Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 47(9): 1533-1545, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38888622

RESUMO

Rhodococcus erythropolis bacterium is known for its remarkable resistance characteristics that can be useful in several biotechnological processes, such as bioremediation. However, there is scarce knowledge concerning the behavior of this strain against different metals. This study sought to investigate the behavior of R. erythropolis ATCC 4277 against the residue of chalcopyrite and e-waste to verify both resistive capacities to the metals present in these residues and their potential use for biomining processes. These tests were carried out in a stirred tank bioreactor for 48 h, at 24ºC, pH 7.0, using a total volume of 2.0 L containing 2.5% (v/v) of a bacterial pre-culture. The pulp density of chalcopyrite was 5% (w/w), and agitation and oxygen flow rates were set to 250 rpm and 1.5 LO2 min-1, respectively. On the other hand, we utilized a waste of computer printed circuit board (WPCB) with a pulp density of 10% (w/w), agitation at 400 rpm, and an oxygen flow rate of 3.0 LO2 min-1. Metal concentration analyses post-fermentation showed that R. erythropolis ATCC 4277 was able to leach about 38% of the Cu present in the chalcopyrite residue (in ~ 24 h), and 49.5% of Fe, 42.3% of Ni, 27.4% of Al, and 15% Cu present in WPCB (in ~ 24 h). In addition, the strain survived well in the environment containing such metals, demonstrating the potential of using this bacterium for waste biomining processes as well as in other processes with these metals.


Assuntos
Reatores Biológicos , Rhodococcus , Rhodococcus/metabolismo , Rhodococcus/crescimento & desenvolvimento , Cobre/química , Metais/química , Biodegradação Ambiental , Resíduo Eletrônico
2.
Microorganisms ; 12(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38399813

RESUMO

Conserved Histidine Alpha-helical Domain (CHAD) proteins attached to the surface of polyphosphate (PolyP) have been studied in some bacteria and one archaeon. However, the activity of CHAD proteins is unknown beyond their interaction with PolyP granules. By using bioinformatic analysis, we report that several species of the biomining acidophilic bacteria contain orthologs of CHAD proteins with high sequence identity. Furthermore, the gene coding for the CHAD protein is in the same genetic context of the enzyme polyphosphate kinase (PPK), which is in charge of PolyP synthesis. Particularly, the group of ppk and CHAD genes is highly conserved. Metallosphaera sedula and other acidophilic archaea used in biomining also contain CHAD proteins. These archaea show high levels of identity in genes coding for a cluster having the same organization. Amongst these genes are chad and ppx. In general, both biomining bacteria and archaea contain high PolyP levels and are highly resistant to heavy metals. Therefore, the presence of this conserved genetic organization suggests a high relevance for their metabolism. It has been formerly reported that a crystallized CHAD protein contains a copper-binding site. Based on this previous knowledge, in the present report, it was determined that all analyzed CHAD proteins are very conserved at their structural level. In addition, it was found that the lack of YgiF, an Escherichia coli CHAD-containing protein, decreases copper resistance in this bacterium. This phenotype was not only complemented by transforming E. coli with YgiF but also by expressing CHAD from Acidithiobacillus ferrooxidans in it. Interestingly, the strains in which the possible copper-binding sites were mutated were also more metal sensitive. Based on these results, we propose that CHAD proteins are involved in copper resistance in microorganisms. These findings are very interesting and may eventually improve biomining operations in the future.

3.
Front Microbiol ; 13: 900531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212841

RESUMO

Verrucomicrobia are a group of microorganisms that have been proposed to be deeply rooted in the Tree of Life. Some are methanotrophs that oxidize the potent greenhouse gas methane and are thus important in decreasing atmospheric concentrations of the gas, potentially ameliorating climate change. They are widespread in various environments including soil and fresh or marine waters. Recently, a clade of extremely acidophilic Verrucomicrobia, flourishing at pH < 3, were described from high-temperature geothermal ecosystems. This novel group could be of interest for studies about the emergence of life on Earth and to astrobiologists as homologs for possible extraterrestrial life. In this paper, we describe predicted mechanisms for survival of this clade at low pH and suggest its possible evolutionary trajectory from an inferred neutrophilic ancestor. Extreme acidophiles are defined as organisms that thrive in extremely low pH environments (≤ pH 3). Many are polyextremophiles facing high temperatures and high salt as well as low pH. They are important to study for both providing fundamental insights into biological mechanisms of survival and evolution in such extreme environments and for understanding their roles in biotechnological applications such as industrial mineral recovery (bioleaching) and mitigation of acid mine drainage. They are also, potentially, a rich source of novel genes and pathways for the genetic engineering of microbial strains. Acidophiles of the Verrucomicrobia phylum are unique as they are the only known aerobic methanotrophs that can grow optimally under acidic (pH 2-3) and moderately thermophilic conditions (50-60°C). Three moderately thermophilic genera, namely Methylacidiphilum, Methylacidimicrobium, and Ca. Methylacidithermus, have been described in geothermal environments. Most of the investigations of these organisms have focused on their methane oxidizing capabilities (methanotrophy) and use of lanthanides as a protein cofactor, with no extensive study that sheds light on the mechanisms that they use to flourish at extremely low pH. In this paper, we extend the phylogenetic description of this group of acidophiles using whole genome information and we identify several mechanisms, potentially involved in acid resistance, including "first line of defense" mechanisms that impede the entry of protons into the cell. These include the presence of membrane-associated hopanoids, multiple copies of the outer membrane protein (Slp), and inner membrane potassium channels (kup, kdp) that generate a reversed membrane potential repelling the intrusion of protons. Acidophilic Verrucomicrobia also display a wide array of proteins potentially involved in the "second line of defense" where protons that evaded the first line of defense and entered the cell are expelled or neutralized, such as the glutamate decarboxylation (gadAB) and phosphate-uptake systems. An exclusive N-type ATPase F0-F1 was identified only in acidophiles of Verrucomicrobia and is predicted to be a specific adaptation in these organisms. Phylogenetic analyses suggest that many predicted mechanisms are evolutionarily conserved and most likely entered the acidophilic lineage of Verrucomicrobia by vertical descent from a common ancestor. However, it is likely that some defense mechanisms such as gadA and kup entered the acidophilic Verrucomicrobia lineage by horizontal gene transfer.

4.
J Proteomics ; 225: 103874, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32569817

RESUMO

Acidithiobacillus ferrooxidans is an acidophilic bacterium able to grow in environments with high concentrations of metals. It is a chemolithoautotroph able to form biofilms on the surface of solid minerals to obtain its energy. The response of both planktonic and sessile cells of A. ferrooxidans ATCC 23270 grown in elemental sulfur and adapted to high copper concentration was analyzed by quantitative proteomics. It was found that 137 proteins varied their abundance when comparing both lifestyles. Copper effllux proteins, some subunits of the ATP synthase complex, porins, and proteins involved in cell wall modification increased their abundance in copper-adapted sessile lifestyle cells. On the other hand, planktonic copper-adapted cells showed increased levels of proteins such as: cupreredoxins involved in copper cell sequestration, some proteins related to sulfur metabolism, those involved in biosynthesis and transport of lipopolysaccharides, and in assembly of type IV pili. During copper adaptation a decreased formation of biofilms was measured as determined by epifluorescence microscopy. This was apparently due not only to a diminished number of sessile cells but also to their exopolysaccharides production. This is the first study showing that copper, a prevalent metal in biomining environments causes dispersion of A. ferrooxidans biofilms. SIGNIFICANCE: Copper is a metal frequently found in high concentrations at mining environments inhabitated by acidophilic microorganisms. Copper resistance determinants of A. ferrooxidans have been previously studied in planktonic cells. Although biofilms are recurrent in these types of environments, the effect of copper on their formation has not been studied so far. The results obtained indicate that high concentrations of copper reduce the capacity of A. ferrooxidans ATCC 23270 to form biofilms on sulfur. These findings may be relevant to consider for a bacterium widely used in copper bioleaching processes.


Assuntos
Cobre , Matriz Extracelular de Substâncias Poliméricas , Acidithiobacillus , Proteínas de Bactérias , Biofilmes , Enxofre
5.
Front Microbiol ; 10: 1642, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379789

RESUMO

The ability to conserve energy in the presence or absence of oxygen provides a metabolic versatility that confers an advantage in natural ecosystems. The switch between alternative electron transport systems is controlled by the fumarate nitrate reduction transcription factor (FNR) that senses oxygen via an oxygen-sensitive [4Fe-4S]2+ iron-sulfur cluster. Under O2 limiting conditions, FNR plays a key role in allowing bacteria to transition from aerobic to anaerobic lifestyles. This is thought to occur via transcriptional activation of genes involved in anaerobic respiratory pathways and by repression of genes involved in aerobic energy production. The Proteobacterium Acidithiobacillus ferrooxidans is a model species for extremely acidophilic microorganisms that are capable of aerobic and anaerobic growth on elemental sulfur coupled to oxygen and ferric iron reduction, respectively. In this study, an FNR-like protein (FNRAF) was discovered in At. ferrooxidans that exhibits a primary amino acid sequence and major motifs and domains characteristic of the FNR family of proteins, including an effector binding domain with at least three of the four cysteines known to coordinate an [4Fe-4S]2+ center, a dimerization domain, and a DNA binding domain. Western blotting with antibodies against Escherichia coli FNR (FNREC) recognized FNRAF. FNRAF was able to drive expression from the FNR-responsive E. coli promoter PnarG, suggesting that it is functionally active as an FNR-like protein. Upon air exposure, FNRAF demonstrated an unusual lack of sensitivity to oxygen compared to the archetypal FNREC. Comparison of the primary amino acid sequence of FNRAF with that of other natural and mutated FNRs, including FNREC, coupled with an analysis of the predicted tertiary structure of FNRAF using the crystal structure of the related FNR from Aliivibrio fisheri as a template revealed a number of amino acid changes that could potentially stabilize FNRAF in the presence of oxygen. These include a truncated N terminus and amino acid changes both around the putative Fe-S cluster coordinating cysteines and also in the dimer interface. Increased O2 stability could allow At. ferrooxidans to survive in environments with fluctuating O2 concentrations, providing an evolutionary advantage in natural, and engineered environments where oxygen gradients shape the bacterial community.

6.
Appl Microbiol Biotechnol ; 103(17): 7231-7240, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31292679

RESUMO

Sulfur minerals originating from coal mining represent an important environmental problem. Turning these wastes into value-added by-products can be an interesting alternative. Biotransformation of coal tailings into iron-containing nanoparticles using Rhodococcus erythropolis ATCC 4277 free cells was studied. The influence of culture conditions (stirring rate, biomass concentration, and coal tailings ratio) in the particle size was investigated using a 23 full factorial design. Statistical analysis revealed that higher concentrations of biomass produced larger sized particles. Conversely, a more intense stirring rate of the culture medium and a higher coal tailings ratio (% w/w) led to the synthesis of smaller particles. Thus, the culture conditions that produced smaller particles (< 50 nm) were 0.5 abs of normalized biomass concentration, 150 rpm of stirring rate, and 2.5% w/w of coal tailings ratio. Composition analyses showed that the biosynthesized nanoparticles are formed by iron sulfate. Conversion ratio of the coal tailings into iron-containing nanoparticles reached 19%. The proposed biosynthesis process, using R. erythropolis ATCC 4277 free cells, seems to be a new and environmentally friendly alternative for sulfur minerals reuse.


Assuntos
Carvão Mineral , Ferro/metabolismo , Nanopartículas Metálicas/microbiologia , Mineração , Biomassa , Biotransformação , Poluentes Ambientais/metabolismo , Nanopartículas Metálicas/química , Tamanho da Partícula , Rhodococcus/metabolismo , Enxofre/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-30821628

RESUMO

The aim of this work is to evaluate the rare earth elements (REEs) recovery from fluid catalytic cracking spent catalyst (FCC-SC) by chemical and biochemical strategies while also examining a route for the valorization of biodiesel-derived glycerin (RG), which is presently unprofitable to refine. Recovery tests for REEs were performed with no pretreatment of the FCC-SC. A chemical leaching investigation was carried out using HCl, HNO3, NaOH, CaCl2 and citric acid aqueous solutions (1 mol L-1, at 30, 50, 60 or 70 ± 1 °C). The leaching tests carried out with 1 mol L-1 citric acid at 50 °C provided the best recovery of La (27%). Subsequent bioleaching tests were carried out with four strains of Yarrowia lipolytica to evaluate their potential to produce organic acids using RG as the main carbon source. The FCC-SC contains some REEs, predominantly La. Remarkable biorecovery rates for REEs (namely, La (53%), Ce and Nd (both 99%)) were achieved using the Y. lipolytica IM-UFRJ 50678 fermented medium at 50 °C. Thus, here, a sustainable approach to recovering metals from spent cracking catalyst using RG under low-cost and non-energy-intensive processing conditions is reported.


