Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 898
Filtrar
1.
Viruses ; 16(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38932234

RESUMO

The thermostability of vaccines, particularly enveloped viral vectored vaccines, remains a challenge to their delivery wherever needed. The freeze-drying of viral vectored vaccines is a promising approach but remains challenging due to the water removal process from the outer and inner parts of the virus. In the case of enveloped viruses, freeze-drying induces increased stress on the envelope, which often leads to the inactivation of the virus. In this study, we designed a method to freeze-dry a recombinant vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike glycoprotein. Since the envelope of VSV is composed of 50% lipids and 50% protein, the formulation study focused on both the protein and lipid portions of the vector. Formulations were prepared primarily using sucrose, trehalose, and sorbitol as cryoprotectants; mannitol as a lyoprotectant; and histidine as a buffer. Initially, the infectivity of rVSV-SARS-CoV-2 and the cake stability were investigated at different final moisture content levels. High recovery of the infectious viral titer (~0.5 to 1 log loss) was found at 3-6% moisture content, with no deterioration in the freeze-dried cakes. To further minimize infectious viral titer loss, the composition and concentration of the excipients were studied. An increase from 5 to 10% in both the cryoprotectants and lyoprotectant, together with the addition of 0.5% gelatin, resulted in the improved recovery of the infectious virus titer and stable cake formation. Moreover, the secondary drying temperature of the freeze-drying process showed a significant impact on the infectivity of rVSV-SARS-CoV-2. The infectivity of the vector declined drastically when the temperature was raised above 20 °C. Throughout a long-term stability study, formulations containing 10% sugar (sucrose/trehalose), 10% mannitol, 0.5% gelatin, and 10 mM histidine showed satisfactory stability for six months at 2-8 °C. The development of this freeze-drying process and the optimized formulation minimize the need for a costly cold chain distribution system.


Assuntos
Vacinas contra COVID-19 , Crioprotetores , Liofilização , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Liofilização/métodos , SARS-CoV-2/imunologia , SARS-CoV-2/química , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/química , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Crioprotetores/química , Crioprotetores/farmacologia , Trealose/química , COVID-19/prevenção & controle , COVID-19/virologia , Animais , Humanos , Manitol/química , Sacarose/química , Células Vero , Chlorocebus aethiops , Sorbitol/química , Estabilidade de Medicamentos , Histidina/química , Vírus da Estomatite Vesicular Indiana/genética , Vacinas Sintéticas/química , Vacinas Sintéticas/imunologia
2.
Biosens Bioelectron ; 261: 116511, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917513

RESUMO

Single-chain fragment variables (scFvs), composed of variable heavy and light chains joined together by a peptide linker, can be produced using a cost-effective bacterial expression system, making them promising candidates for pharmaceutical applications. However, a versatile method for monitoring recombinant-protein production has not yet been developed. Herein, we report a novel anti-scFv aptamer-based biosensing system with high specificity and versatility. First, anti-scFv aptamers were screened using the competitive systematic evolution of ligands by exponential enrichment, focusing on a unique scFv-specific peptide linker. We selected two aptamers, P1-12 and P2-63, with KD = 2.1 µM or KD = 1.6 µM toward anti-human epidermal growth factor receptor (EGFR) scFv, respectively. These two aptamers can selectively bind to scFv but not to anti-EGFR Fv. Furthermore, the selected aptamers recognized various scFvs with different CDRs, such as anti-4-1BB and anti-hemoglobin scFv, indicating that they recognized a unique peptide linker region. An electrochemical sensor for anti-EGFR scFv was developed using anti-scFv aptamers based on square wave voltammetry. Thus, the constructed sensor could monitor anti-EGFR scFv concentrations in the range of 10-500 nM in a diluted medium for bacterial cultivation, which covered the expected concentration range for the recombinant production of scFvs. These achievements promise the realization of continuous monitoring sensors for pharmaceutical scFv, which will enable the real-time and versatile monitoring of large-scale scFv production.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Receptores ErbB , Anticorpos de Cadeia Única , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/imunologia , Humanos , Proteínas Recombinantes/genética , Técnica de Seleção de Aptâmeros/métodos , Técnicas Eletroquímicas/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-38916653

RESUMO

Biosurfactants (BSFs) are molecules produced by microorganisms from various carbon sources, with applications in bioremediation and petroleum recovery. However, the production cost limits large-scale applications. This study optimized BSFs production by Bacillus velezensis (strain MO13) using residual glycerin as a substrate. The spherical quadratic central composite design (CCD) model was used to standardize carbon source concentration (30 g/L), temperature (34 °C), pH (7.2), stirring (239 rpm), and aeration (0.775 vvm) in a 5-L bioreactor. Maximum BSFs production reached 1527.6 mg/L of surfactins and 176.88 mg/L of iturins, a threefold increase through optimization. Microbial development, substrate consumption, concentration of BSFs, and surface tension were also evaluated on the bioprocess dynamics. Mass spectrometry Q-TOF-MS identified five surfactin and two iturin isoforms produced by B. velezensis MO13. This study demonstrates significant progress on BSF production using industrial waste as a microbial substrate, surpassing reported concentrations in the literature.

4.
J Agric Food Chem ; 72(25): 14264-14273, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38860833

RESUMO

Ergothioneine (EGT) is a naturally occurring derivative of histidine with diverse applications in the medicine, cosmetic, and food industries. Nevertheless, its sustainable biosynthesis faces hurdles due to the limited biosynthetic pathways, complex metabolic network of precursors, and high cost associated with fermentation. Herein, efforts were made to address these limitations first by reconstructing a novel EGT biosynthetic pathway from Methylobacterium aquaticum in Escherichia coli and optimizing it through plasmid copy number. Subsequently, the supply of precursor amino acids was promoted by engineering the global regulator, recruiting mutant resistant to feedback inhibition, and blocking competitive pathways. These metabolic modifications resulted in a significant improvement in EGT production, increasing from 35 to 130 mg/L, representing a remarkable increase of 271.4%. Furthermore, an economical medium was developed by replacing yeast extract with corn steep liquor, a byproduct of wet milling of corn. Finally, the production of EGT reached 595 mg/L with a productivity of 8.2 mg/L/h by exploiting fed-batch fermentation in a 10 L bioreactor. This study paves the way for exploring and modulating a de novo biosynthetic pathway for efficient and low-cost fermentative production of EGT.


Assuntos
Vias Biossintéticas , Ergotioneína , Escherichia coli , Fermentação , Engenharia Metabólica , Ergotioneína/biossíntese , Ergotioneína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reatores Biológicos
5.
Biotechnol J ; 19(6): e2400260, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900054

RESUMO

Follicle-stimulating hormone (FSH) is an important protein used for bovine ovarian hyperstimulation in multiple ovulation and embryo transfer technology (MOET). Several attempts to produce bovine FSH (bFSH) in recombinant systems have been reported, nonetheless, up to date, the most commonly used products are partially purified preparations derived from porcine or ovine (pFSH or oFSH) pituitaries. Here we describe the development of a biotechnology process to produce a novel, hyperglycosylated, long-acting recombinant bFSH (LA-rbFSH) by fusing copies of a highly O-glycosylated peptide. LA-rbFSH and a nonmodified version (rbFSH) were produced in suspension CHO cell cultures and purified by IMAC with high purity levels (>99%). LA-rbFSH presented a higher glycosylation degree and sialic acid content than rbFSH. It also demonstrated a notable improvement in pharmacokinetic properties after administration to rats, including a higher concentration in plasma and a significant (seven-fold) reduction in apparent clearance (CLapp). In addition, the in vivo specific bioactivity of LA-rbFSH in rats was 2.4-fold higher compared to rbFSH. These results postulate this new molecule as an attractive substitute for commercially available porcine pituitary-derived products.


