Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Food Sci Nutr ; 12(6): 4259-4268, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38873469

RESUMO

The purpose of the present research was to study the impact of bitter melon extract (BME) on the generation of heterocyclic aromatic amines (HAAs) in chicken thigh meat. Raw chicken samples were marinated overnight with various levels (0%, 0.5%, and 1%) of BME, and pan-fried at 150, 200, and 250°C for a total of 10 min. IQx, IQ, MeIQx, MeIQ, 7,8-DiMeIQx, 4,8-DiMeIQx, PhIP, AαC, and MeAαC were detected in quantities that varied according to the cooking temperature and the concentration of BME. Notably, IQx, MeIQx, MeIQ, 7,8-DiMeIQx, 4,8-DiMeIQx, and AαC levels were reduced through the application of the marinade. Cooking at higher temperatures led to elevated levels of total HAAs. Total HAA levels were 0.98 ± 1.12 ng/g, 3.82 ± 2.12 ng/g, and 6.25 ± 3.35 ng/g in samples cooked at 150, 200, and 250°C, respectively (p < .01). BME demonstrated its effectiveness in mitigating total HAA levels, showing reductions ranging from 25.9% to 69.9%. The most effective concentration of BME in reducing total HAAs was 1% for all cooking temperatures, which might be attributed to its antioxidant activity. These results carry substantial implications for potentially incorporating natural extracts such as BME into chicken products as a viable strategy to reduce HAAs, thus enhancing the safety and quality of meat products.

2.
Antibiotics (Basel) ; 13(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38927210

RESUMO

Momordica charantia, commonly known as bitter melon, is a fruiting plant that has been used for several diseases including infectious diseases. In this study, we report the antibacterial, antifungal, and antiviral activity of different bitter melon fruit parts originating from India and Saudi Arabia. The in vitro experiments are supported by the molecular docking of karavilosides to verify their role in the bioactivity. The antimicrobial assays revealed activity against Candida albicans, Escherichia coli, and Staphylococcus aureus. The extracts exhibited the potent inhibition of HIV-I reverse transcriptase, with an IC50 of 0.125 mg/mL observed for the pith extract originating from Saudi Arabia and the standard drug doxorubicin. The molecular docking of karavilosides exhibited a significant affinity to reverse transcriptase comparable to Rilpivirine and higher than that of doxorubicin. These outcomes encourage the precious bioactive components of the seed and pith of the Saudi bitter melon fruits to be further studied for isolation and structure elucidation.

3.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731433

RESUMO

The aim of this study was to investigate how dietary modifications with pomegranate seed oil (PSO) and bitter melon aqueous extract (BME) affect mineral content in the spleen of rats both under normal physiological conditions and with coexisting mammary tumorigenesis. The diet of Sprague-Dawley female rats was supplemented either with PSO or with BME, or with a combination for 21 weeks. A chemical carcinogen (7,12-dimethylbenz[a]anthracene) was applied intragastrically to induce mammary tumors. In the spleen of rats, the selected elements were determined with a quadrupole mass spectrometer with inductively coupled plasma ionization (ICP-MS). ANOVA was used to evaluate differences in elemental composition among experimental groups. Multivariate statistical methods were used to discover whether some subtle dependencies exist between experimental factors and thus influence the element content. Experimental factors affected the splenic levels of macroelements, except for potassium. Both diet modification and the cancerogenic process resulted in significant changes in the content of Fe, Se, Co, Cr, Ni, Al, Sr, Pb, Cd, B, and Tl in rat spleen. Chemometric analysis revealed the greatest impact of the ongoing carcinogenic process on the mineral composition of the spleen. The obtained results may contribute to a better understanding of peripheral immune organ functioning, especially during the neoplastic process, and thus may help develop anticancer prevention and treatment strategies.


Assuntos
Momordica charantia , Extratos Vegetais , Óleos de Plantas , Punica granatum , Ratos Sprague-Dawley , Baço , Animais , Baço/efeitos dos fármacos , Baço/metabolismo , Feminino , Ratos , Punica granatum/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Momordica charantia/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Suplementos Nutricionais , Sementes/química , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/metabolismo
4.
aBIOTECH ; 5(1): 29-45, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38576434

RESUMO

Bitter melon fruit is susceptible to yellowing, softening, and rotting under room-temperature storage conditions, resulting in reduced commercial value. Nitric oxide (NO) is an important signaling molecule and plays a crucial role in regulating the fruit postharvest quality. In this study, we investigated the effects of NO treatment on changes in sensory and firmness of bitter melon fruit during postharvest storage. Moreover, transcriptomic, metabolomic, and proteomic analyses were performed to elucidate the regulatory mechanisms through which NO treatment delays the ripening and senescence of bitter melon fruit. Our results show that differentially expressed genes (DEGs) were involved in fruit texture (CSLE, ß-Gal, and PME), plant hormone signal transduction (ACS, JAR4, and AUX28), and fruit flavor and aroma (SUS2, LOX, and GDH2). In addition, proteins differentially abundant were associated with fruit texture (PLY, PME, and PGA) and plant hormone signal transduction (PBL15, JAR1, and PYL9). Moreover, NO significantly increased the abundance of key enzymes involved in the phenylpropanoid biosynthetic pathway, thus enhancing the disease resistance and alleviating softening of bitter melon fruit. Finally, differential metabolites mainly included phenolic acids, terpenoids, and flavonoids. These results provide a theoretical basis for further studies on the physiological changes associated with postharvest ripening and senescence of bitter melon fruit. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00110-y.

5.
Cancers (Basel) ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38339233

RESUMO

The spleen, traditionally associated with blood filtration and immune surveillance, has recently been recognized for its role in systemic lipid metabolism and potential influence on cancer development and progression. This study investigates effects of dietary supplements, specifically conjugated linolenic acids from pomegranate seed oil and bitter melon extract, on the fatty acid (FA) composition of the spleen in the context of cancerous processes. Advanced methods, including gas chromatography-mass spectrometry and silver ion-impregnated high-performance liquid chromatography, were employed to analyze the spleen's FA profile. Our research uncovered that dietary supplementation leads to alterations in the spleen's FA profile, especially under the carcinogenic influence of 7,12-dimethylbenz[a]anthracene. These changes did not align with a simple protective or anti-carcinogenic pattern, as previously suggested in in vitro studies. We observed shifts in conjugated FA isomer concentrations and variations in desaturase activities, suggesting disrupted lipid metabolism in cancerous conditions. The findings underscore the spleen's vital role in lipid metabolism within the body's systemic health framework, highlighting the complexity of dietary supplements' impact on FA profiles in the spleen and their potential implications in cancer progression and treatment. This study adds valuable insight into the complex interplay between diet, disease, and metabolic regulation, particularly in cancerous environments.

6.
Foods ; 13(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38254498

RESUMO

Nowadays, consumers are increasingly demanding processed food products with high levels of beneficial components. Bitter melon and apple are both nutritious foods rich in bioactive compounds. In this study, restructured bitter melon and apple chips were processed using four drying techniques: hot-air drying with/without exhaust air recirculation (EAR), and radio-frequency-assisted hot-air drying (RFHAD) with/without EAR. The drying characteristics, effective moisture diffusivity (Deff), specific energy consumption (SEC), total energy consumption (TEC), and some selected quality characteristics of the dehydrated chips were evaluated. The experimental results show that the application of radio frequency (RF) energy significantly facilitates water evaporation in the drying material, resulting in a significant (p < 0.05) reduction of drying duration by 31~39% over the experimental test parameters. The higher Deff values obtained from RFHAD and RFHAD + EAR were 6.062 × 10-9 to 6.889 × 10-9 m2/s, while lower SEC values ranged from 301.57 to 328.79 kW·h/kg. Furthermore, the dried products possessed better or fairly good quality (such as a lower color difference of 5.41~6.52, a lower shrinkage ratio of 18.24~19.13%, better antioxidant capacity, higher chlorophyll, total flavonoid, and total phenolic content, a lower polyphenol oxidase activity of 49.82~52.04 U·min-1g-1, smaller diameter and thickness changes, and a lower hardness of 27.75~30.48 N) compared to those of hot-air-dried chips. The combination of RF-assisted air drying and partial recirculating of dryer exhaust air achieved the highest saving in TEC of about 12.4%, along with a lower moisture absorption capacity and no deterioration of product quality attributes. This drying concept is therefore recommended for the industrial drying of several food materials.

7.
Biomed Chromatogr ; 38(2): e5779, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38050189

RESUMO

To clarify the residue behavior and possible dietary risk of abamectin in fresh corn, bitter melon, and Fritillaria, a method was developed for the simultaneous determination of abamectin residues in fresh corn, bitter melon, and Fritillaria by QuEChERS (quick, easy, cheap, effective, rugged, safe) ultra-performance liquid chromatography-tandem mass spectrometry. The mean recovery of abamectin in fresh corn, bitter melon, and Fritillaria was 86.48%-107.80%, and the relative standard deviation was 2.07%-10.12%. The detection rates of abamectin residues in fresh corn, bitter melon, and Fritillaria were 62.50%, 87.50%, and 80.00%, respectively. The residues of abamectin in fresh corn, bitter melon, and Fritillaria were not more than 0.020, 0.019, and 0.087 mg/kg, respectively. Based on these results, dietary risk assessment showed that the risk content of abamectin residues in long- and short-term dietary exposure for Chinese consumers was 61.57% and 0.41%-1.11%, respectively, indicating that abamectin in fresh corn, bitter melon, and Fritillaria in the market would not pose a significant risk to consumers.


Assuntos
Fritillaria , Ivermectina/análogos & derivados , Momordica charantia , Resíduos de Praguicidas , Momordica charantia/química , Zea mays , Medição de Risco , Resíduos de Praguicidas/análise
8.
J Sci Food Agric ; 104(5): 2851-2861, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38012056

RESUMO

BACKGROUND: Utilizing the fruit extract of bitter melon (Momordica charantia), zinc nanoparticles (ZnO-NPs) were synthesized through a green approach, a novel endeavor in current literature. The primary objective was to evaluate the phytotoxic and growth-promoting effects of these ZnO-NPs on wheat, chosen as a test plant. Structural characterization using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy revealed the hexagonal wurtzite crystal structure of ZnO-NPs and identified spherical M. charantia-produced (MC)-ZnO-NPs ranging in size from 48 to 150 nm. RESULTS: At a concentration of 2000 mg L-1 , both MC- and raw-ZnO-NPs augmented wheat germination percentages. Furthermore, raw-ZnO-NPs at 4000 mg L-1 demonstrated the highest chlorophyll content. Despite the plant's increased accumulation of MC-ZnO-NPs, no statistically significant toxic effects were observed. The antibacterial efficacy of ZnO-NPs was assessed against Gram-positive and Gram-negative microorganisms. MC-ZnO-NPs exhibited a 67.9% inhibition zone against Escherichia coli at 0.04 mg L-1 , while raw-ZnO-NPs exhibited 75.6% inhibition at the same concentration. CONCLUSION: The study suggests that ZnO-NPs synthesized from M. charantia exhibit both growth-promoting effects on wheat without significant phytotoxicity and potent antibacterial properties, particularly against Escherichia coli. However, further investigations are warranted to comprehensively understand the interactions between ZnO-NPs and plants. Future research should focus on M. charantia, exploring its enhanced effects on plant growth, development and antibacterial attributes. These findings hold promise for potential agricultural applications, emphasizing the need for detailed phytotoxicological assessments of ZnO-NPs. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Medicina Tradicional Chinesa , Nanopartículas Metálicas , Momordica charantia , Nanopartículas , Óxido de Zinco , Momordica charantia/química , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Zinco/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nanopartículas/química , Antibacterianos/toxicidade , Antibacterianos/química , Escherichia coli , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Testes de Sensibilidade Microbiana
9.
Heliyon ; 9(11): e22122, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045192

RESUMO

Bitter melon (Momordica charantia L.), a widely cultivated food and medicinal plant native to the world's subtropics and tropics, is a Cucurbitaceae rich in carotenoids. However, the low seed germination frequency and progeny variability associated with the production of this plant have a substantial impact on its growth and yield. These constraints affect the availability and exploitation of this crop, especially the fruits, which are rich in secondary metabolites such as ß-carotene and α-carotene. In vitro regeneration would help overcome the obstacle linked to the germination of this plant and increase its yield and utilization. A reproducible in vitro organogenesis protocol was established using bitter melon embryogenic callus derived from immature leaf explants of in vivo grown seedlings and in vitro plantlets. Regeneration via callus was conducted on MSB5 media augmented with different plant growth regulator concentrations. The maximum frequency of callus formation (95.09 %) was produced in MSB5 media incorporated with 1.2 mg L-1 NAA augmented with 0.5 mg L-1 TDZ. MSB5 medium with no growth regulators was observed to be the most suitable for the shoot and root formation from the callus, producing a significantly high shoot percentage of 90.91 % and 21.53 shoots per explants, and the highest rooting frequency and root number of 88.92 % and 6.23 roots per explant, respectively, from leaf-derived callus of in vitro plantlets. The elongated plantlets had grown to a significantly higher average height of 12.20 cm on media added with 0.75 mg L-1 GA3. This reproducible method for regenerating bitter melon plantlets could facilitate mass multiplication, conservation, and commercial field production.

10.
Plant Physiol Biochem ; 205: 108194, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37992418

RESUMO

Soil salinity is one of the increasing problems in agricultural fields in many parts of the world, adversely affecting the performance and health of the plants. As a pleiotropic signal and antioxidant molecule in both animals and plants, melatonin has been reported to possess significant roles in combating with stress factors, in general and salt stress, in particular. In this study, the interactive effects of melatonin (0, 75, and 150 µM) and salt stress (0, 50 and 100 mM NaCl) were investigated by assaying the some agronomic, physlogical and biochemical attributes and essential oil compounds of bitter melon (Momordica charantia). The results showed that exogenous melatonin could promote net photosynthetic rate (Pn) and PSII efficiency (Fv/Fm), increase K+ content and activity of antioxidant enzymes and decrease reactive oxygen species, malondialdehyde and Na+ content in stress-submitted seedlings, in comparison to the non-stressed seedlings (p < 0.05). Melatonin increased content of essential oils. Concerning the major compounds of fruits of bitter melon, charantin, momordicin and cucurbitacin were increased with the melatonin treatments, whereas they were critically decreased with the salt stress. In addition, melatonin increased the antioxidant capacity in fruits under non-saline and salinity conditions. Amid the concentrations of melatonin, plants treated with 150 µM of melatonin under either non-saline or saline conditions showed better performance and productivity. Therefore, application of 150 µM melatonin resulted in a significant improvement of salinity tolerance and essential oil compounds in bitter melon plant, suggesting this as an efficient 'green' strategy for sustainable crop production under salt stress conditions.


Assuntos
Melatonina , Momordica charantia , Óleos Voláteis , Melatonina/farmacologia , Antioxidantes/farmacologia , Frutas/química , Tolerância ao Sal , Óleos Voláteis/farmacologia , Salinidade
11.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240264

RESUMO

Phytotherapy has long represented a widely accepted treatment alternative to conventional therapy. Bitter melon is a vine with potent antitumor effects against numerous cancer entities. To date, no review article has, however, been published on the role of bitter melon in breast and gynecological cancer prevention and therapy. The current work constitutes the most comprehensive, up-to-date review of the literature, which highlights the promising anticancer effects of bitter melon on breast, ovarian, and cervical cancer cells and discusses future research recommendations.


Assuntos
Momordica charantia , Neoplasias do Colo do Útero , Feminino , Humanos , Fitoterapia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/prevenção & controle , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
12.
Food Sci Biotechnol ; 32(5): 697-704, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37009042

RESUMO

This study was performed to investigate the effects of bitter melon extract (BME) on glucose metabolism, insulin resistance, and various metabolic parameters of participants with prediabetes. A 12-week randomized placebo-controlled clinical study was conducted with prediabetic patients. A total of 76 participants were randomly assigned to initiate the study. In the final analysis, 33 and 32 subjects were included in the BME and placebo groups, respectively. Results showed that 75 g oral glucose tolerance test (OGTT) blood glucose level decreased in BME group after 12 weeks. The glucose level after 30 min of glucose ingestion decreased significantly. The glucagon level in the BME group after 12 weeks significantly decreased 120 min after 75 g OGTT. These results suggested that bitter melon exhibits glucose-lowering effects through suppression of glucagon levels in people with prediabetes.

13.
Cells ; 12(6)2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36980165

RESUMO

Due to their low immunogenicity, high biocompatibility and ready availability in large quantities, plant-derived vesicles extracts have attracted considerable interest as a novel nanomaterial in tumor therapy. Bitter melon, a medicinal and edible plant, has been reported to exhibit excellent antitumor effects. It is well-documented that breast cancer gravely endangers women's health, and more effective therapeutic agents must be urgently explored. Therefore, we investigated whether bitter melon-derived vesicles extract (BMVE) has antitumor activity against breast cancer. Ultracentrifugation was used to isolate BMVE with a typical "cup-shaped" structure and an average size of approximately 147 nm from bitter melon juice. The experimental outcomes indicate that 4T1 breast cancer cells could efficiently internalize BMVE, which shows apparent anti-proliferative and migration-inhibiting effects. In addition, BMVE also possesses apoptosis-inducing effects on breast cancer cells, which were achieved by stimulating the production of reactive oxygen species (ROS) and disrupting mitochondrial function. Furthermore, BMVE could dramatically inhibit tumor growth in vivo with negligible adverse effects. In conclusion, BMVE exhibits a pronounced antitumor effect on 4T1 breast cancer cells, which has great potential for use in tumor therapy.


Assuntos
Neoplasias da Mama , Momordica charantia , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Momordica charantia/química
14.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902074

RESUMO

T2DM is a complex metabolic disorder characterized by hyperglycemia and glucose intolerance. It is recognized as one of the most common metabolic disorders and its prevalence continues to raise major concerns in healthcare globally. Alzheimer's disease (AD) is a gradual neurodegenerative brain disorder characterized by the chronic loss of cognitive and behavioral function. Recent research suggests a link between the two diseases. Considering the shared characteristics of both diseases, common therapeutic and preventive agents are effective. Certain bioactive compounds such as polyphenols, vitamins, and minerals found in vegetables and fruits can have antioxidant and anti-inflammatory effects that allow for preventative or potential treatment options for T2DM and AD. Recently, it has been estimated that up to one-third of patients with diabetes use some form of complementary and alternative medicine. Increasing evidence from cell or animal models suggests that bioactive compounds may have a direct effect on reducing hyperglycemia, amplifying insulin secretion, and blocking the formation of amyloid plaques. One plant that has received substantial recognition for its numerous bioactive properties is Momordica charantia (M. charantia), otherwise known as bitter melon, bitter gourd, karela, and balsam pear. M. charantia is utilized for its glucose-lowering effects and is often used as a treatment for diabetes and related metabolic conditions amongst the indigenous populations of Asia, South America, India, and East Africa. Several pre-clinical studies have documented the beneficial effects of M. charantia through various postulated mechanisms. Throughout this review, the underlying molecular mechanisms of the bioactive components of M. charantia will be highlighted. More studies will be necessary to establish the clinical efficacy of the bioactive compounds within M. charantia to effectively determine its pertinence in the treatment of metabolic disorders and neurodegenerative diseases, such as T2DM and AD.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Hiperglicemia , Momordica charantia , Extratos Vegetais , Animais , Doença de Alzheimer/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Extratos Vegetais/farmacologia
15.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614287

RESUMO

The research concerned the efficiency of biosynthesis and transfer to triacylglycerols (TAG) of α-eleostearic acid (αESA). The experiments were carried out on developing seeds of Momordica charantia L. and on microsomal fractions obtained from these seeds. The seeds from in vivo conditions were collected 20, 23, 26 and 33 days after pollination (DAP) and used for lipid extraction and further analyses. Microsomal fractions were prepared from seeds at 26 DAP. The most intensive lipid accumulation occurred between 20 and 26 DAP, but continued up to 33 DAP. The most abundant lipid fraction was TAG; up to 98% of total acyl lipids at 33 DAP. The synthesised in vivo αESA was very efficiently transferred to TAG and constituted about 60% of its total fatty acids in 33 DAP. The content of αESA in polar lipids (containing, among others, phosphatidylcholine-the place of αESA biosynthesis) was very low. The biosynthesis of αESA in vitro (assays with microsomal fractions and [14C]-labelled substrates) in the presence of NADPH was fairly intensive (about 60% of the corresponding intensity in vivo) when linolenic acid was used as a substrate. Contrary to the in vivo condition, most of the synthesised in vitro αESA remained in phosphatidylcholine.


Assuntos
Momordica charantia , Momordica charantia/química , Sementes/química , Ácido alfa-Linolênico , Triglicerídeos , Fosfatidilcolinas/análise
16.
J Toxicol Environ Health A ; 86(1): 36-50, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36529899

RESUMO

Momordica charantia L. (Cucurbitaceae), popularly known as "bitter melon" or "bitter gourd," is a climbing plant well-adapted to tropical countries. This plant is used traditionally to treat several conditions including diabetes mellitus, inflammation, liver dysfunctions, and cancer. Given the widespread ethnopharmacological use, this study aimed to examine the cytogenetic, maternal, and developmental toxicity attributed to exposure to dry extract of M. charantia leaves using Allium cepa and Wistar rats as test models. First, phytochemical characterization of the dry extract by high performance liquid chromatography (HPLC) analyses was performed. Then, Allium cepa roots were exposed to three different concentrations of the dry extract (0.25, 0.5, or 1 mg/ml) to determine the mitotic index, frequency of chromosomal aberrations, and nuclear abnormalities. In addition, pregnant Wistar rats were administered either 500; 1,000 or 2,000 mg/kg dry extract during the gestational period (GD) days 6-15, and subsequently possible toxic effect on the dams and fetuses were recorded. HPLC analyses confirmed rutin as the main secondary metabolite present in the dry extract. In the Allium cepa test, the dry extract was cytotoxic. In Wistar rats, dry extract administration reduced water and feed intake and mean body mass gain, indicating maternal toxicity during the organogenesis period. However, the dry extract did not markedly affect reproductive outcome parameters evaluated. Regarding developmental toxicity assessment, the dry extract treatment did not significantly alter number of skeletal malformations in the offspring. Data demonstrated that the dry extract of M. charantia leaves presents cytotoxicity and low maternal toxicity, indicating indiscriminate use needs to be avoided.


Assuntos
Cucurbitaceae , Momordica charantia , Neoplasias , Ratos , Gravidez , Animais , Feminino , Momordica charantia/química , Extratos Vegetais/farmacologia , Ratos Wistar
17.
World J Exp Med ; 13(5): 142-155, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38173546

RESUMO

BACKGROUND: Bitter melon has been used to stop the growth of breast cancer (BRCA) cells. However, the underlying mechanism is still unclear. AIM: To predict the therapeutic effect of bitter melon against BRCA using network pharmacology and to explore the underlying pharmacological mechanisms. METHODS: The active ingredients of bitter melon and the related protein targets were taken from the Indian Medicinal Plants, Phytochemistry and Therapeutics and SuperPred databases, respectively. The GeneCards database has been searched for BRCA-related targets. Through an intersection of the drug's targets and the disease's objectives, prospective bitter melon anti-BRCA targets were discovered. Gene ontology and kyoto encyclopedia of genes and genomes enrichment analyses were carried out to comprehend the biological roles of the target proteins. The binding relationship between bitter melon's active ingredients and the suggested target proteins was verified using molecular docking techniques. RESULTS: Three key substances, momordicoside K, kaempferol, and quercetin, were identified as being important in mediating the putative anti-BRCA effects of bitter melon through the active ingredient-anti-BRCA target network study. Heat shock protein 90 AA, proto-oncogene tyrosine-protein kinase, and signal transducer and activator of transcription 3 were found to be the top three proteins in the protein-protein interaction network study. The several pathways implicated in the anti-BRCA strategy for an active component include phosphatidylinositol 3-kinase/protein kinase B signaling, transcriptional dysregulation, axon guidance, calcium signaling, focal adhesion, janus kinase-signal transducer and activator of transcription signaling, cyclic adenosine monophosphate signaling, mammalian target of rapamycin signaling, and phospholipase D signaling. CONCLUSION: Overall, the integration of network pharmacology, molecular docking, and functional enrichment analyses shed light on potential mechanisms underlying bitter melon's ability to fight BRCA, implicating active ingredients and protein targets, as well as highlighting the major signaling pathways that may be altered by this natural product for therapeutic benefit.

18.
Front Nutr ; 10: 1200801, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274207

RESUMO

Several studies have shown that Momordica charantia L. (Cucurbitaceae, bitter melon) has beneficial effects on metabolic syndrome (MetS) parameters and exerts antidiabetic, anti-hyperlipidemic, and anti-obesity activities. Since the findings of these studies are contradictory, the goal of this systematic review and meta-analysis was to assess the efficacy of bitter melon in the treatment of metabolic syndrome, with special emphasis on the anti-diabetic effect. Embase, Cochrane, PubMed, and Web of Science databases were searched for randomized controlled human trials (RCTs). The meta-analysis was reported according to the PRISMA statement. The primary outcomes of the review are body weight, BMI, fasting blood glucose, glycated hemoglobin A1c, systolic blood pressure, diastolic blood pressure, serum triglyceride, HDL, LDL, and total cholesterol levels. Nine studies were included in the meta-analysis with 414 patients in total and 4-16 weeks of follow-up. In case of the meta-analysis of change scores, no significant effect could be observed for bitter melon treatment over placebo on fasting blood glucose level (MD = -0.03; 95% CI: -0.38 to 0.31; I2 = 34%), HbA1c level (MD = -0.12; 95% CI: -0.35 to 0.11; I2 = 56%), HDL (MD = -0.04; 95% CI: -0.17 to 0.09; I2 = 66%), LDL (MD = -0.10; 95% CI: -0.28 to 0.08; I2 = 37%), total cholesterol (MD = -0.04; 95% CI: -0.17 to 0.09; I2 = 66%,), body weight (MD = -1.00; 95% CI: -2.59-0.59; I2 = 97%), BMI (MD = -0.42; 95% CI: -0.99-0.14; I2 = 95%), systolic blood pressure (MD = 1.01; 95% CI: -1.07-3.09; I2 = 0%) and diastolic blood pressure levels (MD = 0.24; 95% CI: -1.04-1.53; I2 = 0%). Momordica treatment was not associated with a notable change in ALT, AST, and creatinine levels compared to the placebo, which supports the safety of this plant. However, the power was overall low and the meta-analyzed studies were also too short to reliably detect long-term metabolic effects. This highlights the need for additional research into this plant in carefully planned clinical trials of longer duration.

19.
Toxicol Rep ; 9: 1024-1034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518426

RESUMO

Pharmacological studies have revealed the potential antidiabetic effects of bitter melon seeds (Momordica charantia) in animals and humans. However, the sub-chronic safety of bitter melon seeds remains elusive. This exploratory study aimed to assess the acute and sub-chronic toxicity of a bitter melon seed extract from supercritical carbon dioxide (scCO2) extraction in Wistar rats based on the Organization for Economic Co-operation and Development (OECD) guidelines No. 423 and 408. No mortality and toxicity were observed in rats treated with a single dose of the extract during the 14-day observation period. The median lethal dose (LD50) of the extract was considered greater than 2000 mg/kg body weight (BW). For the sub-chronic toxicity study, male and female rats were orally administered daily doses of 0, 250, 500, and 1000 mg/kg BW for 90 days. No mortality, morbidity, and abnormal pathological and biochemical alterations were observed. The no-observed-adverse-effect-level (NOAEL) of the bitter melon seed extract was greater than 1000 mg/kg BW. Accordingly, bitter melon seed extract from scCO2 extraction may be considered a non-toxic dietary ingredient.

20.
J Food Biochem ; 46(12): e14456, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36226991

RESUMO

Saponins from bitter melon (BMS) exert potential bioactivities and pharmacological activities, including anti-oxidation and lifespan extension. However, the exact mechanisms of BMS in response to oxidative stress remain unknown. Results demonstrated that bitter melon saponins could strengthen locomotive activities (body bend and head thrashing) accompanied by delaying the muscle fiber damage with age in Caenorhabditis elegans. In addition, BMS inhibited the ROS accumulation, improved the activities of antioxidant enzymes like SOD (by 57.90% and 94.34% for 100 µg/ml and 200 µg/ml BMS, respectively) and CAT (by 51.45% and 56.91% for 100 µg/ml and 200 µg/ml BMS, respectively), and extend the lifespan of N2 and CL2006 worms under paraquat-induced oxidative stress. Mechanism study suggested that BMS modulated the mRNA expressions of oxidation-related regulators, like the upregulation of cat-1, hsf-1, sir-2.1, and hlh-30. Furthermore, gene-deficient mutants verified that IIS (insulin/insulin-like growth factor-1 signaling) pathway linked with sir-2.1 and hlh-30 factors were involved in the BMS's lifespan-extension effects under oxidative stress. In general, this study supplemented the explanation of BMS in promoting oxidation-resistance and lifespan-extension activities, which could be served as a potential candidate for anti-aging. PRACTICAL APPLICATIONS: Our previous studies have suggested that saponins from bitter melon exhibited fat-lowering activity in C. elegans. However, little was known about the mechanism underlying the anti-oxidation effects of BMS in C. elegans. Current results indicated that the IIS pathway linked with sir-2.1 and hlh-30 transcriptional factors jointly to increase the lifespan in BMS' responses to oxidative stress. Our findings are beneficial to understand the main nutritional ingredients in bitter melon, which are ideal and expected in functional foods for aging.


Assuntos
Proteínas de Caenorhabditis elegans , Momordica charantia , Saponinas , Sirtuínas , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Saponinas/farmacologia , Estresse Oxidativo , Envelhecimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sirtuínas/metabolismo , Sirtuínas/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...