Assuntos
Biotecnologia/métodos , Elementos da Série dos Lantanídeos/isolamento & purificação , Indústria de Petróleo e Gás , Eliminação de Resíduos/métodos , Yarrowia/metabolismo , Catálise , Ácido Cítrico/química , Glicerol/química
8.
Genes (Basel) ; 9(7)2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29996532

RESUMO

Acidithiobacillus ferrooxidans resists extremely high concentrations of copper. Strain ATCC 53993 is much more resistant to the metal compared with strain ATCC 23270, possibly due to the presence of a genomic island in the former one. The global response of strain ATCC 53993 to copper was analyzed using iTRAQ (isobaric tag for relative and absolute quantitation) quantitative proteomics. Sixty-seven proteins changed their levels of synthesis in the presence of the metal. On addition of CusCBA efflux system proteins, increased levels of other envelope proteins, such as a putative periplasmic glucan biosynthesis protein (MdoG) involved in the osmoregulated synthesis of glucans and a putative antigen O polymerase (Wzy), were seen in the presence of copper. The expression of A. ferrooxidansmdoG or wzy genes in a copper sensitive Escherichia coli conferred it a higher metal resistance, suggesting the possible role of these components in copper resistance of A. ferrooxidans. Transcriptional levels of genes wzy, rfaE and wzz also increased in strain ATCC 23270 grown in the presence of copper, but not in strain ATCC 53993. Additionally, in the absence of this metal, lipopolysaccharide (LPS) amounts were 3-fold higher in A. ferrooxidans ATCC 53993 compared with strain 23270. Nevertheless, both strains grown in the presence of copper contained similar LPS quantities, suggesting that strain 23270 synthesizes higher amounts of LPS to resist the metal. On the other hand, several porins diminished their levels in the presence of copper. The data presented here point to an essential role for several envelope components in the extreme copper resistance by this industrially important acidophilic bacterium.

9.
Bioelectrochemistry ; 123: 125-136, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29747131

RESUMO

The present study was aimed to test an electrochemical sensing approach for the detection of an active chemolithotrophic metabolism (and therefore the presence of chemolithotrophic microorganisms) by using the corrosion of pyrite by Acidithiobacillus ferrooxidans as a model. Different electrochemical techniques were combined with adhesion studies and scanning electron microscopy (SEM). The experiments were performed in presence or absence of A. ferrooxidans and without or with ferrous iron in the culture medium (0 and 0.5 g L-1, respectively). Electrochemical parameters were in agreement with voltammetric studies and SEM showing that it is possible to distinguish between an abiotically-induced corrosion process (AIC) and a microbiologically-induced corrosion process (MIC). The results show that our approach not only allows the detection of chemolithotrophic activity of A. ferrooxidans but also can characterize the corrosion process. This may have different kind of applications, from those related to biomining to life searching missions in other planetary bodies.


Assuntos
Acidithiobacillus/metabolismo , Ferro/química , Sulfetos/química , Acidithiobacillus/citologia , Acidithiobacillus/crescimento & desenvolvimento , Aderência Bacteriana , Corrosão , Meios de Cultura/metabolismo , Técnicas Eletroquímicas/instrumentação , Eletrodos , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Sulfetos/metabolismo
10.
Genes (Basel) ; 9(2)2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29466318

RESUMO

Acidophile bacteria belonging to the Acidithiobacillus genus are pivotal players for the bioleaching of metallic values such as copper. Cell adherence to ores and biofilm formation, mediated by the production of extracellular polymeric substances, strongly favors bioleaching activity. In recent years, the second messenger cyclic diguanylate (c-di-GMP) has emerged as a central regulator for biofilm formation in bacteria. C-di-GMP pathways have been reported in different Acidithiobacillus species; however, c-di-GMP effectors and signal transduction networks are still largely uncharacterized in these extremophile species. Here we investigated Pel exopolysaccharide and its role in biofilm formation by sulfur-oxidizing species Acidithiobacillusthiooxidans. We identified 39 open reading frames (ORFs) encoding proteins involved in c-di-GMP metabolism and signal transduction, including the c-di-GMP effector protein PelD, a structural component of the biosynthesis apparatus for Pel exopolysaccharide production. We found that intracellular c-di-GMP concentrations and transcription levels of pel genes were higher in At. thiooxidans biofilm cells compared to planktonic ones. By developing an At. thiooxidans ΔpelD null-mutant strain we revealed that Pel exopolysaccharide is involved in biofilm structure and development. Further studies are still necessary to understand how Pel biosynthesis is regulated in Acidithiobacillus species, nevertheless these results represent the first characterization of a c-di-GMP effector protein involved in biofilm formation by acidophile species.

11.
BMC Genomics ; 18(1): 445, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28587624

RESUMO

BACKGROUND: Several archaeal species from the order Sulfolobales are interesting from the biotechnological point of view due to their biomining capacities. Within this group, the genus Acidianus contains four biomining species (from ten known Acidianus species), but none of these have their genome sequenced. To get insights into the genetic potential and metabolic pathways involved in the biomining activity of this group, we sequenced the genome of Acidianus copahuensis ALE1 strain, a novel thermoacidophilic crenarchaeon (optimum growth: 75 °C, pH 3) isolated from the volcanic geothermal area of Copahue at Neuquén province in Argentina. Previous experimental characterization of A. copahuensis revealed a high biomining potential, exhibited as high oxidation activity of sulfur and sulfur compounds, ferrous iron and sulfide minerals (e.g.: pyrite). This strain is also autotrophic and tolerant to heavy metals, thus, it can grow under adverse conditions for most forms of life with a low nutrient demand, conditions that are commonly found in mining environments. RESULTS: In this work we analyzed the genome of Acidianus copahuensis and describe the genetic pathways involved in biomining processes. We identified the enzymes that are most likely involved in growth on sulfur and ferrous iron oxidation as well as those involved in autotrophic carbon fixation. We also found that A. copahuensis genome gathers different features that are only present in particular lineages or species from the order Sulfolobales, some of which are involved in biomining. We found that although most of its genes (81%) were found in at least one other Sulfolobales species, it is not specifically closer to any particular species (60-70% of proteins shared with each of them). Although almost one fifth of A. copahuensis proteins are not found in any other Sulfolobales species, most of them corresponded to hypothetical proteins from uncharacterized metabolisms. CONCLUSION: In this work we identified the genes responsible for the biomining metabolisms that we have previously observed experimentally. We provide a landscape of the metabolic potentials of this strain in the context of Sulfolobales and propose various pathways and cellular processes not yet fully understood that can use A. copahuensis as an experimental model to further understand the fascinating biology of thermoacidophilic biomining archaea.


Assuntos
Acidianus/genética , Acidianus/metabolismo , Genômica , Mineração , Acidianus/efeitos dos fármacos , Ciclo do Carbono/genética , Ferro/metabolismo , Metais/farmacologia , Oxirredutases/metabolismo , Enxofre/metabolismo , Temperatura
12.
World J Microbiol Biotechnol ; 32(11): 179, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27628339

RESUMO

Biomining is an applied biotechnology for mineral processing and metal extraction from ores and concentrates. This alternative technology for recovering metals involves the hydrometallurgical processes known as bioleaching and biooxidation where the metal is directly solubilized or released from the matrix for further solubilization, respectively. Several commercial applications of biomining can be found around the world to recover mainly copper and gold but also other metals; most of them are operating at temperatures below 40-50 °C using mesophilic and moderate thermophilic microorganisms. Although biomining offers an economically viable and cleaner option, its share of the world´s production of metals has not grown as much as it was expected, mainly considering that due to environmental restrictions in many countries smelting and roasting technologies are being eliminated. The slow rate of biomining processes is for sure the main reason of their poor implementation. In this scenario the use of thermophiles could be advantageous because higher operational temperature would increase the rate of the process and in addition it would eliminate the energy input for cooling the system (bioleaching reactions are exothermic causing a serious temperature increase in bioreactors and inside heaps that adversely affects most of the mesophilic microorganisms) and it would decrease the passivation of mineral surfaces. In the last few years many thermophilic bacteria and archaea have been isolated, characterized, and even used for extracting metals. This paper reviews the current status of biomining using thermophiles, describes the main characteristics of thermophilic biominers and discusses the future for this biotechnology.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Microbiologia Industrial/métodos , Mineração/métodos , Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Cobre/química , Ouro/química , Oxirredução
13.
Biotechnol Prog ; 32(6): 1390-1396, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27535541