Assuntos
Cricetulus , Hormônio Foliculoestimulante , Proteínas Recombinantes , Animais , Hormônio Foliculoestimulante/metabolismo , Células CHO , Glicosilação , Bovinos , Ratos , Feminino , Biotecnologia/métodos
6.
Bioengineering (Basel) ; 11(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38927782

RESUMO

Large-scale bioprocesses are increasing globally to cater to the larger market demands for biological products. As fermenter volumes increase, the efficiency of mixing decreases, and environmental gradients become more pronounced compared to smaller scales. Consequently, the cells experience gradients in process parameters, which in turn affects the efficiency and profitability of the process. Computational fluid dynamics (CFD) simulations are being widely embraced for their ability to simulate bioprocess performance, facilitate bioprocess upscaling, downsizing, and process optimisation. Recently, CFD approaches have been integrated with dynamic Cell reaction kinetic (CRK) modelling to generate valuable information about the cellular response to fluctuating hydrodynamic parameters inside large production processes. Such coupled approaches have the potential to facilitate informed decision-making in intelligent biomanufacturing, aligning with the principles of "Industry 4.0" concerning digitalisation and automation. In this review, we discuss the benefits of utilising integrated CFD-CRK models and the different approaches to integrating CFD-based bioreactor hydrodynamic models with cellular kinetic models. We also highlight the suitability of different coupling approaches for bioprocess modelling in the purview of associated computational loads.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38862198

RESUMO

Automation of metabolite control in fermenters is fundamental to develop vaccine manufacturing processes more quickly and robustly. We created an end-to-end process analytical technology and quality by design-focused process by replacing manual control of metabolites during the development of fed-batch bioprocesses with a system that is highly adaptable and automation-enabled. Mid-infrared spectroscopy with an attenuated total reflectance probe in-line, and simple linear regression using the Beer-Lambert Law, were developed to quantitate key metabolites (glucose and glutamate) from spectral data that measured complex media during fermentation. This data was digitally connected to a process information management system, to enable continuous control of feed pumps with proportional-integral-derivative controllers that maintained nutrient levels throughout fed-batch stirred-tank fermenter processes. Continuous metabolite data from mid-infrared spectra of cultures in stirred-tank reactors enabled feedback loops and control of the feed pumps in pharmaceutical development laboratories. This improved process control of nutrient levels by 20-fold and the drug substance yield by an order of magnitude. Furthermore, the method is adaptable to other systems and enables soft sensing, such as the consumption rate of metabolites. The ability to develop quantitative metabolite templates quickly and simply for changing bioprocesses was instrumental for project acceleration and heightened process control and automation. ONE-SENTENCE SUMMARY: Intelligent digital control systems using continuous in-line metabolite data enabled end-to-end automation of fed-batch processes in stirred-tank reactors.


Assuntos
Reatores Biológicos , Fermentação , Vacinas , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Espectrofotometria Infravermelho/métodos , Meios de Cultura/química , Técnicas de Cultura Celular por Lotes/métodos , Automação
9.
Front Bioeng Biotechnol ; 12: 1349473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863496

RESUMO

Pharmaceutical manufacturing is reliant upon bioprocessing approaches to generate the range of therapeutic products that are available today. The high cost of production, susceptibility to process failure, and requirement to achieve consistent, high-quality product means that process monitoring is paramount during manufacturing. Process analytic technologies (PAT) are key to ensuring high quality product is produced at all stages of development. Spectroscopy-based technologies are well suited as PAT approaches as they are non-destructive and require minimum sample preparation. This study explored the use of a novel attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy platform, which utilises disposable internal reflection elements (IREs), as a method of upstream bioprocess monitoring. The platform was used to characterise organism health and to quantify cellular metabolites in growth media using quantification models to predict glucose and lactic acid levels both singularly and combined. Separation of the healthy and nutrient deficient cells within PC space was clearly apparent, indicating this technique could be used to characterise these classes. For the metabolite quantification, the binary models yielded R 2 values of 0.969 for glucose, 0.976 for lactic acid. When quantifying the metabolites in tandem using a multi-output partial least squares model, the corresponding R 2 value was 0.980. This initial study highlights the suitability of the platform for bioprocess monitoring and paves the way for future in-line developments.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124638, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38880076

RESUMO

This work aimed to set inline Raman spectroscopy models to monitor biochemically (viable cell density, cell viability, glucose, lactate, glutamine, glutamate, and ammonium) all upstream stages of a virus-like particle-making process. Linear (Partial least squares, PLS; Principal components regression, PCR) and nonlinear (Artificial neural networks, ANN; supported vector machine, SVM) modeling approaches were assessed. The nonlinear models, ANN and SVM, were the more suitable models with the lowest absolute errors. The mean absolute error of the best models within the assessed parameter ranges for viable cell density (0.01-8.83 × 106 cells/mL), cell viability (1.3-100.0 %), glucose (5.22-10.93 g/L), lactate (18.6-152.7 mg/L), glutamine (158-1761 mg/L), glutamate (807.6-2159.7 mg/L), and ammonium (62.8-117.8 mg/L) were 1.55 ± 1.37 × 106 cells/mL (ANN), 5.01 ± 4.93 % (ANN), 0.27 ± 0.22 g/L (SVM), 4.7 ± 2.6 mg/L (SVM), 51 ± 49 mg/L (ANN), 57 ± 39 mg/L (SVM) and 2.0 ± 1.8 mg/L (ANN), respectively. The errors achieved, and best-fitted models were like those for the same bioprocess using offline data and others, which utilized inline spectra for mammalian cell lines as a host.


Assuntos
Análise Espectral Raman , Análise Espectral Raman/métodos , Análise dos Mínimos Quadrados , Glucose/análise , Redes Neurais de Computação , Sobrevivência Celular/efeitos dos fármacos , Ácido Glutâmico/análise , Máquina de Vetores de Suporte , Análise de Componente Principal , Glutamina/análise , Ácido Láctico/análise , Compostos de Amônio/análise
11.
Environ Sci Pollut Res Int ; 31(24): 35483-35497, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727974

RESUMO

The valorization of renewable feedstock to produce a plethora of value-added products could promote the transition towards a circular bioeconomy. This study presents the development of cascade processes to bioconvert spent coffee grounds (SCGs) into microbial oil and carotenoids employing sustainable practices. The stepwise recovery of crude phenolic extract and coffee oil was carried out using green or recyclable solvents, i.e., aqueous ethanol and hexane. Palmitic acid (43.3%) and linoleic acid (38.9%) were the major fatty acids in the oil fraction of SCGs. The LC-MS analysis of crude phenolic extracts revealed that chlorogenic acid dominated (45.7%), while neochlorogenic acid was also detected in substantial amounts (24.0%). SCGs free of coffee oil and phenolic compounds were subjected to microwave-assisted pretreatment under different irradiations and solvents to enhance subsequent enzymatic saccharification. Microwave/water pretreatment at 400 W, followed by enzymatic hydrolysis with proteases, hemicellulases, and cellulases, at 50 g/L initial SCGs, led to satisfying overall yields of cellulose (75.4%), hemicellulose (50.3%), and holocellulose (55.3%). Mannan was the most extractable polysaccharide followed by galactan and arabinan. SCGs hydrolysate was used in fed-batch bioreactor fermentations with Rhodosporidium toruloides to produce 24.0 g/L microbial oil and carotenoids of 432.9 µg/g biomass.


Assuntos
Carotenoides , Café , Fermentação , Café/química
12.
World J Microbiol Biotechnol ; 40(6): 196, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722368

RESUMO

During the epoch of sustainable development, leveraging cellular systems for production of diverse chemicals via fermentation has garnered attention. Industrial fermentation, extending beyond strain efficiency and optimal conditions, necessitates a profound understanding of microorganism growth characteristics. Specific growth rate (SGR) is designated as a key variable due to its influence on cellular physiology, product synthesis rates and end-product quality. Despite its significance, the lack of real-time measurements and robust control systems hampers SGR control strategy implementation. The narrative in this contribution delves into the challenges associated with the SGR control and presents perspectives on various control strategies, integration of soft-sensors for real-time measurement and control of SGR. The discussion highlights practical and simple SGR control schemes, suggesting their seamless integration into industrial fermenters. Recommendations provided aim to propose new algorithms accommodating mechanistic and data-driven modelling for enhanced progress in industrial fermentation in the context of sustainable bioprocessing.


