Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 473
Filtrar
1.
J Adv Res ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969095

RESUMO

INTRODUCTION: The human gut microbiome plays a pivotal role in health and disease, notably through its interaction with bile acids (BAs). BAs, synthesized in the liver, undergo transformation by the gut microbiota upon excretion into the intestine, thus influencing host metabolism. However, the potential mechanisms of dicaffeoylquinic acids (DiCQAs) from Ilex kudingcha how to modulate lipid metabolism and inflammation via gut microbiota remain unclear. OBJECTIVES AND METHODS: The objectives of the present study were to investigate the regulating effects of DiCQAs on diabetes and the potential mechanisms of action. Two mice models were utilized to investigate the anti-diabetic effects of DiCQAs. Additionally, analysis of gut microbiota structure and functions was conducted concurrently with the examination of DiCQAs' impact on gut microbiota carrying the bile salt hydrolase (BSH) gene, as well as on the enterohepatic circulation of BAs and related signaling pathways. RESULTS: Our findings demonstrated that DiCQAs alleviated diabetic symptoms by modulating gut microbiota carrying the BSH gene. This modulation enhanced intestinal barrier integrity, increased enterohepatic circulation of conjugated BAs, and inhibited the farnesoid X receptor-fibroblast growth factor 15 (FGF15) signaling axis in the ileum. Consequently, the protein expression of hepatic FGFR4 fibroblast growth factor receptor 4 (FGFR4) decreased, accompanied by heightened BA synthesis, reduced hepatic BA stasis, and lowered levels of hepatic and plasma cholesterol. Furthermore, DiCQAs upregulated glucolipid metabolism-related proteins in the liver and muscle, including v-akt murine thymoma viral oncogene homolog (AKT)/glycogen synthase kinase 3-beta (GSK3ß) and AMP-activated protein kinase (AMPK), thereby ameliorating hyperglycemia and mitigating inflammation through the down-regulation of the MAPK signaling pathway in the diabetic group. CONCLUSION: Our study elucidated the anti-diabetic effects and mechanism of DiCQAs from I. kudingcha, highlighting the potential of targeting gut microbiota, particularly Acetatifactor sp011959105 and Acetatifactor muris carrying the BSH gene, as a therapeutic strategy to attenuate FXR-FGF15 signaling and ameliorate diabetes.

2.
Food Res Int ; 190: 114582, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945602

RESUMO

Infants have digestive environments that are more favorable for microbial proliferation and subsequent endogenous nitrite production than those of adults, but direct evidence of this has been lacking. In this study, we propose a novel epidemiology of infant methemoglobinemia by demonstrating the risk posed by nitrite-producers in the gastrointestinal tract. Nitrite-producers from vegetables (n = 323) were exposed to stress factors of the gastrointestinal environment (gastric pH, intestinal bile salts, anaerobic atmosphere) reflecting 4 different postnatal age periods (Neonate, ≤1 month; Infant A, 1-3 months; Infant B, 3-6 months; Infant C, 6-12 months). "High-risk" strains with a nitrate-to-nitrite conversion rate of ≥1.3 %, the minimum rate corresponding to nitrite overproduction, under the Neonate stress condition were analyzed for intestinal adhesion. Among all the phyla, Pseudomonadota achieved the highest survival (P < 0.05; survival rate of 51.3-71.8 %). Possible cross-protection against bile resistance due to acid shock was observed for all the phyla. All the high-risk strains exhibited moderate autoaggregation (14.0-36.4 %), whereas only a few exhibited satisfactory surface hydrophobicity (>40 %). The Pantoea agglomerans strain strongly adhered to Caco-2 cells (7.4 ± 1.1 %). This study showed the ability of the Pantoea, Enterobacter, and Klebsiella strains to survive under gastrointestinal stress for ≤12 months, to excessively produce nitrite under neonatal stress conditions, and to settle in the human intestine. To our knowledge, this is the first study to reveal the role of the natural flora of vegetables in the epidemiology of infant methemoglobinemia through a multilateral approach.


Assuntos
Metemoglobinemia , Nitritos , Verduras , Humanos , Verduras/microbiologia , Lactente , Metemoglobinemia/metabolismo , Nitritos/metabolismo , Recém-Nascido , Aderência Bacteriana , Ácidos e Sais Biliares/metabolismo , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/metabolismo , Concentração de Íons de Hidrogênio , Microbioma Gastrointestinal
3.
Physiol Rep ; 12(12): e16114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38886098

RESUMO

Although the liver is the largest metabolic organ in the body, it is not alone in functionality and is assisted by "an organ inside an organ," the gut microbiota. This review attempts to shed light on the partnership between the liver and the gut microbiota in the metabolism of macronutrients (i.e., proteins, carbohydrates, and lipids). All nutrients absorbed by the small intestines are delivered to the liver for further metabolism. Undigested food that enters the colon is metabolized further by the gut microbiota that produces secondary metabolites, which are absorbed into portal circulation and reach the liver. These microbiota-derived metabolites and co-metabolites include ammonia, hydrogen sulfide, short-chain fatty acids, secondary bile acids, and trimethylamine N-oxide. Further, the liver produces several compounds, such as bile acids that can alter the gut microbial composition, which can in turn influence liver health. This review focuses on the metabolism of these microbiota metabolites and their influence on host physiology. Furthermore, the review briefly delineates the effect of the portosystemic shunt on the gut microbiota-liver axis, and current understanding of the treatments to target the gut microbiota-liver axis.


Assuntos
Microbioma Gastrointestinal , Fígado , Microbioma Gastrointestinal/fisiologia , Humanos , Fígado/metabolismo , Animais , Nutrientes/metabolismo , Ácidos e Sais Biliares/metabolismo
4.
Pathogens ; 13(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38921762

RESUMO

Clostridium perfringens is the main pathogen of chicken necrotic enteritis (NE) causing huge economic losses in the poultry industry. Although dietary secondary bile acid deoxycholic acid (DCA) reduced chicken NE, the accumulation of conjugated tauro-DCA (TDCA) raised concerns regarding DCA efficacy. In this study, we aimed to deconjugate TDCA by bile salt hydrolase (BSH) to increase DCA efficacy against the NE pathogen C. perfringens. Assays were conducted to evaluate the inhibition of C. perfringens growth, hydrogen sulfide (H2S) production, and virulence gene expression by TDCA and DCA. BSH activity and sequence alignment were conducted to select the bsh gene for cloning. The bsh gene from Bifidobacterium longum was PCR-amplified and cloned into plasmids pET-28a (pET-BSH) and pDR111 (pDR-BSH) for expressing the BSH protein in E. coli BL21 and Bacillus subtilis 168 (B-sub-BSH), respectively. His-tag-purified BSH from BL21 cells was evaluated by SDS-PAGE, Coomassie blue staining, and a Western blot (WB) assays. Secretory BSH from B. subtilis was analyzed by a Dot-Blot. B-sub-BSH was evaluated for the inhibition of C. perfringens growth. C. perfringens growth reached 7.8 log10 CFU/mL after 24 h culture. C. perfringens growth was at 8 vs. 7.4, 7.8 vs. 2.6 and 6 vs. 0 log10 CFU/mL in 0.2, 0.5, and 1 mM TDCA vs. DCA, respectively. Compared to TDCA, DCA reduced C. perfringens H2S production and the virulence gene expression of asrA1, netB, colA, and virT. BSH activity was observed in Lactobacillus johnsonii and B. longum under anaerobe but not L. johnsonii under 10% CO2 air. After the sequence alignment of bsh from ten bacteria, bsh from B. longum was selected, cloned into pET-BSH, and sequenced at 951 bp. After pET-BSH was transformed in BL21, BSH expression was assessed around 35 kDa using Coomassie staining and verified for His-tag using WB. After the subcloned bsh and amylase signal peptide sequence was inserted into pDR-BSH, B. subtilis was transformed and named B-sub-BSH. The transformation was evaluated using PCR with B. subtilis around 3 kb and B-sub-BSH around 5 kb. Secretory BSH expressed from B-sub-BSH was determined for His-tag using Dot-Blot. Importantly, C. perfringens growth was reduced greater than 59% log10 CFU/mL in the B-sub-BSH media precultured with 1 vs. 0 mM TDCA. In conclusion, TDCA was less potent than DCA against C. perfringens virulence, and recombinant secretory BSH from B-sub-BSH reduced C. perfringens growth, suggesting a new potential intervention against the pathogen-induced chicken NE.

5.
BMC Med ; 22(1): 262, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915026

RESUMO

BACKGROUND: A better understanding of lung cancer etiology and the development of screening biomarkers have important implications for lung cancer prevention. METHODS: We included 623 matched case-control pairs from the Cancer Prevention Study (CPS) cohorts. Pre-diagnosis blood samples were collected between 1998 and 2001 in the CPS-II Nutrition cohort and 2006 and 2013 in the CPS-3 cohort and were sent for metabolomics profiling simultaneously. Cancer-free controls at the time of case diagnosis were 1:1 matched to cases on date of birth, blood draw date, sex, and race/ethnicity. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using conditional logistic regression, controlling for confounders. The Benjamini-Hochberg method was used to correct for multiple comparisons. RESULTS: Sphingomyelin (d18:0/22:0) (OR: 1.32; 95% CI: 1.15, 1.53, FDR = 0.15) and taurodeoxycholic acid 3-sulfate (OR: 1.33; 95% CI: 1.14, 1.55, FDR = 0.15) were positively associated with lung cancer risk. Participants diagnosed within 3 years of blood draw had a 55% and 48% higher risk of lung cancer per standard deviation increase in natural log-transformed sphingomyelin (d18:0/22:0) and taurodeoxycholic acid 3-sulfate level, while 26% and 28% higher risk for those diagnosed beyond 3 years, compared to matched controls. Lipid and amino acid metabolism accounted for 47% to 80% of lung cancer-associated metabolites at P < 0.05 across all participants and subgroups. Notably, ever-smokers exhibited a higher proportion of lung cancer-associated metabolites (P < 0.05) in xenobiotic- and lipid-associated pathways, whereas never-smokers showed a more pronounced involvement of amino acid- and lipid-associated metabolic pathways. CONCLUSIONS: This is the largest prospective study examining untargeted metabolic profiles regarding lung cancer risk. Sphingomyelin (d18:0/22:0), a sphingolipid, and taurodeoxycholic acid 3-sulfate, a bile salt, may be risk factors and potential screening biomarkers for lung cancer. Lipid and amino acid metabolism may contribute significantly to lung cancer etiology which varied by smoking status.


Assuntos
Neoplasias Pulmonares , Metabolômica , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/diagnóstico , Masculino , Feminino , Metabolômica/métodos , Estudos de Casos e Controles , Pessoa de Meia-Idade , Idoso , Esfingomielinas/sangue
6.
Cell Chem Biol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38889717

RESUMO

The gut microbiome possesses numerous biochemical enzymes that biosynthesize metabolites that impact human health. Bile acids comprise a diverse collection of metabolites that have important roles in metabolism and immunity. The gut microbiota-associated enzyme that is responsible for the gateway reaction in bile acid metabolism is bile salt hydrolase (BSH), which controls the host's overall bile acid pool. Despite the critical role of these enzymes, the ability to profile their activities and substrate preferences remains challenging due to the complexity of the gut microbiota, whose metaproteome includes an immense diversity of protein classes. Using a systems biochemistry approach employing activity-based probes, we have identified gut microbiota-associated BSHs that exhibit distinct substrate preferences, revealing that different microbes contribute to the diversity of the host bile acid pool. We envision that this chemoproteomic approach will reveal how secondary bile acid metabolism controlled by BSHs contributes to the etiology of various inflammatory diseases.

7.
Protein Sci ; 33(7): e5035, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38923049

RESUMO

Single-domain antibodies (sdAbs), such as VHHs, are increasingly being developed for gastrointestinal (GI) applications against pathogens to strengthen gut health. However, what constitutes a suitable developability profile for applying these proteins in a gastrointestinal setting remains poorly explored. Here, we describe an in vitro methodology for the identification of sdAb derivatives, more specifically divalent VHH constructs, that display extraordinary developability properties for oral delivery and functionality in the GI environment. We showcase this by developing a heterodivalent VHH construct that cross-inhibits the toxic activity of the glycosyltransferase domains (GTDs) from three different toxinotypes of cytotoxin B (TcdB) from lineages of Clostridium difficile. We show that the VHH construct possesses high stability and binding activity under gastric conditions, in the presence of bile salts, and at high temperatures. We suggest that the incorporation of early developability assessment could significantly aid in the efficient discovery of VHHs and related constructs fit for oral delivery and GI applications.


Assuntos
Proteínas de Bactérias , Toxinas Bacterianas , Clostridioides difficile , Anticorpos de Domínio Único , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Clostridioides difficile/imunologia , Toxinas Bacterianas/química , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Humanos , Trato Gastrointestinal/metabolismo
8.
J Agric Food Chem ; 72(23): 13125-13137, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38805674

RESUMO

Tolerance to bile stress is a crucial property for lactic acid bacteria (LAB) to survive in the gastrointestinal tract and exert their beneficial effects. Whey powder enriched with milk fat globule membrane proteins (M-WPI) as a functional component is protective for strains under stress conditions. The current study investigated the key mechanisms of action involved in Lactobacillus plantarum (L. plantarum) CGMCC 23701 survival in the presence of bile and the protective mechanism of M-WPI. According to proteomic analysis (proteomics), there could be several reasons for the greater protective effect of M-WPI. These include promoting the synthesis of fatty acids and peptidoglycans to repair the structure of the cell surface, regulating the metabolism of carbohydrates and amino acids to release energy and produce a range of precursors, enabling the expression of the repair system to repair damaged DNA, and promoting the expression of proteins associated with the multidrug efflux pump, which facilitates the exocytosis of intracellular bile salts. This study helps us to better understand the changes in proteome of L. plantarum CGMCC 23701 under bile salt stress and M-WPI protection, which will provide a new method for the protection and development of functional LAB.


Assuntos
Proteínas de Bactérias , Ácidos e Sais Biliares , Glicolipídeos , Glicoproteínas , Lactobacillus plantarum , Gotículas Lipídicas , Proteínas de Membrana , Proteômica , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/genética , Gotículas Lipídicas/metabolismo , Glicolipídeos/metabolismo , Ácidos e Sais Biliares/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Estresse Fisiológico , Animais , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética
9.
Front Microbiol ; 15: 1374708, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577680

RESUMO

The global pathogen Clostridioides difficile is a well-studied organism, and researchers work on unraveling its fundamental virulence mechanisms and biology. Prophages have been demonstrated to influence C. difficile toxin expression and contribute to the distribution of advantageous genes. All these underline the importance of prophages in C. difficile virulence. Although several C. difficile prophages were sequenced and characterized, investigations on the entire active virome of a strain are still missing. Phages were mainly isolated after mitomycin C-induction, which does not resemble a natural stressor for C. difficile. We examined active prophages from different C. difficile strains after cultivation in the absence of mitomycin C by sequencing and characterization of particle-protected DNA. Phage particles were collected after standard cultivation, or after cultivation in the presence of the secondary bile salt deoxycholate (DCA). DCA is a natural stressor for C. difficile and a potential prophage-inducing agent. We also investigated differences in prophage activity between clinical and non-clinical C. difficile strains. Our experiments demonstrated that spontaneous prophage release is common in C. difficile and that DCA presence induces prophages. Fourteen different, active phages were identified by this experimental procedure. We could not identify a definitive connection between clinical background and phage activity. However, one phage exhibited distinctively higher activity upon DCA induction in the clinical strain than in the corresponding non-clinical strain, although the phage is identical in both strains. We recorded that enveloped DNA mapped to genome regions with characteristics of mobile genetic elements other than prophages. This pointed to mechanisms of DNA mobility that are not well-studied in C. difficile so far. We also detected phage-mediated lateral transduction of bacterial DNA, which is the first described case in C. difficile. This study significantly contributes to our knowledge of prophage activity in C. difficile and reveals novel aspects of C. difficile (phage) biology.

10.
Cureus ; 16(3): e56886, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38659510

RESUMO

Chronic pruritus is defined as an itch lasting greater than six weeks. It can manifest from a wide variety of etiologies, as many different substances can act as pruritogens, such as steroids, histamine, progesterone, endogenous opioids, and serotonin. In the setting of cholestatic liver disease, increased bile acids play a major role in chronic pruritus. The itching in cholestatic liver disease is worsened in intensity at night and localized frequently to the palms, soles, knees, and other pressure sites. It can be hard to manage, affecting the quality of sleep and causing irritability, poor attention, and, in some cases, depression. One such disease that results from chronic pruritus is progressive familial intrahepatic cholestasis (PFIC), a group of uncommon hereditary disorders that affects the formation of bile and its outflow from the liver. Previously, the drug ursodeoxycholic acid was used to help manage pruritus or surgical procedures, e.g., partial external biliary diversion or partial internal biliary diversion, to help control complications of the disease. This literature review will discuss three clinical studies covering the effectiveness of odevixibat in treating pruritus in patients with PFIC. Odevixibat (Bylvay) is an oral drug that has been FDA-approved to treat pruritus in patients three months of age and older with PFIC. Odevixibat prevents the reabsorption of bile salts in the intestines, resulting in decreased levels of bile salts via their excretion in stool. Several studies have determined that the drug is well tolerated and provides a nonsurgical, pharmacological treatment alternative for those with PFIC.

11.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617281

RESUMO

The gut microbiome possesses numerous biochemical enzymes that biosynthesize metabolites that impact human health. Bile acids comprise a diverse collection of metabolites that have important roles in metabolism and immunity. The gut microbiota-associated enzyme that is responsible for the gateway reaction in bile acid metabolism is bile salt hydrolase (BSH), which controls the host's overall bile acid pool. Despite the critical role of these enzymes, the ability to profile their activities and substrate preferences remains challenging due to the complexity of the gut microbiota, whose metaproteome includes an immense diversity of protein classes. Using a systems biochemistry approach employing activity-based probes, we have identified gut microbiota-associated BSHs that exhibit distinct substrate preferences, revealing that different microbes contribute to the diversity of the host bile acid pool. We envision that this chemoproteomic approach will reveal how secondary bile acid metabolism controlled by BSHs contributes to the etiology of various inflammatory diseases.

12.
Expert Opin Emerg Drugs ; : 1-16, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38571480

RESUMO

INTRODUCTION: Progressive familial intrahepatic cholestasis (PFIC) is a group of disorders characterized by inappropriate bile formation, causing hepatic accumulation of bile acids and, subsequently, liver injury. Until recently, no approved treatments were available for these patients. AREAS COVERED: Recent clinical trials for PFIC treatment have focused on intestine-restricted ileal bile acid transporter (IBAT) inhibitors. These compounds aim to reduce the pool size of bile acids by interrupting their enterohepatic circulation. Other emerging treatments in the pipeline include systemic IBAT inhibitors, synthetic bile acid derivatives, compounds targeting bile acid synthesis via the FXR/FGF axis, and chaperones/potentiators that aim to enhance the residual activity of the mutated transporters. EXPERT OPINION: Substantial progress has been made in drug development for PFIC patients during the last couple of years. Although data concerning long-term efficacy are as yet only scarcely available, new therapies have demonstrated robust efficacy in a considerable fraction of patients at least on the shorter term. However, a substantial fraction of PFIC patients do not respond to these novel therapies and thus still requires surgical treatment, including liver transplantation before adulthood. Hence, there is still an unmet medical need for long-term effective medical, preferably non-surgical, treatment for all PFIC patients.


Normally, the liver produces bile which is a route of secretion of waste products from the body and also helps in the intestinal absorption of fats from the diet. The bile goes from the liver, through the bile duct to the intestines and components are taken up again at the end of the intestine and transported back to the liver. However, progressive familial intrahepatic cholestasis (PFIC in short) is a group of diseases where bile stays in the liver and damages it. PFIC often causes symptoms already in very young children, like itch and jaundice (getting a slight yellow color). Patients get more and worse symptoms over time and may eventually need a liver transplantation. This review discusses what drugs have been developed for PFIC recently and what drugs are in development now. Two new drugs for PFIC have been developed and approved in the last few years: odevixibat and maralixibat. These drugs help bile in the intestines leave the body via the stool and prevent bile from going back to the liver instead. Drugs in development aim to either 1) do the same, 2) make the bile less toxic, 3) reduce the production of bile, or 4) help bile go from the liver into the bile ducts. There has been a lot of progress in drug development for PFIC in the last few years. The new drugs have helped a considerable number of patients, but many patients still do not respond to these new drugs, keep having symptoms and may need surgery. Therefore, despite considerable progress, research needs to continue for an effective treatment for all PFIC patients.

13.
Heliyon ; 10(5): e27270, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463766

RESUMO

The genus Bifidobacterium widely exists in human gut and has been increasingly used as the adjuvant probiotics for the prevention and treatment of diseases. However, the functional differences of Bifidobacterium genomes from different regions of the world remain unclear. We here describe an extensive study on the genomic characteristics and function annotations of 1512 genomes (clustered to 849 non-redundant genomes) of Bifidobacterium cultured from human gut. The distribution of some carbohydrate-active enzymes varied among different Bifidobacterium species and continents. More than 36% of the genomes of B. pseudocatenulatum harbored biosynthetic gene clusters of lanthipeptide-class-iv. 99.76% of the cultivated genomes of Bifidobacterium harbored genes of bile salt hydrolase. Most genomes of B. adolescentis, and all genomes of B. dentium harbored genes involved in gamma-aminobutyric acid synthesis. B. longum subsp. infantis were characterized harboring most genes related to human milk oligosaccharide utilization. Significant differences between the distribution of antibiotic resistance genes among different species and continents revealed the importance to use antibiotics precisely in the clinical treatment. Phages infecting Bifidobacterium and horizontal gene transfers occurring in genomes of Bifidobacterium were dependent on species and region sources, and might help Bifidobacterium adapt to the environment. In addition, the distribution of Bifidobacterium in human gut was found varied from different regions of the world. This study represents a comprehensive view of characteristics and functions of genomes of cultivated Bifidobacterium from human gut, and enables clinical advances in the future.

14.
Chem Phys Lipids ; 259: 105378, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38325711

RESUMO

The proportion of sodium taurolithocholate (NaTLC) is extremely low in human bile salts. NaTLC forms aggregates with other lipids in the bile and functions as an emulsifying and solubilizing agent. The molecular structure of NaTLC contains hydrophilic hydroxyl and sulfonic acid groups at both ends of the steroid ring. This molecular structure is similar to bolaform amphiphilic substance having hydrophilic groups at both ends due to the characteristics of its molecular structure. This study investigated the aggregate properties of the NaTLC using surface tension measurements, light scattering, small-angle X-ray scattering (SAXS), and cryo-transmission electron microscopy (cryo-TEM). Surface tension measurement showed that the surface tension of the NaTLC solution decreased to 54 mN m-1. The concentration that showed the minimum surface tension corresponded to the critical micelle concentration (CMC: 0.6 mmol L-1, 308 K) determined by the change in light scattering intensity. On the other hand, the degree of counterion (sodium ions) binding to the micelles increased with increasing NaTLC concentration. SAXS and cryo-TEM measurements showed that the NaTLC formed large string-like micelles. The surface activity and large aggregates showed the potential for use as biosurfactants. However, because of the relatively low solubility of NaTLC in water, its use as a biosurfactant is limited to a narrow concentration range.


Assuntos
Micelas , Ácido Taurolitocólico , Humanos , Sódio , Espalhamento a Baixo Ângulo , Difração de Raios X
15.
Vet Sci ; 11(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38393112

RESUMO

Bile acids, produced by the liver and secreted into the gastrointestinal tract, are dynamic molecules capable of impacting the overall health of dogs and cats in many contexts. Importantly, the gut microbiota metabolizes host primary bile acids into chemically distinct secondary bile acids. This review explores the emergence of new literature connecting microbial-derived bile acid metabolism to canine and feline health and disease. Moreover, this review highlights multi-omic methodologies for translational research as an area for continued growth in veterinary medicine aimed at accelerating microbiome science and medicine as it pertains to bile acid metabolism in dogs and cats.

16.
Int J Pharm ; 654: 123953, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38417725

RESUMO

A self-emulsifying drug delivery system (SEDDS) containing long chain lipid digestion products (LDP) and surfactants was developed to increase solubility of two model weakly basic drugs, cinnarizine and ritonavir, in the formulation. A 1:1.2 w/w mixture of glyceryl monooleate (Capmul GMO-50; Abitec) and oleic acid was used as the digestion product, and a 1:1 w/w mixture of Tween 80 and Cremophor EL was the surfactant used. The ratio between LDP and surfactant was 1:1 w/w. Since the commercially available Capmul GMO-50 is not pure monoglyceride and contained di-and-triglycerides, the digestion product used would provide 1:2 stoichiometric molar ratio of monoglyceride and fatty acid after complete digestion in gastrointestinal fluid. Both cinnarizine and ritonavir had much higher solubility in oleic acid (536 and 72 mg/g, respectively) than that in glyceryl monooleate and glyceryl trioleate. Therefore, by incorporating oleic acid in place of glyceryl trioleate in the formulation, the solubility of cinnarizine and ritonavir could be increased by 5-fold and 3.5-fold, respectively, as compared to a formulation without the fatty acid. The formulation dispersed readily in aqueous media, and adding 3 mM sodium taurocholate, which is generally present in GI fluid, remarkably improved the dispersibility of SEDDS and reduced particle size of dispersions. Thus, the use of digestion products of long-chain triglycerides as components of SEDDS can enhance the drug loading of weakly basic compounds and increase dispersibility in GI fluids.


Assuntos
Caprilatos , Cinarizina , Glicerídeos , Monoglicerídeos , Solubilidade , Ácido Oleico , Ritonavir , Emulsões , Química Farmacêutica , Sistemas de Liberação de Medicamentos , Tensoativos , Triglicerídeos , Ácidos Graxos , Digestão , Disponibilidade Biológica
17.
Cell Biol Int ; 48(5): 638-646, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38328902

RESUMO

The bile salt export pump (ABCB11/BSEP) is a hepatocyte plasma membrane-resident protein translocating bile salts into bile canaliculi. The sequence alignment of the four full-length transporters of the ABCB subfamily (ABCB1, ABCB4, ABCB5 and ABCB11) indicates that the NBD-NBD contact interface of ABCB11 differs from that of other members in only four residues. Notably, these are all located in the noncanonical nucleotide binding site 1 (NBS1). Substitution of all four deviant residues with canonical ones (quadruple mutant) significantly decreased the transport activity of the protein. In this study, we mutated two deviant residues in the signature sequence to generate a double mutant (R1221G/E1223Q). Furthermore, a triple mutant (E502S/R1221G/E1223Q) was generated, in which the deviant residues of the signature sequence and Q-loop were mutated concurrently to canonical residues. The double and triple mutants showed 80% and 60%, respectively, of the activity of wild-type BSEP. As expected, an increasing number of mutations gradually impair transport as an intricate network of interactions within the ABC proteins ensures proper functioning.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Nucleotídeos , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Nucleotídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Mutação/genética , Sítios de Ligação
18.
Pediatr Gastroenterol Hepatol Nutr ; 27(1): 71-76, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38249643

RESUMO

Recurrence of progressive familial intrahepatic cholestasis (PFIC) type II poses challenges during postoperative liver transplant care. Posttransplant patients with PFIC type II risk developing recurrent cholestasis with normal gamma-glutamyl transferase activity, which mimics the original bile salt export pump (BSEP) protein deficiency and is related to a form of immunoglobulin G antibody (anti-BSEP)-mediated rejection. Bortezomib effectively induces apoptosis of actively antibody-producing plasma cells that may have a role in antibody-mediated rejection. In this case, we used bortezomib to treat PFIC type II recurrence after liver transplantation in a child.

19.
J Dairy Sci ; 107(1): 91-104, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37678788

RESUMO

The milk fat globule membrane (MFGM) can protect probiotic bacteria from bile stress. However, its potential mechanism has not been reported. In this study, the viability, morphology and gene transcriptional response of Bifidobacterium longum ssp. infantis ATCC 15697 (BI_15697) stressed by bile salts with or without MFGM were investigated. It was shown that MFGM alleviated the reduction in BI_15697 population induced by 0.2% porcine bile stress and restored the population to the control levels. MFGM ameliorated the shrunken, fragmented appearance and irregular morphology of BI_15697 and maintained cell integrity disrupted by bile stress. RNA-sequencing results showed that MFGM increased transport of glucose and raffinose and decreased that of branched-chain amino acids (BCAA) in the presence of bile salts. MFGM stimulated the expression of genes involved in the synthesis of raffinose in galactose metabolism and the metabolism of BCAA, suggesting that MFGM stimulated the accumulation of raffinose and BCAA in the presence of bile. In addition, MFGM stimulated the expression of 2 bile efflux transporters under bile stress. Together, the multifactorial response helps BI_15697 excrete bile salts and maintain cellular integrity in response to bile stress. This study proposes a mechanism for the protection of BI_15697 against bile salt stress by MFGM, thereby providing a molecular basis for its application in incorporation of probiotics.


Assuntos
Bifidobacterium longum subspecies infantis , Bile , Glicoproteínas , Animais , Suínos , Rafinose , Glicolipídeos , Gotículas Lipídicas , Ácidos e Sais Biliares
20.
Cell Mol Gastroenterol Hepatol ; 17(3): 361-381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38092311

RESUMO

BACKGROUND & AIMS: A long immune-tolerant (IT) phase lasting for decades and delayed HBeAg seroconversion (HBe-SC) in patients with chronic hepatitis B (CHB) increase the risk of liver diseases. Early entry into the immune-active (IA) phase and HBe-SC confers a favorable clinical outcome with an unknown mechanism. We aimed to identify factor(s) triggering IA entry and HBe-SC in the natural history of CHB. METHODS: To study the relevance of gut microbiota evolution in the risk of CHB activity, fecal samples were collected from CHB patients (n = 102) in different disease phases. A hepatitis B virus (HBV)-hydrodynamic injection (HDI) mouse model was therefore established in several mouse strains and germ-free mice, and multiplatform metabolomic and bacteriologic assays were performed. RESULTS: Ruminococcus gnavus was the most abundant species in CHB patients in the IT phase, whereas Akkermansia muciniphila was predominantly enriched in IA patients and associated with alanine aminotransferase flares, HBeAg loss, and early HBe-SC. HBV-HDI mouse models recapitulated this human finding. Increased cholesterol-to-bile acids (BAs) metabolism was found in IT patients because R gnavus encodes bile salt hydrolase to deconjugate primary BAs and augment BAs total pool for facilitating HBV persistence and prolonging the IT course. A muciniphila counteracted this activity through the direct removal of cholesterol. The secretome metabolites of A muciniphila, which contained small molecules structurally similar to apigenin, lovastatin, ribavirin, etc., inhibited the growth and the function of R gnavus to allow HBV elimination. CONCLUSIONS: R gnavus and A muciniphila play opposite roles in HBV infection. A muciniphila metabolites, which benefit the elimination of HBV, may contribute to future anti-HBV strategies.


Assuntos
Clostridiales , Hepatite B Crônica , Animais , Humanos , Camundongos , Akkermansia , Colesterol , Antígenos E da Hepatite B , Microbioma Gastrointestinal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...