RESUMO

Biomining is defined as biotechnology for metal recovery from minerals, and is promoted by the concerted effort of a consortium of acidophile prokaryotes, comprised of members of the Bacteria and Archaea domains. Ferroplasma acidiphilum and Leptospirillum ferriphilum are the dominant species in extremely acid environments and have great use in bioleaching applications; however, the role of each species in this consortia is still a subject of research. The hypothesis of this work is that F. acidiphilum uses the organic matter secreted by L. ferriphilum for growth, maintaining low levels of organic compounds in the culture medium, preventing their toxic effects on L. ferriphilum. To test this hypothesis, a characterization of Ferroplasma acidiphilum strain BRL-115 was made with the objective of determining its optimal growth conditions. Subsequently, under the optimal conditions, L. ferriphilum and F. acidiphilum were tested growing in each other's supernatant, in order to define if there was exchange of metabolites between the species. With these results, a mixed culture in batch cyclic operation was performed to obtain main specific growth rates, which were used to evaluate a mixed metabolic model previously developed by our group. It was observed that F. acidiphilum, strain BRL-115 is a chemomixotrophic organism, and its growth is maximized with yeast extract at a concentration of 0.04% wt/vol. From the experiments of L. ferriphilum growing on F. acidiphilum supernatant and vice versa, it was observed that in both cases cell growth is favorably affected by the presence of the filtered medium of the other microorganism, proving a synergistic interaction between these species. Specific growth rates were obtained in cyclic batch operation of the mixed culture and were used as input data for a Flux Balance Analysis of the mixed metabolic model, obtaining a reasonable behavior of the metabolic fluxes and the system as a whole, therefore consolidating the model previously developed. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1390-1396, 2016.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Técnicas de Cocultura , Bactérias/metabolismo , Técnicas de Cultura de Células , Meios de Cultura/química , Meios de Cultura/metabolismo
14.
Metab Eng Commun ; 3: 84-96, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29468116

RESUMO

Acidithiobacillus ferrooxidans is a gram-negative chemolithoautotrophic γ-proteobacterium. It typically grows at an external pH of 2 using the oxidation of ferrous ions by oxygen, producing ferric ions and water, while fixing carbon dioxide from the environment. A. ferrooxidans is of great interest for biomining and environmental applications, as it can process mineral ores and alleviate the negative environmental consequences derived from the mining processes. In this study, the first genome-scale metabolic reconstruction of A. ferrooxidans ATCC 23270 was generated (iMC507). A total of 587 metabolic and transport/exchange reactions, 507 genes and 573 metabolites organized in over 42 subsystems were incorporated into the model. Based on a new genetic algorithm approach, that integrates flux balance analysis, chemiosmotic theory, and physiological data, the proton translocation stoichiometry for a number of enzymes and maintenance parameters under aerobic chemolithoautotrophic conditions using three different electron donors were estimated. Furthermore, a detailed electron transfer and carbon flux distributions during chemolithoautotrophic growth using ferrous ion, tetrathionate and thiosulfate were determined and reported. Finally, 134 growth-coupled designs were calculated that enables Extracellular Polysaccharide production. iMC507 serves as a knowledgebase for summarizing and categorizing the information currently available for A. ferrooxidans and enables the understanding and engineering of Acidithiobacillus and similar species from a comprehensive model-driven perspective for biomining applications.

15.
Front Microbiol ; 7: 2035, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28082953

RESUMO

Using phylogenomic and gene compositional analyses, five highly conserved gene families have been detected in the core genome of the phylogenetically coherent genus Acidithiobacillus of the class Acidithiobacillia. These core gene families are absent in the closest extant genus Thermithiobacillus tepidarius that subtends the Acidithiobacillus genus and roots the deepest in this class. The predicted proteins encoded by these core gene families are not detected by a BLAST search in the NCBI non-redundant database of more than 90 million proteins using a relaxed cut-off of 1.0e-5. None of the five families has a clear functional prediction. However, bioinformatic scrutiny, using pI prediction, motif/domain searches, cellular location predictions, genomic context analyses, and chromosome topology studies together with previously published transcriptomic and proteomic data, suggests that some may have functions associated with membrane remodeling during cell division perhaps in response to pH stress. Despite the high level of amino acid sequence conservation within each family, there is sufficient nucleotide variation of the respective genes to permit the use of the DNA sequences to distinguish different species of Acidithiobacillus, making them useful additions to the armamentarium of tools for phylogenetic analysis. Since the protein families are unique to the Acidithiobacillus genus, they can also be leveraged as probes to detect the genus in environmental metagenomes and metatranscriptomes, including industrial biomining operations, and acid mine drainage (AMD).

16.
Biotechnol Adv ; 33(6 Pt 1): 633-47, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25911946

RESUMO

Thermophiles and hyperthermophiles are present in various regions of the Earth, including volcanic environments, hot springs, mud pots, fumaroles, geysers, coastal thermal springs, and even deep-sea hydrothermal vents. They are also found in man-made environments, such as heated compost facilities, reactors, and spray dryers. Thermophiles, hyperthermophiles, and their bioproducts facilitate various industrial, agricultural, and medicinal applications and offer potential solutions to environmental damages and the demand for biofuels. Intensified efforts to sequence the entire genome of hyperthermophiles and thermophiles are increasing rapidly, as evidenced by the fact that over 120 complete genome sequences of the hyperthermophiles Aquificae, Thermotogae, Crenarchaeota, and Euryarchaeota are now available. In this review, we summarise the major current applications of thermophiles and thermozymes. In addition, emphasis is placed on recent progress in understanding the biodiversity, genomes, transcriptomes, metagenomes, and single-cell sequencing of thermophiles in the genomic era.


Assuntos
Archaea , Bactérias , Biodegradação Ambiental , Biocombustíveis , Temperatura Alta , Microbiologia Industrial , Archaea/química , Archaea/enzimologia , Proteínas Arqueais , Bactérias/química , Bactérias/enzimologia , Proteínas de Bactérias , Enzimas , Metagenoma , Sulfolobus solfataricus
17.
Biol. Res ; 46(4): 363-371, 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-700399

RESUMO

Microbial solubilizing of metals in acid environments is successfully used in industrial bioleaching of ores or biomining to extract metals such as copper, gold, uranium and others. This is done mainly by acidophilic and other microorganisms that mobilize metals and generate acid mine drainage or AMD, causing serious environmental problems. However, bioremediation or removal of the toxic metals from contaminated soils can be achieved by using the specific properties of the acidophilic microorganisms interacting with these elements. These bacteria resist high levels of metals by using a few "canonical" systems such as active efflux or trapping of the metal ions by metal chaperones. Nonetheless, gene duplications, the presence of genomic islands, the existence of additional mechanisms such as passive instruments for pH and cation homeostasis in acidophiles and an inorganic polyphosphate-driven metal resistance mechanism have also been proposed. Horizontal gene transfer in environmental microorganisms present in natural ecosystems is considered to be an important mechanism in their adaptive evolution. This process is carried out by different mobile genetic elements, including genomic islands (GI), which increase the adaptability and versatility of the microorganism. This mini-review also describes the possible role of GIs in metal resistance of some environmental microorganisms of importance in biomining and bioremediation of metal polluted environments such as Thiomonas arsenitoxydans, a moderate acidophilic microorganism, Acidithiobacillus caldus and Acidithiobacillus ferrooxidans strains ATCC 23270 and ATCC 53993, all extreme acidophiles able to tolerate exceptionally high levels of heavy metals. Some of these bacteria contain variable numbers of GIs, most of which code for high numbers of genes related to metal resistance. In some cases there is an apparent correlation between the number of metal resistance genes and the metal tolerance of each of these microorganisms. It is expected that a detailed knowledge of the mechanisms that these environmental microorganisms use to adapt to their harsh niche will help to improve biomining and metal bioremediation in industrial processes.


Assuntos
Acidithiobacillus/efeitos dos fármacos , Betaproteobacteria/efeitos dos fármacos , Biodegradação Ambiental , Regulação Bacteriana da Expressão Gênica , Metais Pesados/farmacologia , Acidithiobacillus/genética , Adaptação Fisiológica , Betaproteobacteria/genética , Ilhas Genômicas , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA