Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Biomater Appl ; 36(9): 1550-1566, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35130780

RESUMO

A recent and quite promising technique for bone tissue engineering is the 3D printing, peculiarly regarding the production of high-quality scaffolds. The 3D printed scaffold strictly provides suitable characteristics for living cells, in order to induce treatment, reconstruction and substitution of injured tissue. The purpose of this work was to evaluate the behavior of the 3D scaffold based on Poly(L-co-D,L lactic acid-co-Trimethylene Carbonate) (PLDLA-TMC), which was designed in Solidworks™ software, projected in 3D Slicer™, 3D printed in filament extrusion, cultured with mesenchymal stem cells (MSCs) and tested in vitro and in vivo models. For in vitro study, the MSCs were seeded in a PLDLA-TMC 3D scaffold with 600 µm pore size and submitted to proliferation and osteogenic differentiation. The in vivo assays implanted the PLDLA-TMC scaffolds with or without MSCs in the calvaria of Wistar rats submitted to 8 mm cranial bone defect, in periods of 8-12 weeks. The results showed that PLDLA-TMC 3D scaffolds favored adherence and cell growth, and suggests an osteoinductive activity, which means that the material itself augmented cellular differentiation. The implanted PLDLA-TMC containing MSCs, showed better results after 12 weeks prior grafting, due the absence of inflammatory processes, enlarged regeneration of bone tissue and facilitated angiogenesis. Notwithstanding, the 3D PLDLA-TMC itself implanted enriched tissue repair; the addition of cells known to upregulate tissue healing reinforce the perspectives for the PLDLA-TMC applications in the field of bone tissue engineering in clinical trials.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Regeneração Óssea , Diferenciação Celular , Dioxanos , Ácido Láctico , Impressão Tridimensional , Ratos , Ratos Wistar , Engenharia Tecidual/métodos , Alicerces Teciduais
2.
Polymers (Basel) ; 13(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34372016

RESUMO

Ultrasonic molding (USM) is a good candidate for studying the plasticization of polymer mixtures or other composite materials due to either the little amount of material needed for processing, low waste or the needed low pressure and residence time of the mold. Thus, the novelty of this research is the capability of USM technology to process PLA/PCL blends and their corresponding neat materials, encompassing all the production stages, from raw material to the final specimen. The major findings of the work revealed that the thermal properties of the blends were not affected by the USM process, although the crystallinity degree experienced variations, decreasing for PLA and increasing for PCL, which was attributed to the crystallization rate of each polymer, the high process speed, the short cooling time and the small particle size. The employed ultrasonic energy increased the molecular weight with low variations through the specimen. However, the degradation results aligned with the expected trend of these material blends. Moreover, this study also showed the effect pellet shape and dimensions have over the process parameters, as well as the effect of the blend composition. It can be concluded that USM is a technology suitable to successfully process PLA/PCL blends with the correct determination of process parameter windows.

3.
J Mech Behav Biomed Mater ; 103: 103572, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32090961

RESUMO

Bioabsorbable polymeric fixation devices have been used as an alternative to metallic implants in orthopedics, preventing the stress shielding effect and avoiding a second surgery for implant removal. However, several problems are still associated with current bioabsorbable implants, including the limited mechanical stiffness and strength, and the adverse tissue reactions generated. To minimize or even eliminate the problems associated with these implants, strategies have been developed to synthesize new implant materials based on chitosan. To overcome the brittle behavior of most 3D chitosan-based structures, glycerol and sorbitol were blended to chitosan and the effect of these plasticizers in the produced specimens was analyzed by flexural tests, Berkovich tests, scanning electron microscopy (SEM) and micro-CT analyzes. The improvement of the mechanical properties was also tested by adding ceramics, namely hydroxyapatite powder and biphasic mixtures of hydroxyapatite (HA) and beta-tricalcium phosphate (ß-TCP). In the plasticizers group, the best combination of the measured properties was obtained for chitosan with 10% glycerol (flexural strength of 53.8 MPa and indentation hardness of 19.4 kgf/mm2), while in the ceramics group the best mechanical behavior was obtained for chitosan with 10% HA+ß-TCP powder (flexural strength of 67.5 MPa and indentation hardness 28.2 kgf/mm2). All the tested material compositions were dense and homogeneous, fundamental condition for a good implant performance. These are encouraging results, which support the continued development of chitosan-based materials for orthopedic fixation applications.


Assuntos
Implantes Absorvíveis , Quitosana , Ortopedia , Cerâmica , Teste de Materiais , Microscopia Eletrônica de Varredura
4.
Polymers (Basel) ; 11(7)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31373323

RESUMO

Poly-l-lactic acid (PLLA) is one of the most common bioabsorbable materials in the medical device field. However, its use in load-bearing applications is limited due to its inferior mechanical properties when compared to many of the competing metal-based permanent and bioabsorbable materials. The objective of this study was to directly compare the influence of both annealing and biaxial expansion processes to improve the material properties of PLLA. Results showed that both annealing and biaxial expansion led to an overall increase in crystallinity and that the crystallites formed during both processes were in the α' and α forms. 2D-WAXS patterns showed that the preferred orientation of crystallites formed during annealing was parallel to the circumferential direction. While biaxial expansion resulted in orientation in both axial and circumferential directions, with relatively equal sized crystals in both directions, Da (112 Å) and Dc (97 Å). The expansion process had the most profound effect on mechanical performance, with a 65% increase in Young's modulus, a 45% increase in maximum tensile stress and an 18-fold increase in strain at maximum load. These results indicate that biaxially expanding PLLA at a temperature above Tcc is possible, due to the high strain rates associated with stretch blow moulding.

5.
Polymers (Basel) ; 11(4)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003549

RESUMO

Biodegradable polymers play a crucial role in the medical device field, with a broad range of applications such as suturing, drug delivery, tissue engineering, scaffolding, orthopaedics, and fixation devices. Poly-l-lactic acid (PLLA) is one of the most commonly used and investigated biodegradable polymers. The objective of this study was to determine the influence low shear microbore extrusion exerts on the properties of high molecular weight PLLA for medical tubing applications. Results showed that even at low shear rates there was a considerable reduction in molecular weight (Mn = 7-18%) during processing, with a further loss (Mn 11%) associated with resin drying. An increase in melt residence time from ~4 mins to ~6 mins, translated into a 12% greater reduction in molecular weight. The degradation mechanism was determined to be thermal and resulted in a ~22-fold increase in residual monomer. The differences in molecular weight between both batches had no effect on the materials thermal or morphological properties. However, it did affect its mechanical properties, with a significant impact on tensile strength and modulus. Interestingly there was no effect on the elongational proprieties of the tubing. There was also an observed temperature-dependence of mechanical properties below the glass transition temperature.

6.
EPMA J ; 6: 22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26605001

RESUMO

Cancer is a devastating disease, being responsible for 13 % of all deaths worldwide. One of the main challenges in treating cancer concerns the fact that anti-cancer drugs are not highly specific for the cancer cells and the "death" of healthy cells in the course of chemotherapy treatment is inevitable. In this sense, the use of drug delivery systems (DDS) can be seen as a powerful tool to minimize or overcome this very important issue. DDS can be designed to target specific tissues in order to mitigate side effects. Bioabsorbable polymers, due to their inherent characteristics, and because they can be synthesized in a variety of forms, are materials whose importance in the DDS for cancer therapy has risen significantly in the last years. This review intends to give an overview about the latest developments in the use of bioabsorbable polymers as DDS in cancer therapy, with special focus on nanoparticles, micelles, and implants.

7.
Med Devices (Auckl) ; 7: 165-78, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24940085

RESUMO

The introduction of intracoronary stents represented a major advance in interventional cardiology. While bare metal stents set the benchmark for improved safety over angioplasty, intimal hyperplasia and subsequent restenosis were important limitations. First-generation drug-eluting stents demonstrated significant improvements in efficacy, but not necessarily safety, and further technologic developments have focused on optimizing both. Current advances and understanding in stent design continue to improve on these concepts. This review summarizes past and present technology with particular emphasis on the principles underlying the efficacy and safety of drug-eluting stents, and offers a glimpse into the next generations of stents aimed at treating symptomatic coronary artery disease.

8.
J Am Coll Cardiol ; 63(4): 299-307, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24211507

RESUMO

OBJECTIVES: This study sought to investigate the relative safety and efficacy of bioabsorbable polymer (BP)-based biolimus-eluting stents (BES) versus durable-polymer (DP)-drug-eluting stents (DES) and bare-metal stents (BMS) by means of a network meta-analysis. BACKGROUND: Studies have suggested that BP-BES might reduce the risk of stent thrombosis (ST) and late adverse outcomes compared with first-generation DES. However, the relative safety and efficacy of BP-BES versus newer-generation DES coated with more biocompatible DP have not been investigated in depth. METHODS: Randomized controlled trials comparing BP-BES versus currently U.S.-approved DES or BMS were searched through MEDLINE, EMBASE, and Cochrane databases. Information on study design, inclusion and exclusion criteria, sample characteristics, and clinical outcomes was extracted. RESULTS: Data from 89 trials including 85,490 patients were analyzed. At 1-year follow-up, BP-BES were associated with lower rates of cardiac death/myocardial infarction (MI), MI, and target vessel revascularization (TVR) than BMS and lower rates of TVR than fast-release zotarolimus-eluting stents. The BP-BES had similar rates of cardiac death/MI, MI, and TVR compared with other second-generation DP-DES but higher rates of 1-year ST than cobalt-chromium everolimus-eluting stents (CoCr-EES). The BP-BES were associated with improved late outcomes compared with BMS and paclitaxel-eluting stents, considering the latest follow-up data available, with nonsignificantly different outcomes compared with other DP-DES although higher rates of definite ST compared with CoCr-EES. CONCLUSIONS: In this large-scale network meta-analysis, BP-BES were associated with superior clinical outcomes compared with BMS and first-generation DES and similar rates of cardiac death/MI, MI, and TVR compared with second-generation DP-DES but higher rates of definite ST than CoCr-EES.


Assuntos
Materiais Revestidos Biocompatíveis , Trombose Coronária/epidemiologia , Stents Farmacológicos , Infarto do Miocárdio/epidemiologia , Revascularização Miocárdica/estatística & dados numéricos , Stents , Fármacos Cardiovasculares/administração & dosagem , Ligas de Cromo , Trombose Coronária/prevenção & controle , Everolimo , Humanos , Infarto do Miocárdio/terapia , Paclitaxel/administração & dosagem , Polímeros , Ensaios Clínicos Controlados Aleatórios como Assunto , Sirolimo/administração & dosagem , Sirolimo/análogos & derivados
9.
Acta cient. venez ; 54(1): 18-27, 2003. ilus, tab, graf
Artigo em Espanhol | LILACS | ID: lil-351687

RESUMO

Se estudió la degradación hidrolítica in vitro de suturas de Poliglactin 910 utilizando un buffer de fosfato , pH= 7,4, a 37 °C. La degradación fue evaluada a través de la perdida en peso, cambio en las propiedades térmicas, morfología y propiedades mecánicas de las suturas sometidas a hidrólisis. Después de 10 semanas, los resultados obtenidos de la pérdida en peso y pH sugieren la difusión de especies de bajo peso molecular al medio de reacción como consecuencia del ataque hidrolítico a los grupos éster en el polímero. La disminución de las propiedades mecánicas, tanto el esfuerzo de ruptura como el modulo, junto con los resultados anteriores sugieren que el proceso de escisión de cadenas procede en dos etapas: la primera ocurre en las zonas amorfas y la segunda en las zonas cristalinas. El estudio de la morfología correspondiente a la superf icie de las sutura revela un mecanismo de degradación heterogéneo por capas.


The hydrolytic degradation of bioabsorbable Poliglactin 910 was studied in a phosphate buffer solution, pH= 7,4, at 37 °C. The degradation was evaluated by analyzing the changes in weight loss, pH, DSC, mechanical properties and morphological changes. After 10 weeks, the weight loss and pH changes suggested diffusion of low molecular weight chain segments into the reaction medium as a consequence of the breaking of ester bonds in the material. Breaking stress and Young Modulus decrease, indicating that chain scission proceeded in two steps: the first ocurring in the amorphous regions within the intermicrofibrillar space; the second in the crystalline regions. Surface morphological changes suggest a heterogeneous degradation mechanism by layers.


Assuntos
Poliglactina 910 , Materiais Biocompatíveis , Biodegradação Ambiental , Teste de Materiais , Microscopia Eletrônica de Varredura , Concentração de Íons de Hidrogênio , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...