Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
J Environ Sci (China) ; 150: 422-431, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306417

RESUMO

In recent years, the biodegradable plastics has extensively used in industry, agriculture, and daily life. Herein, the effects of two biodegradable microplastics (BMPs), poly(butyleneadipate-co-terephthalate) (PBAT) and polyhydroxyalkanoate (PHA), on soil sulfamethoxazole (SMX) degradation and sul genes development were comparatively studied based on the type, dosage, and state. The addition of virgin BMPs significantly increased soil DOC following a sequential order PBAT > PHA and high dose > low dose. Meanwhile virgin PBAT significantly reduced soil pH. In general, the addition of BMPs not only promoted soil SMX degradation but also increased the abundance of sul genes, with an exception that pH reduction in virgin PBAT inhibited the proliferation of sul genes. The driving effects of BMPs on soil microbial diversity following the same order as that on DOC. Specific bacteria stimulated by BMPs, such as Arthrobacter and two genera affiliated with phylum TM7, accounted for the accelerated degradation of SMX. Intriguingly, UV-aging hindered the release of DOC from BMPs and the reduction in pH, mitigated the stimulation of microbial communities, and ultimately reduced the promotion effect of BMPs on SMX degradation and sul genes proliferation. Our results suggest that more attention should be paid to the proliferation risk of ARGs in the environment affected by BMPs and UV-aging can be employed sometimes to reduce this risk.


Assuntos
Biodegradação Ambiental , Microbiologia do Solo , Poluentes do Solo , Solo , Sulfametoxazol , Sulfametoxazol/toxicidade , Solo/química , Microplásticos/toxicidade , Raios Ultravioleta , Plásticos Biodegradáveis
2.
Environ Res ; 262(Pt 2): 119979, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270956

RESUMO

Biodegradable plastics (BPs) are known to decompose into micro-nano plastics (BMNPs) more readily than conventional plastics (CPs). Given the environmental risks posed by BMNPs in soil ecosystems, their impact has garnered increasing attention. However, research focusing on the toxic effects of BMNPs on soils remains relatively limited. The degradation process and duration of BMNPs in soil are influenced by numerous factors, which directly impact the toxic effects of BMNPs. This highlights the urgent need for further research. In this context, this review delineates the classification of BPs, investigates the degradation processes of BPs along with their influencing factors, summarizes the toxic effects on soil ecosystems, and explores the potential mechanisms that underlie these toxic effects. Finally, it provides an outlook on related research concerning BMNPs in soil. The results indicate that specific BMNPs release additives at a faster rate during decomposition, degradation, and aging, with certain compounds exhibiting increased bioavailability. Importantly, a substantial body of research has shown that BMNPs generally manifest more pronounced toxic effects in comparison to conventional micro-nano plastics (CMNPs). The toxic effects associated with BMNPs encompass a decline in soil quality and microbial biomass, disruption of nutrient cycling, inhibition of plant root growth, and negative impacts on invertebrate reproduction, survival, and fertilization rates. The rough and complex surfaces of BMNPs contribute to increased mechanical damage to tested organisms, enhance absorption by microorganisms, and disrupt normal physiological functions. Notably, the toxic effects of BMNPs on soil ecosystems are influenced by factors including concentration, type of BMNPs, exposure conditions, degradation products, and the nature of additives used. Therefore, it is crucial to standardize detection technologies and toxicity testing conditions for BMNPs. In conclusion, this review provides scientific evidence that supports effective prevention and management of BMNP pollution, assessment of its ecological risks, and governance of BMNPs-related products.