Assuntos
Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Fermentação , Microbiologia Industrial , Reatores Biológicos/microbiologia , Microbiologia Industrial/métodos , Algoritmos , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento
13.
Bioresour Technol ; : 130799, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38710418

RESUMO

ß-carotene, a precursor to vitamin A, holds significant promise for health and nutrition applications. This study introduces an optimized approach for ß-carotene production in Saccharomyces cerevisiae, leveraging metabolic engineering and a novel use of agricultural waste. The GAL80 gene deletion facilitated efficient ß-carotene synthesis from sucrose, avoiding the costly galactose induction, and achieved titers up to 727.8 ±â€¯68.0 mg/L with content levels of 71.8 ±â€¯0.4 mg/g dry cell weight (DCW). Furthermore, the application of agricultural by-products, specifically molasses and fish meal as carbon and nitrogen sources, was investigated. This approach yielded a substantial ß-carotene titer of 354.9 ±â€¯8.2 mg/L and a content of 60.5 ±â€¯4.3 mg/g DCW, showcasing the potential of these sustainable substrates for industrial-scale production. This study sets a new benchmark for cost-effective, green manufacturing of vital nutrients, demonstrating a scalable, eco-friendly alternative for ß-carotene production.

14.
Microbiologyopen ; 13(3): e1412, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38711353

RESUMO

Cable bacteria, characterized by their multicellular filamentous growth, are prevalent in both freshwater and marine sediments. They possess the unique ability to transport electrons over distances of centimeters. Coupled with their capacity to fix CO2 and their record-breaking conductivity for biological materials, these bacteria present promising prospects for bioprocess engineering, including potential electrochemical applications. However, the cultivation of cable bacteria has been limited to their natural sediment, constraining their utility in production processes. To address this, our study designs synthetic sediment, drawing on ion exchange chromatography data from natural sediments and existing literature on the requirements of cable bacteria. We examined the effects of varying bentonite concentrations on water retention and the impacts of different sands. For the first time, we cultivated cable bacteria on synthetic sediment, specifically the freshwater strain Electronema aureum GS. This cultivation was conducted over 10 weeks in a specially developed sediment bioreactor, resulting in an increased density of cable bacteria in the sediment and growth up to a depth of 5 cm. The creation of this synthetic sediment paves the way for the reproducible cultivation of cable bacteria. It also opens up possibilities for future process scale-up using readily available components. This advancement holds significant implications for the broader field of bioprocess engineering.


Assuntos
Sedimentos Geológicos , Sedimentos Geológicos/microbiologia , Reatores Biológicos/microbiologia
15.
Bioresour Technol ; 401: 130749, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679239

RESUMO

Microalgae are promising sources of valuable compounds: carotenoids, polyunsaturated fatty acids, lipids, etc. To overcome the feasibility challenge due to low yield and attain commercial potential, researchers merge technologies to enhance algal bioprocess. In this context, nanomaterials are attractive for enhancing microalgal bioprocessing, from cultivation to downstream extraction. Nanomaterials enhance biomass and product yields (mainly lipid and carotenoids) through improved nutrient uptake and stress tolerance during cultivation. They also provide mechanistic insights from recent studies. They also revolutionize harvesting via nano-induced sedimentation, flocculation, and flotation. Downstream processing benefits from nanomaterials, improving extraction and purification. Special attention is given to cost-effective extraction, showcasing nanomaterial integration, and providing a comparative account. The review also profiles nanomaterial types, including metallic nanoparticles, magnetic nanomaterials, carbon-based nanomaterials, silica nanoparticles, polymers, and functionalized nanomaterials. Challenges and future trends are discussed, emphasizing nanomaterials' role in advancing sustainable and efficient microalgal bioprocessing, unlocking their potential for bio-based industries.


Assuntos
Microalgas , Microalgas/metabolismo , Biomassa , Biotecnologia/métodos , Nanoestruturas/química
16.
Bioprocess Biosyst Eng ; 47(5): 713-724, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627303

RESUMO

The concept of modular synthetic co-cultures holds considerable potential for biomanufacturing, primarily to reduce the metabolic burden of individual strains by sharing tasks among consortium members. However, current consortia often show unilateral relationships solely, without stabilizing feedback control mechanisms, and are grown in a shared cultivation setting. Such 'one pot' approaches hardly install optimum growth and production conditions for the individual partners. Hence, novel mutualistic, self-coordinating consortia are needed that are cultured under optimal growth and production conditions for each member. The heterologous production of the antibiotic violacein (VIO) in the mutually interacting E. coli-E. coli consortium serves as an example of this new principle. Interdependencies for growth control were implemented via auxotrophies for L-tryptophan and anthranilate (ANT) that were satisfied by the respective partner. Furthermore, VIO production was installed in the ANT auxotrophic strain. VIO production, however, requires low temperatures of 20-30 °C which conflicts with the optimum growth temperature of E. coli at 37 °C. Consequently, a two-compartment, two-temperature level setup was used, retaining the mutual interaction of the cells via the filter membrane-based exchange of medium. This configuration also provided the flexibility to perform individualized batch and fed-batch strategies for each co-culture member. We achieved maximum biomass-specific productivities of around 6 mg (g h)-1 at 25 °C which holds great promise for future applications.


Assuntos
Reatores Biológicos , Técnicas de Cocultura , Escherichia coli , Indóis , Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Indóis/metabolismo
17.
Biotechnol Rep (Amst) ; 42: e00836, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38562569

RESUMO

In a conventional morbidostat, cell growth is monitored by measuring OD, and stress conditions are automatically adjusted using OD values. However, phenomena such as biofilm formation, agglomeration, and the presence of opaque substrates or products can result in inaccurate OD measurements of population size, causing morbidostat systems to fail to adjust stress conditions appropriately. This study offers a solution for circumstances where it is impractical to determine vital activity based on OD by developing a novel morbidostat system that adjusts stress conditions based on measurements of exhaust CO2. As a proof of concept, the adaptation of E. coli ATCC 47076 to 48 °C was performed with two morbidostats using this new strategy. Both populations evolved in the morbidostats were confirmed to grow at 48 °C, a temperature their ancestral strain cannot withstand.

18.
Biotechnol Prog ; : e3469, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613439

RESUMO

Reliable monitoring of mammalian cells in bioreactors is essential to biopharmaceutical production. Trypan blue exclusion is a method of determining cell density and viability that has been used for over one hundred years to monitor cells in culture and is the current standard method in biomanufacturing. This method has many disadvantages however and there is a growing demand for more detailed and in-line measurements of cell growth in bioreactors. This article assesses a novel dynamic imaging system for single cell analysis. This data shows that comparable total cell density, viable cell density and percentage viability data shown here, generated by the imaging system, aligned well with conventional trypan blue counting methods for an industrially relevant Chinese Hamster Ovary (CHO) cell line. Furthermore, detailed statistical analysis shows that the classification system used by the PharmaFlow system can reveal trends of interest in monitoring the health of mammalian cells over a 6-day bioreactor culture. The system is also capable of sampling at-line, removing the necessity for taking samples off-line and enabling real time monitoring of cells in a bioreactor culture.

19.
Food Technol Biotechnol ; 62(1): 89-101, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38601968

RESUMO

Research background: An innovative integrated bioprocess system for bioethanol production from raw sugar beet cossettes (SBC) and arabitol from remaining exhausted sugar beet cossettes (ESBC) was studied. This integrated three-stage bioprocess system is an example of the biorefinery concept to maximise the use of raw SBC for the production of high value-added products such as sugar alcohols and bioethanol. Experimental approach: The first stage of the integrated bioprocess system was simultaneous sugar extraction from SBC and its alcoholic fermentation to produce bioethanol in an integrated bioreactor system (vertical column bioreactor and stirred tank bioreactor) containing a high-density suspension of yeast Saccharomyces cerevisiae (30 g/L). The second stage was the pretreatment of ESBC with dilute sulfuric acid to release fermentable sugars. The resulting liquid hydrolysate of ESBC was used in the third stage as a nutrient medium for arabitol production by non-Saccharomyces yeasts (Spathaspora passalidarum CBS 10155 and Spathaspora arborariae CBS 11463). Results and conclusions: The obtained results show that the efficiency of bioethanol production increased with increasing temperature and prolonged residence time in the integrated bioreactor system. The maximum bioethanol production efficiency (87.22 %) was observed at a time of 60 min and a temperature of 36 °C. Further increase in residence time (above 60 min) did not result in the significant increase of bioethanol production efficiency. Weak acid hydrolysis was used for ESBC pretreatment and the highest sugar yield was reached at 200 °C and residence time of 1 min. The inhibitors of the weak acid pretreatment were produced below bioprocess inhibition threshold. The use of the obtained liqiud phase of ESBC hydrolysate for the production of arabitol in the stirred tank bioreactor under constant aeration clearly showed that S. passalidarum CBS 10155 with 8.48 g/L of arabitol (YP/S=0.603 g/g and bioprocess productivity of 0.176 g/(L.h)) is a better arabitol producer than Spathaspora arborariae CBS 10155. Novelty and scientific contribution: An innovative integrated bioprocess system for the production of bioethanol and arabitol was developed based on the biorefinery concept. This three-stage bioprocess system shows great potential for maximum use of SBC as a feedstock for bioethanol and arabitol production and it could be an example of a sustainable 'zero waste' production system.

20.
Front Bioeng Biotechnol ; 12: 1347138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38600943

RESUMO

Background: Investigating the metabolic behaviour of different cellular phenotypes, i.e., good/bad grower and/or producer, in production culture is important to identify the key metabolite(s)/pathway(s) that regulate cell growth and/or recombinant protein production to improve the overall yield. Currently, LC-MS, GC-MS and NMR are the most used and advanced technologies for investigating the metabolome. Although contributed significantly in the domain, each technique has its own biasness towards specific metabolites or class of metabolites due to various reasons including variability in the concept of working, sample preparation, metabolite-extraction methods, metabolite identification tools, and databases. As a result, the application of appropriate analytical technique(s) is very critical. Purpose and scope: This review provides a state-of-the-art technological insights and overview of metabolic mechanisms involved in regulation of cell growth and/or recombinant protein production for improving yield from CHO cultures. Summary and conclusion: In this review, the advancements in CHO metabolomics over the last 10 years are traced based on a bibliometric analysis of previous publications and discussed. With the technical advancement in the domain of LC-MS, GC-MS and NMR, metabolites of glycolytic and nucleotide biosynthesis pathway (glucose, fructose, pyruvate and phenylalanine, threonine, tryptophan, arginine, valine, asparagine, and serine, etc.) were observed to be upregulated in exponential-phase thereby potentially associated with cell growth regulation, whereas metabolites/intermediates of TCA, oxidative phosphorylation (aspartate, glutamate, succinate, malate, fumarate and citrate), intracellular NAD+/NADH ratio, and glutathione metabolic pathways were observed to be upregulated in stationary-phase and hence potentially associated with increased cell-specific productivity in CHO bioprocess. Moreover, each of technique has its own bias towards metabolite identification, indicating their complementarity, along with a number of critical gaps in the CHO metabolomics pipeline and hence first time discussed here to identify their potential remedies. This knowledge may help in future study designs to improve the metabolomic coverage facilitating identification of the metabolites/pathways which might get missed otherwise and explore the full potential of metabolomics for improving the CHO bioprocess performances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...