RESUMO
Germination of grains is a bioprocess of emerging interest to improve nutritional and nutraceutical profile of cereals in a natural way. The aim of this work was to identify optimal germination conditions (temperature/duration) for producing a functional blue maize flour with maximum values of protein content (PC), antioxidant activity (AoxA), and total phenolic and anthocyanin contents (TPC, TAC). A central composite rotatable experimental design (response surface methodology) with two factors [Germination temperature (Gtemp, 20-40 °C) / Germination duration (Gdur, 12-220 h)] in five levels was used (13 treatments). Blue maize seeds were soaked in distilled water (25 °C / 12 h) before germination. The sprouts were dried, tempered (25 °C), and ground to obtain germinated blue maize flours (GBMF). The prediction models developed for each response variable showed high coefficients of determination, demonstrating their adequacy to explain the variations in experimental data. Maximum values of PC, AoxA, TPC, and TAC were attained at Gtemp = 26.9 °C / Gdur = 207.7 h. Optimized germinated blue maize flour (OGBMF) presented higher PC (+38.48%), AoxA (ABTS: +192%, ORAC: +160%, DPPH: +148%), TPC (+79%), and TAC (+9.9%) than unprocessed blue maize flour (UBMF). Germination at optimal conditions is an effective strategy to increase the nutritional/nutraceutical quality of blue maize seeds, thus the flour of these germinated seeds could be used for the development of functional foods.
Assuntos
Antocianinas/metabolismo , Antioxidantes/metabolismo , Suplementos Nutricionais/análise , Alimento Funcional , Valor Nutritivo , Fenóis/metabolismo , Zea mays/química , Antocianinas/análise , Antioxidantes/análise , Farinha/análise , Germinação , Fenóis/análise , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Sementes/química , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimentoRESUMO
The purpose of this study was to evaluate the effect of blue maize extracts obtained by acid-methanol treatment on the nutritional in vitro starch fractions such as: rapidly digestive starch (RDS), slowly digestive starch (SDS) and resistant starch (RS) of native and gelatinized commercial maize starch. Chromatographic analysis (HPLC-DAD/ESI-MS) of blue maize extracts showed the presence of seven anthocyanins, where cyanidin-3-(6â³-malonylglucoside) was the main. Blue maize extracts modified nutritional in vitro starch fractions (decrease of RDS) while RS content increased (1.17 and 2.02 times for native and gelatinized commercial maize starch, respectively) when anthocyanins extracts were added to starch up to 75% (starch weight). This preliminary observation provides the basis for further suitability evaluation of blue maize extract as natural starch-modifier by the possible anthocyanins-starch interaction. Anthocyanin extracts can be a suitable to produce functional foods with higher RS content with potential human health benefits.