3.
Sci Total Environ ; 954: 176421, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39306119

RESUMO

With the increasing demand for plastics, plastic pollution is growing rapidly. A significant amount of plastic has leaked into the environment, leading to severe environmental issues. Biodegradable plastics are considered promising alternatives to conventional durable plastics, and the environmental impacts of biodegradable plastics have received increasing attention. Poly (butylene adipate-co-terephthalate) (PBAT) is a commercial and cost-competitive biodegradable polymer and has been applied in the packaging and agriculture sectors. The environmental performances of PBAT with second-generation feedstocks from forestry waste have been rarely investigated. Since China is the leading global producer and exporter of PBAT polymer, Chinese cradle-to-gate life cycle inventories of PBAT were compiled in this study. A comparative life cycle assessment (LCA) was conducted to explore the potential for environmental performance of PBAT with second-generation bio-based feedstock compared to fossil-based PBAT and conventional plastics. The results showed that feedstocks contributed to more than 70 % of 18 environmental impact categories of fossil-based PBAT. In comparison, PBAT with second-generation bio-based feedstock reduces the environmental loads in 16 impact categories by 15-85 %, and renewable energy substitution has the potential to reduce environmental impacts by 10 %. Bio-based PBAT performs better than PVC, PP, HDPE, LDPE, and PET in 16 impact categories by 15-80 %. Bio-based PBAT has GWP of 3.72 kg CO2 eq, which is 37 % lower than fossil-based PBAT (5.89 kg CO2 eq) and 18-32 % lower than conventional plastics. Since feedstock dominates the environmental performance of PBAT, the development of biomanufacturing technologies for bio-based polymers and chemicals could significantly improve environmental performance of biodegradable plastics and promote the sustainable development of the plastic industry. Results could serve as the basis for environmental impact and mitigation strategies for biodegradable plastics with bio-based feedstocks, as well as the sustainable development of the PBAT industry.

4.
Environ Res ; : 120064, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39332793

RESUMO

Soil microbiomes drive many soil processes and maintain the ecological functions of terrestrial ecosystems. Microplastics (MPs, size < 5 mm) are pervasive emerging contaminants worldwide. However, how MPs affect soil microbial activity has not been well elucidated. This review article first highlights the effects of MPs on overall soil microbial activities represented by three soil enzymes, i.e., catalase, dehydrogenase, and fluorescein diacetate hydrolase (FDAse), and explores the underlying mechanisms and influencing factors. Abundant evidence confirms that MPs can change soil microbial activities. However, existing results vary greatly from inhibition to promotion and non-significance, depending on polymer type, degradability, dose, size, shape, additive, and aging degree of the target MPs, soil physicochemical and biological properties, and exposure conditions, such as exposure time, temperature, and agricultural practices (e.g., planting, fertilization, soil amendment, and pesticide application). MPs can directly affect microbial activities by acting as carbon sources, releasing additives and pollutants, and shaping microbial communities via plastisphere effects. Smaller MPs (e.g., nanoplastics, 1 to < 1000 nm) can also damage microbial cells through penetration. Indirectly, MPs can change soil attributes, fertility, the toxicity of co-existing pollutants, and the performance of soil fauna and plants, thus regulating soil microbiomes and their activities. In conclusion, MPs can regulate soil microbial activities and consequently pose cascading consequences for ecosystem functioning.

5.
Chemosphere ; 365: 143393, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39307466

RESUMO

Plastic plays an important role in agriculture, but its use has become a concerning source of pollution. While new (bio)degradable, alternative plastics are being developed and used as mulching films, their ecological impacts, in particular under field conditions, are not well understood. Furthermore, there is a notable lack of knowledge on how plastic pollution affects soil invertebrate communities. Most existing studies primarily focus on microplastics, often neglecting the impacts of mesoplastics. This study therefore compared the separate effects of two conventional (polyethylene and polypropylene) and two alternative (polyethylene containing biodegradable additives and compostable polylactic acid) mesoplastic films on plant performance (biomass, seed yield) and soil mesofaunal assemblages in a field experiment. The mesoplastics were applied at 0.1% (w/w), prior to soil being planted with Hordeum vulgare (spring barley), which was grown to maturity, for 11 weeks. Generally, there were no measurable differences between the conventional and alternative plastic treatments, however, barley exposed to mesoplastics showed reduced biomass, seed yield, and chlorophyll content, along with increased oxidative stress. Soil fauna, particularly Collembola, had lower richness and abundance when exposed to both plastic types, but assemblage structure and composition remained unchanged after 11 weeks. This study is pivotal in highlighting that both conventional and alternative plastics can similarly affect plant health and soil ecosystems. The evidence provided is essential for refining future risk assessments of agricultural plastic pollution and underscores the urgent need for more sustainable practices and materials in agriculture.

6.
Sci Total Environ ; 951: 175827, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39197763

RESUMO

While research on the aging behavior of plastics in aquatic systems is extensive, studies focusing on high-altitude ecosystems, characterized by higher solar radiation and lower temperatures, remain limited. This study investigated the long-term aging behavior of non-biodegradable plastics (non-BPs), namely polyethylene terephthalate (PET) and polypropylene (PP) and biodegradable plastics (BPs), specifically polylactic acid plus polybutylene adipate-co-terephthalate (PLA + PBAT) and starch-based plastic (SBP), in a tributary of the Yarlung Zangbo River on the high-altitude Tibetan Plateau. Over 84 days of field aging, all four types of plastics exhibited initial rapid aging followed by deceleration. This aging process can be divided into two phases: rapid surface oxidation aging and an aging plateau phase. Notably, PP aged at a rate comparable to BPs, contrary to expectations of faster aging for BPs. Compared to low-altitude aquatic ecosystems, plastics in this study showed a faster aging rate. This was primarily due to intense ultraviolet radiation causing severe photoaging. Furthermore, the lower temperatures contributed to the formation of thinner biofilms. These thinner biofilms exhibited a reduced capacity to block light, further exacerbating the photoaging process of plastics. Statistical analysis results indicated that temperature, total nitrogen TN, and total phosphorus TP were likely the main water quality parameters influencing plastic aging. The varying effects of water properties and nutrients underscore the complex interaction of water quality parameters in high-altitude environments. Given the delicate nature of the high-altitude environment, the environmental impact of plastics, especially BPs, warrants careful consideration.


Assuntos
Altitude , Plásticos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Ecossistema , Monitoramento Ambiental , Tibet , Plásticos Biodegradáveis
7.
Polymers (Basel) ; 16(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39125253

RESUMO

Biopolymers are highly desirable alternatives to petrochemical-based plastics owing to their biodegradable nature. The production of bioplastics, such as polyhydroxyalkanoates (PHAs), has been widely reported using various bacterial cultures with substrates ranging from pure to biowaste-derived sugars. However, large-scale production and economic feasibility are major limiting factors. Now, using algal biomass for PHA production offers a potential solution to these challenges with a significant environmental benefit. Algae, with their unique ability to utilize carbon dioxide as a greenhouse gas (GHG) and wastewater as feed for growth, can produce value-added products in the process and, thereby, play a crucial role in promoting environmental sustainability. The sugar recovery efficiency from algal biomass is highly variable depending on pretreatment procedures due to inherent compositional variability among their cell walls. Additionally, the yields, composition, and properties of synthesized PHA vary significantly among various microbial PHA producers from algal-derived sugars. Therefore, the microalgal biomass pretreatments and synthesis of PHA copolymers still require considerable investigation to develop an efficient commercial-scale process. This review provides an overview of the microbial potential for PHA production from algal biomass and discusses strategies to enhance PHA production and its properties, focusing on managing GHGs and promoting a sustainable future.

8.
Polymers (Basel) ; 16(16)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39204564

RESUMO

Proper waste sorting is crucial for biodegradable plastics (BDPs) recycling, whose global production is increasing dynamically. BDPs can be sorted using near-infrared (NIR) sorting, but little research is available about the effect of surface contamination on their NIR spectrum, which affects their sortability. As BDPs are often heavily contaminated with food waste, understanding the effect of surface contamination is necessary. This paper reports on a study on the influence of artificially induced surface contamination using food waste and contamination from packaging waste, biowaste, and residual waste on the BDP spectra. In artificially contaminated samples, the absorption bands (ADs) changed due to the presence of moisture (1352-1424 nm) and fatty acids (1223 nm). In real-world contaminated samples, biowaste samples were most affected by contamination followed by residual waste, both having altered ADs at 1352-1424 nm (moisture). The packaging waste-contaminated sample spectra closely followed those of clean and washed samples, with a change in the intensity of ADs. Accordingly, two approaches could be followed in sorting: (i) affected wavelength ranges could be omitted, or (ii) contaminated samples could be used for optimizing the NIR database. Thus, surface contamination affected the spectra, and knowing the wavelength ranges containing this effect could be used to optimize the NIR database and improve BDP sorting.

9.
Trends Biotechnol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39174388

RESUMO

We report the development of a metabolically engineered bacterium for the fermentative production of polyesters containing aromatic side chains, serving as sustainable alternatives to petroleum-based plastics. A metabolic pathway was constructed in an Escherichia coli strain to produce poly[d-phenyllactate(PhLA)], followed by three strategies to enhance polymer production. First, polyhydroxyalkanoate (PHA) granule-associated proteins (phasins) were introduced to increase the polymer accumulation. Next, metabolic engineering was performed to redirect the metabolic flux toward PhLA. Furthermore, PHA synthase was engineered based on in silico simulation results to enhance the polymerization of PhLA. The final strain was capable of producing 12.3 g/l of poly(PhLA), marking it the first bio-based process for producing an aromatic homopolyester. Additional heterologous gene introductions led to the high level production of poly(3-hydroxybutyrate-co-11.7 mol% PhLA) copolymer (61.4 g/l). The strategies described here will be useful for the bio-based production of aromatic polyesters from renewable resources.

10.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39062928

RESUMO

Extremophilic microorganisms play a key role in understanding how life on Earth originated and evolved over centuries. Their ability to thrive in harsh environments relies on a plethora of mechanisms developed to survive at extreme temperatures, pressures, salinity, and pH values. From a biotechnological point of view, thermophiles are considered a robust tool for synthetic biology as well as a reliable starting material for the development of sustainable bioprocesses. This review discusses the current progress in the biomanufacturing of high-added bioproducts from thermophilic microorganisms and their industrial applications.


Assuntos
Microbiologia Industrial , Microbiologia Industrial/métodos , Biotecnologia/métodos , Extremófilos/metabolismo , Extremófilos/fisiologia , Bactérias/metabolismo , Archaea/metabolismo
11.
Sci Rep ; 14(1): 16476, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014021

RESUMO

Pyrolytic synergistic interactions, in which the production of pyrolyzates is enhanced or inhibited, commonly occur during the co-pyrolysis of different polymeric materials, such as plastics and biomass. Although these interactions can increase the yield of desired pyrolysis products under controlled degradation conditions, the desired compounds must be separated from complex pyrolyzates and further purified. To balance these dual effects, this study was aimed at examining pyrolytic synergistic interactions during slow heating co-pyrolysis of biodegradable plastics including polylactic acid (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyhexaoate) (PHBH) and petroleum-based plastics including high-density polyethylene (HDPE), polypropylene (PP), and polystyrene (PS). Comprehensive investigations based on thermogravimetric analysis, pyrolysis-gas chromatography/mass spectrometry, and evolved gas analysis-mass spectrometry revealed that PLA and PHBH decompose at lower temperatures (273-378 °C) than HDPE, PP, and PS (386-499 °C), with each polymer undergoing independent decomposition without any pyrolytic interactions. Thus, the independent pyrolysis of biodegradable plastics, such as PLA and PHBH, with common plastics, such as HDPE, PP, and PS, can theoretically be realized through temperature control, enabling the selective recovery of their pyrolyzates in different temperature ranges. Thus, pyrolytic approaches can facilitate the treatment of mixed biodegradable and common plastics.


Assuntos
Plásticos Biodegradáveis , Poliésteres , Polipropilenos , Pirólise , Poliésteres/química , Plásticos Biodegradáveis/química , Polipropilenos/química , Plásticos/química , Poliestirenos/química , Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Termogravimetria , Polietileno/química
12.
Prev Nutr Food Sci ; 29(2): 210-219, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38974591

RESUMO

Edible films are thin films frequently manufactured using natural bioresources and are employed in food packaging to safeguard food quality. This research prepared edible films from renewable biomass consisting of Belitung taro tuber starch (Xanthosoma sagittifolium) and incorporated sorbitol as a plasticizer, carboxymethyl cellulose as a reinforcing agent, and moringa leaf extract (Moringa oleifera) as an antioxidant. The physicochemical characteristics of the resulting edible films were examined. The most favorable treatment was identified in an edible film containing 3% (v/v based on the total volume of 100 mL) of moringa leaf extract. This exhibited a tensile strength of 6.86 N/mm2, percent elongation of 73.71%, elasticity of 9.37×10-3 kgf/mm2, water absorption of 349.03%, solubility of 93.18%, and water vapor transmission speed of 3.18 g/h m2. Its shelf life was five days at ambient temperature. The edible film was found to have 135.074 ppm of half maximal inhibitory concentration (IC50) based on the antioxidant analysis of inhibition concentration (IC50) value measurements, and was classified as having moderate antioxidant activity. Additionally, the biodegradability assessment revealed that the edible films degraded within 14 days. Based on this data, it can be deduced that adding moringa leaf extract enhances the physicochemical and functional characteristics of the film. These edible films can be used as substitutes for nonrenewable and nonbiodegradable packaging materials.

13.
Artigo em Inglês | MEDLINE | ID: mdl-39033795

RESUMO

Biodegradable plastics have been commonly developed and applied as an alternative to traditional plastics, which cause environmental plastic pollution. However, biodegradable plastics still present limitations such as stringent degradation conditions and slow degradation rate, and may cause harm to the environment and organisms. Consequently, in this study, zebrafish was used to evaluate the effects of five biodegradable microplastics (MPs), polyglycolic acid (PGA), polylactic acid (PLA), polybutylene succinate (PBS), polyhydroxyalkanoate (PHA) and polybutylene adipate terephthalate (PBAT) exposure on the early development, retina morphology, visually-mediated behavior, and thyroid signaling at concentrations of 1 mg/L and 100 mg/L. The results indicated that all MPs induced decreased survival rate, reduced body length, smaller eyes, and smaller heads, affecting the early development of zebrafish larvae. Moreover, the thickness of retinal layers, including inner plexiform layer (IPL), outer nuclear layer (ONL), and retinal ganglion layer (RGL) was decreased, and the expression of key genes related to eye and retinal development was abnormally altered after all MPs exposure. Exposure to PBS and PBAT led to abnormal visually-mediated behavior, indicating likely affected the visual function. All MPs could also cause thyroid system disorders, among which alterations in the thyroid hormone receptors (TRs) genes could affect the retinal development of zebrafish larvae. In summary, biodegradable MPs exhibited eye developmental toxicity and likely impaired the visual function in zebrafish larvae. This provided new evidence for revealing the effects of biodegradable plastics on aquatic organism development and environmental risks to aquatic ecosystems.


Assuntos
Larva , Glândula Tireoide , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Olho/efeitos dos fármacos , Olho/crescimento & desenvolvimento , Olho/embriologia , Olho/metabolismo , Poluentes Químicos da Água/toxicidade , Plásticos Biodegradáveis/toxicidade , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Comportamento Animal/efeitos dos fármacos , Microplásticos/toxicidade
14.
J Hazard Mater ; 474: 134777, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38824777

RESUMO

The invasion of alien plant and the pollution caused by soil microplastics have emerged as significant ecological threats. Recent studies have demonstrated aggravating effect of non-biodegradable microplastics on plant invasion. However, the impact of biodegradable microplastics (BMPs) on plant invasion remains unclear. Therefore, it is imperative to explore the impact of BMPs on plant invasion. In this study, a 30-day potting experiment with Trifolium repens L. (an invasive plant) and Oxalis corniculata L. (a native plant) was conducted to evaluate the influence of BMPs on T. repens's invasion. The findings revealed that BMPs results in a reduction in available N and P contents, thereby facilitating the colonization of arbuscular mycorrhizal fungi on T. repens 's roots. Consequently, T. repens adjusted its N and P foraging strategy by increasing P absorption ratio, and enhancing the accumulation of N and P in leaves. This ultimately led to the decrease of relative neighbor effect index of T. repens, indicating an aggravated invasion by T. repens. This study significantly enhances and expands the understanding of mechanisms by which microplastics aggravate plant invasion.


Assuntos
Nitrogênio , Fósforo , Poluentes do Solo , Trifolium , Trifolium/efeitos dos fármacos , Trifolium/metabolismo , Trifolium/crescimento & desenvolvimento , Nitrogênio/metabolismo , Poluentes do Solo/toxicidade , Plásticos Biodegradáveis/química , Espécies Introduzidas , Micorrizas , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Microplásticos/toxicidade , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Biodegradação Ambiental
15.
Artigo em Inglês | MEDLINE | ID: mdl-38856850

RESUMO

This research paper aims to explore the effect of graphite, wollastonite, and titanium dioxide as reinforcing fillers on starch-based biodegradable plastic (SBP) films. GF-SBP (graphite filler containing SBP), WF-SBP (wollastonite containing SBP), and TF-SBP (titanium dioxide containing SBP) films were developed and analyzed for various properties such as thickness, density, tensile strength, elongation break, morphology, thermal stability, solubility, moisture content, moisture absorbance, biodegradability, and antibacterial activity. The results reveal that WF-SBP films had the highest tensile strength of 5.43 MPa and greatest elongation break value of 22% as compared to other films. Thermogravimetric analysis showed that SBP films with and without filler degraded slowly between 150 and 600°C. The highest thermal stability was recorded for TF-SBP films which showed stability (11% mass loss) up to 150°C. The biodegradability test conducted using soil burial method suggested that TF-SBP film degraded within 90 days, GF-SBP films degraded completely in 120 days, and WF-SBP films took more than 120 days to degrade. The synthesized SBP films were analyzed for their antibacterial potential against gram-positive and gram-negative bacteria, and results showed that WF-SBP film exhibited the best antibacterial activity by producing a large zone of inhibition against Escherichia coli.

16.
Chemosphere ; 362: 142650, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901703

RESUMO

Biodegradable plastics (BPs) have seen a continuous increase in annual production and application due to their environmentally sustainable characteristics. However, research on the formation of disinfection byproducts (DBPs) from biodegradable microplastics (BMPs) during chlorination is limited, and the effects of aqueous solution chemistry on this process have yet to be explored. Therefore, two biodegradable microplastics, polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT), were investigated in this study to examine the changes in their physicochemical properties before and after chlorination, and the formation of DBPs under different environmental conditions. The results showed that PLA was more chlorine-responsive, and generated more DBPs. The pH converted some of the intermediates into more stable DBPs by affecting the concentration of HClO and base-catalyzed reactions, whereas ionic strength slightly reduced DBP concentration by ion adsorption and promoting the aggregation of BMPs. Finally, since PLA has a slightly greater volume of mesopores and micropores compared to PBAT, it may more effectively adsorb DBP precursors beyond natural organic matter (NOM), such as some anthropogenic pollutants, thus potentially decreasing the formation of chlorinated DBPs in surface water. This research explored the potentiality for DBP formation by BMPs under different water quality conditions during the disinfection process, which is useful for assessing the environmental hazards of BMPs.


Assuntos
Plásticos Biodegradáveis , Desinfecção , Halogenação , Poliésteres , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Poliésteres/química , Plásticos Biodegradáveis/química , Purificação da Água/métodos , Desinfetantes/química , Microplásticos/química , Adsorção
17.
Chemosphere ; 359: 142311, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735500

RESUMO

Plastic is widely used in agricultural applications, but its waste has an adverse environmental impact and a long-term detrimental effect. The development of biodegradable plastics for agricultural use is increasing to mitigate plastic waste. The most commonly used biodegradable plastic is poly(butylene adipate co-terephthalate)/poly(lactic acid) (PBAT/PLA) polymer. In this study, an analytical procedure based on dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography-mass spectrometry (GC-MS) in combination with chemometrics has been optimized to assess the degradation level of PBAT/PLA films by monitoring their characteristic degradation products. Carboxylic acids (benzoic, phthalic, adipic, heptanoic, and octadecanoic acids) and 1,4-butanediol have been found to be potential markers of PBAT/PLA degradation. The DLLME-GC-MS analytical approach has been applied for the first time to assess the degradation efficiency of several microorganisms used as degradation accelerators of PBAT/PLA based on the assigned potential markers. This analytical strategy has shown higher sensitivity and precision than standard techniques, such as elemental analysis, allowing us to detect low degradation levels.


Assuntos
Biodegradação Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Poliésteres , Poliésteres/química , Microextração em Fase Líquida/métodos , Plásticos Biodegradáveis/química , Polímeros/química , Ácidos Carboxílicos/química
18.
Water Res ; 258: 121744, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754301

RESUMO

Replacing petroleum-based plastics with biodegradable polymers is a major challenge for modern society especially for food packaging applications. To date, poly(lactic acid) represents 25 % of the total biodegradable plastics and it is estimated that, in the future, it could become the main contributor to the biodegradable plastics industry. Anaerobic digestion is an interesting way for the poly(lactic acid) end of life, even if its biodegradability is limited in mesophilic conditions. The aims of this study were to identify the best pre-treatment for maximizing the methane yield, minimizing the anaerobic digestion duration and limiting residual plastic fragments in the digestate. A systematic comparison was carried out between thermal, chemical, and thermo-chemical pre-treatment. Pre-treatment with 4 M KOH for 48 h at 35°C was effective in improving the mesophilic anaerobic digestion of the poly(lactic acid). Such pre-treatment allows obtaining 90 % of the theoretical methane potential, in 24 - 30 days. Importantly, such pre-treatment completely solubilized the poly(lactic acid), leaving no solid residues in the digestate. In addition, using KOH permits to avoid the sodication of the soil due to the digestate application as fertilizer.


Assuntos
Poliésteres , Poliésteres/química , Anaerobiose , Polímeros/química , Metano/metabolismo , Ácido Láctico/metabolismo , Álcalis/química , Hidróxidos/química , Compostos de Potássio/química , Biodegradação Ambiental , Temperatura
19.
Sci Total Environ ; 928: 172354, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614330

RESUMO

Escalation of ecological concern due to biodegradable plastics has attracted the attention of many contemporary researchers. This study searched to investigate the acute and sub-chronic toxicity of polylactic acid (PLA) and polybutyleneadipate-co-terephthalate (PLA-PBAT) bio-microplastics on 3-month-old zebrafish to elucidate their potential toxic mechanisms. Acute toxicity assessments revealed 96 h-LC50 value of 12.69 mg/L for PLA-PBAT. Sub-chronic exposure of over 21 days revealed deviations in critical behavioral patterns and physiological indicators. In treated groups, weight gain and specific growth rates were significantly lower than those obtained for the control group, such that high doses induced significant reductions in total organ coefficient (p < 0.05). A positive correlation was observed between zebrafish mortality and increased doses. Detailed behavioral evaluations revealed a dose-dependent decrease in the speed and range of swimming, along with modifications in shoaling behavior, anxiety-like responses, and avoidance behaviors. Brain tissues transcriptomic analyses revealed the molecular responses underlying sub-chronic exposure to PLA-PBAT. Totally 702 DEGs and 5 KEGG pathways were significantly identified in low-dose group, with the top 2 significant pathways being ribosome pathway and cytokine-cytokine receptor interaction pathway. Totally 650 DEGs and 5 KEGG pathways were significantly identified in medium-dose group, with the top 2 significant pathways being Herpes simplex virus 1 infection pathway and complement and coagulation cascades pathway. Totally 1778 DEGs and 16 KEGG pathways were significantly identified in high-dose group, with the top 2 significant pathways being metabolism of xenobiotics by cytochrome P450 and drug metabolism - cytochrome P450 pathway. Most significantly enriched pathways are associated with immune responses. The validation of key gene in cytokine-cytokine receptor interaction pathway also confirmed its high correlation with behavioral indicators. These results indicate that PLA-PBAT is likely to cause behavioral abnormalities in zebrafish by triggering immune dysregulation in the brain.


Assuntos
Comportamento Animal , Microplásticos , Poliésteres , Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Comportamento Animal/efeitos dos fármacos , Plásticos Biodegradáveis
20.
Bioresour Technol ; 400: 130670, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583679

RESUMO

The incorporation of representative commercial compostable materials into a full-scale open-air windrow composting process in an industrial site using household-separated biowaste was investigated. Two batches out of the same initial biowaste mixture were studied, one as control and the other containing initially 1.28 wt% of certified compostable plastics. No significant differences in the composting process were revealed. Compostable plastics exhibited a 98 wt% mass loss after 4 months, aligning with industrial composting times. The evolution of the morphology of the materials unveiled polymer specific degradation mechanisms. Both Safety requirements for organic farming were met. Ecotoxicity tests showed no adverse effects, agronomic fertilizing and amending quality was high, the materials compost even enhancing barley growth. The ecological impact assessment demonstrated an advantage for composting over incineration for seven of the eight indicators. In conclusion, this study shows the successful integration of compostable materials into industrial composting, upholding product safety and quality.


Assuntos
Compostagem , Compostagem/métodos , Biodegradação Ambiental , Solo/química , Embalagem de Produtos , Indústrias , Meio Ambiente , Hordeum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA