and herbal medicine (San Wu Huangqin decoction; SWH) co-treatment for hand eczema and contact dermatitis, then confirms the effect of the combination therapy in an in vivo model of eczema. CASE PRESENTATION: A 56-year-old female (case 1) and a 33-year-old male (case 2) presented to the clinic with symptoms of itching and erythema (case 1), and scaliness (case 2) on both hands. Both were diagnosed with hand eczema and contact dermatitis based on examination of the erythema and scaliness. They were treated with BVA and SWH for three months. The lesions were healed and had not recurred after 1 and 3 years of follow-up. A mouse study was conducted by repeated application of 2,4-dinitrochlorobenzene (DNCB) to induce eczema-like contact dermatitis in Balb/c mice. In a DNCB-induced eczema-like contact dermatitis model, BVA and SWH co-administration synergistically improved clinical symptoms seen in eczema. Also, they improved histological changes of the skin, suppressed immune cell infiltration, and decreased inflammatory cytokines and immunoglobulin E in the serum. CONCLUSION: This study suggests BVA and SWH could be an alternative treatment for eczema and contact dermatitis.


Assuntos
Terapia por Acupuntura , Venenos de Abelha , Eczema , Humanos , Masculino , Venenos de Abelha/uso terapêutico , Pessoa de Meia-Idade , Terapia por Acupuntura/métodos , Adulto , Animais , Eczema/tratamento farmacológico , Eczema/terapia , Feminino , Camundongos , Medicamentos de Ervas Chinesas/uso terapêutico , Camundongos Endogâmicos BALB C , Dermatite de Contato/tratamento farmacológico , Dermatite de Contato/terapia , Terapia Combinada , Dermatoses da Mão/tratamento farmacológico , Dermatoses da Mão/terapia , Dinitroclorobenzeno
14.
Toxicon ; 242: 107711, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583578

RESUMO

Crotalus neutralizing factor (CNF) is an endogenous glycoprotein from Crotalus durissus terrificus snake blood that inhibits secretory phospholipases A2 (sPLA2) from the Viperid but not from Elapid venoms (subgroups IA and IIA, respectively). In the present study, we demonstrated that CNF can inhibit group III-PLA2 from bee venom by forming a stable enzyme-inhibitor complex. This finding opens up new possibilities for the potential use of CNF and/or CNF-based derivatives in the therapeutics of bee stings.


Assuntos
Venenos de Abelha , Crotalus , Serpentes Peçonhentas , Animais , Venenos de Abelha/farmacologia , Inibidores de Fosfolipase A2/farmacologia , Venenos de Crotalídeos/antagonistas & inibidores , Abelhas , Fosfolipases A2 , Glicoproteínas/farmacologia , Fosfolipases A2 Secretórias/antagonistas & inibidores
15.
Heliyon ; 10(7): e28968, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601605

RESUMO

The study aims to explore bee venom (honey-BV) as a potential natural preservative for "Tallaga" soft cheese. Characterization of the active compounds in honey-BV was conducted via chromatographic analyses. Antimicrobial efficacy against pathogenic bacteria and fungi was evaluated, and minimum inhibitory concentration (MIC) was determined. Subsequently, honey-BV was applied to Tallaga cheese at 15 mg/g concentrations. The main active ingredients identified in bee venom were apamin (2%) and melittin (48.7%). Both concentrations of bee venom (100 and 200 mg/mL) exhibited significant antifungal and antibacterial properties against tested organisms, with MIC values varied from 0.2 to 0.5 mg/mL for bacteria to 3-13 mg/mL for fungi. Application of honey-BV in Tallaga cheese resulted in complete elimination of Staphylococcal populations after 2 weeks of cold storage, with no detectable growth of molds or yeasts throughout the storage period. Additionally, a steady decrease in aerobic plate count was observed over time. In summary, honey-BV holds promise as a natural preservative for soft cheese, however, more investigation is required to optimize the concentration for economic viability, taking into account health benefits and safety considerations.

16.
Toxins (Basel) ; 16(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38535786

RESUMO

Among the various natural compounds used in alternative and Oriental medicine, toxins isolated from different organisms have had their application for many years, and Apis mellifera venom has been studied the most extensively. Numerous studies dealing with the positive assets of bee venom (BV) indicated its beneficial properties. The usage of bee products to prevent the occurrence of diseases and for their treatment is often referred to as apitherapy and is based mainly on the experience of the traditional system of medical practice in diverse ethnic communities. Today, a large number of studies are focused on the antitumor effects of BV, which are mainly attributed to its basic polypeptide melittin (MEL). Previous studies have indicated that BV and its major constituent MEL cause a strong toxic effect on different cancer cells, such as liver, lung, bladder, kidney, prostate, breast, and leukemia cells, while a less pronounced effect was observed in normal non-target cells. Their proposed mechanisms of action, such as the effect on proliferation and growth inhibition, cell cycle alterations, and induction of cell death through several cancer cell death mechanisms, are associated with the activation of phospholipase A2 (PLA2), caspases, and matrix metalloproteinases that destroy cancer cells. Numerous cellular effects of BV and MEL need to be elucidated on the molecular level, while the key issue has to do with the trigger of the apoptotic cascade. Apoptosis could be either a consequence of the plasmatic membrane fenestration or the result of the direct interaction of the BV components with pro-apoptotic and anti-apoptotic factors. The interaction of BV peptides and enzymes with the plasma membrane is a crucial step in the whole process. However, before its possible application as a remedy, it is crucial to identify the correct route of exposure and dosage of BV and MEL for potential therapeutic use as well as potential side effects on normal cells and tissues to avoid any possible adverse event.


Assuntos
Venenos de Abelha , Masculino , Animais , Abelhas , Meliteno , Membrana Celular , Apoptose , Morte Celular
17.
Iran Biomed J ; 28(1): 46-52, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38445441

RESUMO

Background: The potential anticancer effect of melittin has motivated scientists to find its exact molecular mechanism of action. There are few data on the effect of melittin on the UPR and autophagy as two critical pathways involved in tumorigenesis of colorectal and drug resistance. This study aimed to investigate the effect of melittin on these pathways in the colorectal cancer (CRC) HCT116 cells. Methods: MTT method was carried out to assess the cytotoxicity of melittin on the HCT116 cell line for 24, 48, and 72 h. After selecting the optimal concentrations and treatment times, the gene expression of autophagy flux markers (LC3-ßII and P62) and UPR markers (CHOP and XBP-1s) were determined using qRT-PCR. The protein level of autophagy initiation marker (Beclin1) was also determined by Western blotting. Results: MTT assay showed a cytotoxic effect of melittin on the HCT116 cells. The increase in LC3-ßII and decrease in P62 mRNA expression levels, along with the elevation in the Beclin1 protein level, indicated the stimulatory role of melittin on the autophagy. Melittin also significantly enhanced the CHOP and XBP-1s expressions at mRNA level, suggesting the positive role of the melittin on the UPR activation. Conclusion: This study shows that UPR and autophagy can potentially be considered as two key signaling pathways in tumorigenesis, which can be targeted by the BV melittin in the HCT116 cells. Further in vivo evaluations are recommended to verify the obtained results.


Assuntos
Neoplasias Colorretais , Meliteno , Humanos , Células HCT116 , Meliteno/farmacologia , Meliteno/genética , Meliteno/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Resposta a Proteínas não Dobradas , Autofagia , RNA Mensageiro/metabolismo , Carcinogênese , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
18.
Cureus ; 16(2): e54855, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38533165

RESUMO

Breast cancer is a kind of aggressive cancer that significantly affects women worldwide, thus making research on alternative and new therapies necessary. The potential impact of bee venom on breast cancer is the main subject of this analysis of this research article. Bee venom has drawn the attention of the world with the help of its constituent ingredients, namely the bioactive compounds, enzymes, and complex blend of proteins. They have a particularly varied chemical makeup and proven anti-cancer capabilities. This is a detailed review demonstrating the components of bee venom and their individual functions in fighting cancer, as well as the results of previously conducted in-vitro and in-vivo research. As described later, bee venom has given positive results in triggering apoptosis, preventing cell migration, inhibiting metastasis and invasion, and suppressing the existing breast cancer cells. It is found to have worked better along with the already existing chemotherapy treatments. These results were also proved with the help of various animal studies that showed reduced tumor development, reduced metastasis, and improved therapeutic effectiveness. Furthermore, certain studies and case reports from all over the world have exhibited consistent results in females affected by breast cancer. This study found that people receiving chemotherapy experienced improved health outcomes and reduced discomfort, with fewer negative side effects. It is important to conduct extensive research on the safety and effectiveness of this treatment because it is yet to be approved. The ideal dosage and administration methods must be explored in clinical trials. Moreover, it is imperative to evaluate the results of any combined treatments with current medications. There should be constant monitoring to prevent any potential side effects. Other important things like allergic reactions and hidden concerns should also be considered.

19.
Arch Insect Biochem Physiol ; 115(3): e22104, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38506277

RESUMO

As a common defense mechanism in Hymenoptera, bee venom has complex components. Systematic and comprehensive analysis of bee venom components can aid in early evaluation, accurate diagnosis, and protection of organ function in humans in cases of bee stings. To determine the differences in bee venom composition and metabolic pathways between Apis cerana and Apis mellifera, proton nuclear magnetic resonance (1 H-NMR) technology was used to detect the metabolites in venom samples. A total of 74 metabolites were identified and structurally analyzed in the venom of A. cerana and A. mellifera. Differences in the composition and abundance of major components of bee venom from A. cerana and A. mellifera were mapped to four main metabolic pathways: valine, leucine and isoleucine biosynthesis; glycine, serine and threonine metabolism; alanine, aspartate and glutamate metabolism; and the tricarboxylic acid cycle. These findings indicated that the synthesis and metabolic activities of proteins or polypeptides in bee venom glands were different between A. cerana and A. mellifera. Pyruvate was highly activated in 3 selected metabolic pathways in A. mellifera, being much more dominant in A. mellifera venom than in A. cerana venom. These findings indicated that pyruvate in bee venom glands is involved in various life activities, such as biosynthesis and energy metabolism, by acting as a precursor substance or intermediate product.


Assuntos
Venenos de Abelha , Himenópteros , Mordeduras e Picadas de Insetos , Humanos , Abelhas , Animais , Ácido Pirúvico , Espectroscopia de Ressonância Magnética
20.
Dent Med Probl ; 61(1): 53-64, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38441304

RESUMO

BACKGROUND: Diabetes mellitus (DM) is a critical chronic metabolic disease. Several treatment modalities are currently under investigation. Both bee venom (BV) and bone marrow mesenchymal stem cells (BMSCs) can possibly offer an approach for treating type I diabetes. OBJECTIVES: The aim of the present study was to investigate the mechanism underlying the anti-diabetic effect of BV as compared to BMSCs on the tongue mucosa of diabetic rats. MATERIAL AND METHODS: A total of 52 male albino rats were used in the current study. The rats were randomly assigned into 4 groups: group 1 (control); group 2 (streptozocin (STZ)); group 3 (BV-treated); and group 4 (BMSC-treated). Diabetes mellitus was induced via an intraperitoneal (IP) injection of STZ in the rats from groups 2, 3 and 4. Following the diagnosis of DM, the rats in group 3 were injected with a daily dose of 0.5 mg/kg of BV, while the rats in group 4 were treated with a single injection of BMSCs. All rats were euthanized after 4 weeks, and their tongues were dissected and divided into halves. The right halves of the tongues were utilized for the histological examination, followed by morphometric analysis. In contrast, the left halves were used to detect the local gene expression of transforming growth factor beta 1 (TGF-ß1) and vascular endothelial growth factor (VEGF). RESULTS: Group 2 revealed marked disruption in the morphology of the fungiform and filiform papillae, and atrophic epithelial changes in both dorsal and ventral surface epithelium as compared to other groups. Group 4 showed a significantly larger number of taste buds, and a higher gene expression of TGF-ß1 and VEGF as compared to groups 2 and 3. Additionally, BV and BMSCs effectively increased the thickness of dorsal and ventral surface epithelium as compared to group 2. CONCLUSIONS: Treatment with BMSCs was associated with significant improvement in the morphology and number of lingual epithelial cells and taste buds in the tongues of diabetic rats as compared to BV-treated rats, which was due to the local upregulation of TGF-ß1 and VEGF gene expression.


Assuntos
Venenos de Abelha , Diabetes Mellitus Experimental , Células-Tronco Mesenquimais , Masculino , Animais , Ratos , Fator de Crescimento Transformador beta1 , Fator A de Crescimento do Endotélio Vascular , Diabetes Mellitus Experimental/terapia , Língua , Venenos de Abelha/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA