Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Front Oncol ; 14: 1286896, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450189

RESUMO

Background: Cachexia is a body wasting syndrome that significantly affects well-being and prognosis of cancer patients, without effective treatment. Serum metabolites take part in pathophysiological processes of cancer cachexia, but apart from altered levels of select serum metabolites, little is known on the global changes of the overall serum metabolome, which represents a functional readout of the whole-body metabolic state. Here, we aimed to comprehensively characterize serum metabolite alterations and analyze associated pathways in cachectic cancer patients to gain new insights that could help instruct strategies for novel interventions of greater clinical benefit. Methods: Serum was sampled from 120 metastatic cancer patients (stage UICC IV). Patients were grouped as cachectic or non-cachectic according to the criteria for cancer cachexia agreed upon international consensus (main criterium: weight loss adjusted to body mass index). Samples were pooled by cachexia phenotype and assayed using non-targeted gas chromatography-mass spectrometry (GC-MS). Normalized metabolite levels were compared using t-test (p < 0.05, adjusted for false discovery rate) and partial least squares discriminant analysis (PLS-DA). Machine-learning models were applied to identify metabolite signatures for separating cachexia states. Significant metabolites underwent MetaboAnalyst 5.0 pathway analysis. Results: Comparative analyses included 78 cachectic and 42 non-cachectic patients. Cachectic patients exhibited 19 annotable, significantly elevated (including glucose and fructose) or decreased (mostly amino acids) metabolites associating with aminoacyl-tRNA, glutathione and amino acid metabolism pathways. PLS-DA showed distinct clusters (accuracy: 85.6%), and machine-learning models identified metabolic signatures for separating cachectic states (accuracy: 83.2%; area under ROC: 88.0%). We newly identified altered blood levels of erythronic acid and glucuronic acid in human cancer cachexia, potentially linked to pentose-phosphate and detoxification pathways. Conclusion: We found both known and yet unknown serum metabolite and metabolic pathway alterations in cachectic cancer patients that collectively support a whole-body metabolic state with impaired detoxification capability, altered glucose and fructose metabolism, and substrate supply for increased and/or distinct metabolic needs of cachexia-associated tumors. These findings together imply vulnerabilities, dependencies and targets for novel interventions that have potential to make a significant impact on future research in an important field of cancer patient care.

2.
Brain Res ; 1827: 148758, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38199308

RESUMO

BACKGROUND: Subarachnoid hemorrhage (SAH) is a life-threatening neurological disease that usually has a poor prognosis. Neurogenesis is a potential therapeutic target for brain injury. Ketone metabolism also plays neuroprotective roles in many neurological disorders. OXCT1 (3-Oxoacid CoA-Transferase 1) is the rate-limiting enzyme of ketone body oxidation. In this study, we explored whether increasing ketone oxidation by upregulating OXCT1 in neurons could promote neurogenesis after SAH, and evaluated the potential mechanism involved in this process. METHODS: The ß-hydroxybutyrate content was measured using an enzymatic colorimetric assay. Adeno-associated virus targeting neurons was injected to overexpress OXCT1, and the expression and localization of proteins were evaluated by western blotting and immunofluorescence staining. Adult hippocampal neurogenesis was evaluated by dual staining with doublecortin and 5-Ethynyl-2'-Deoxyuridine. LY294002 was intracerebroventricularly administered to inhibit Akt activity. The Morris water maze and Y-maze tests were employed to assess cognitive function after SAH. RESULTS: The results showed that OXCT1 expression and hippocampal neurogenesis significantly decreased in the early stage of SAH. Overexpression of OXCT1 successfully increased hippocampal neurogenesis via activation of Akt/GSK-3ß/ß-catenin signaling and improved cognitive function, both of which were reversed by administration of LY294002. CONCLUSIONS: OXCT1 regulated hippocampal ketone body metabolism and increased neurogenesis through mechanisms mediated by the Akt/GSK-3ß/ß-catenin pathway, improving cognitive impairment after SAH.


Assuntos
Coenzima A-Transferases , Disfunção Cognitiva , Hipocampo , Neurogênese , Hemorragia Subaracnóidea , Ácido 3-Hidroxibutírico , beta Catenina , Coenzima A-Transferases/genética , Coenzima A-Transferases/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipocampo/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos
3.
Annu Rev Physiol ; 86: 405-427, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38012048

RESUMO

The kidney proximal tubule is a key organ for human metabolism. The kidney responds to stress with altered metabolite transformation and perturbed metabolic pathways, an ultimate cause for kidney disease. Here, we review the proximal tubule's metabolic function through an integrative view of transport, metabolism, and function, and embed it in the context of metabolome-wide data-driven research. Function (filtration, transport, secretion, and reabsorption), metabolite transformation, and metabolite signaling determine kidney metabolic rewiring in disease. Energy metabolism and substrates for key metabolic pathways are orchestrated by metabolite sensors. Given the importance of renal function for the inner milieu, we also review metabolic communication routes with other organs. Exciting research opportunities exist to understand metabolic perturbation of kidney and proximal tubule function, for example, in hypertension-associated kidney disease. We argue that, based on the integrative view outlined here, kidney diseases without genetic cause should be approached scientifically as metabolic diseases.


Assuntos
Nefropatias , Túbulos Renais Proximais , Humanos , Túbulos Renais Proximais/metabolismo , Rim/metabolismo , Metabolismo Energético
4.
Redox Biol ; 69: 103010, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160540

RESUMO

Ketone bodies are considered as an alternative energy source for diabetic cardiomyopathy (DCM) and can improve the energy supply of the heart muscle, suggesting that it may be an important area of research and development as a therapeutic target for DCM. Cumulative cardiovascular trials have shown that sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce cardiovascular events in diabetic populations. Whether SGLT2 inhibitors improve DCM by enhancing ketone body metabolism remains and whether they help prevent oxidative damage remains to be clarified. Here, we present the combined results of nine GSE datasets for diabetic cardiomyopathy (GSE215979, GSE161931, GSE145294, GSE161052, GSE173384, GSE123975, GSE161827, GSE210612, and GSE5606). We found significant up-regulated gene 3-hydroxymethylglutaryl CoA synthetase 2 (HMGCS2) and down-regulated gene 3-hydroxybutyrate dehydrogenase (BDH1) and 3-oxoacid CoA-transferase1 (OXCT1), respectively. Based on the analysis of the constructed protein interaction network, it was found that HMGCS2 was in the core position of the interaction network. In addition, Gene ontology (GO) enrichment analysis mainly focused on redox process, acyl-CoA metabolic process, catalytic activity, redox enzyme activity and mitochondria. The activity of HMGCS2 in DCM heart was increased, while the expression of ketolysis enzymes BDH1 and OXCT1 was inhibited. In vivo, Empagliflozin (Emp) treated DCM group significantly decreased ventricular weight, myocardial cell cross-sectional area, and myocardial fibrosis. In addition, Emp further promoted the activity of BDH1 and OXCT1, increased the utilization of ketone bodies, further promoted the activity of HMGCS2 in DCM, and increased the synthesis of ketone bodies, prevented mitochondrial breakage and dysfunction, increased myocardial ATP to provide sufficient energy, inhibited oxidative stress and apoptosis of cardiac cells ex vivo, and improved the myocardial dysfunction of DCM. Emp can improve mitochondrial dysfunction in diabetic cardiomyopathy by regulating ketone body metabolism and oxidative stress. These findings provide a theoretical basis for evaluating Emp as a treatment for DCM.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus , Cardiomiopatias Diabéticas , Glucosídeos , Doenças Mitocondriais , Humanos , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/genética , Estresse Oxidativo , Miócitos Cardíacos/metabolismo , Corpos Cetônicos/metabolismo , Corpos Cetônicos/uso terapêutico , Doenças Mitocondriais/metabolismo , Diabetes Mellitus/metabolismo
5.
J Neurochem ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37929637

RESUMO

The metabolic demands of neuronal activity are both temporally and spatially dynamic, and neurons are particularly sensitive to disruptions in fuel and oxygen supply. Glucose is considered an obligate fuel for supporting brain metabolism. Although alternative fuels are often available, the extent of their contribution to central carbon metabolism remains debated. Differential fuel metabolism likely depends on cell type, location, and activity state, complicating its study. While biosensors provide excellent spatial and temporal information, they are limited to observations of only a few metabolites. On the other hand, mass spectrometry is rich in chemical information, but traditionally relies on cell culture or homogenized tissue samples. Here, we use mass spectrometry imaging (MALDI-MSI) to focus on the fuel metabolism of the dentate granule cell (DGC) layer in murine hippocampal slices. Using stable isotopes, we explore labeling dynamics at baseline, as well as in response to brief stimulation or fuel competition. We find that at rest, glucose is the predominant fuel metabolized through glycolysis, with little to no measurable contribution from glycerol or fructose. However, lactate/pyruvate, ß-hydroxybutyrate (ßHB), octanoate, and glutamine can contribute to TCA metabolism to varying degrees. In response to brief depolarization with 50 mM KCl, glucose metabolism was preferentially increased relative to the metabolism of alternative fuels. With an increased supply of alternative fuels, both lactate/pyruvate and ßHB can outcompete glucose for TCA cycle entry. While lactate/pyruvate modestly reduced glucose contribution to glycolysis, ßHB caused little change in glycolysis. This approach achieves broad metabolite coverage from a spatially defined region of physiological tissue, in which metabolic states are rapidly preserved following experimental manipulation. Using this powerful methodology, we investigated metabolism within the dentate gyrus not only at rest, but also in response to the energetic demand of activation, and in states of fuel competition.

6.
J Atheroscler Thromb ; 30(12): 1751-1758, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37766574

RESUMO

Ketone bodies, consisting of beta-hydroxybutyrate, acetoacetate, and acetone, are metabolic byproducts known as energy substrates during fasting. Recent advancements have shed light on the multifaceted effects of ketone body metabolism, which led to increased interest in therapeutic interventions aimed at elevating ketone body levels. However, excessive elevation of ketone body concentration can lead to ketoacidosis, which may have fatal consequences. Therefore, in this review, we aimed to focus on the latest insights on ketone body metabolism, particularly emphasizing its association with mitochondria as the primary site of interaction. Given the distinct separation between ketone body synthesis and breakdown pathways, we provide an overview of each metabolic pathway. Additionally, we discuss the relevance of ketone bodies to conditions such as nonalcoholic fatty liver disease or nonalcoholic steatohepatitis and cardiovascular diseases. Moreover, we explore the utilization of ketone body metabolism, including dietary interventions, in the context of aging, where mitochondrial dysfunction plays a crucial role. Through this review, we aim to present a comprehensive understanding of ketone body metabolism and its intricate relationship with mitochondrial function, spanning the potential implications in various health conditions and the aging process.


Assuntos
Doenças Cardiovasculares , Hepatopatia Gordurosa não Alcoólica , Humanos , Corpos Cetônicos/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Acetona , Mitocôndrias/metabolismo
7.
Front Vet Sci ; 10: 1158468, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476825

RESUMO

The effects of Moringa peregrina seed meal (MPSM), autoclaving, and/or enzyme cocktail addition on performance, profitability, carcass traits, meat quality, and blood lipids of broilers between 1 and 35 d of age were investigated. Seven experimental diets were employed: the control 0% MPSM, 10% raw MPSM, 10% autoclaved MPSM (at a temperature of 120°C and 1 kg/cm2 pressure for 30 min), 10% raw MPSM supplemented with enzymes at 0.1 or 0.2 g/kg feed, and 10% autoclaved MPSM supplemented with the same previous enzymes and doses. Each diet was fed to 8 replicates with 5 broilers in each. At the end of the experiment, 3 broilers from each replicate were randomLy chosen to determine carcass traits, meat quality, and blood lipids. Findings at 35 d of age indicated that all 10% raw MPSM treatments with or without enzymes addition impaired growth, feed conversion (FCR), and profitability (p < 0.05), but increased feed intake (p < 0.05) and did not affect mortality when compared with the control group. The 10% autoclaved MPSM treatments with or without enzymes addition increased feed intake (p < 0.05) when compared with the control group, inducing growth equal to the control group (p > 0.05), and improving FCR and profitability. Enzymes addition to raw MPSM did not produce positive effects (p < 0.05), and no additive effect was observed when autoclaving and enzymes addition were combined (p > 0.05) as compared to the autoclaving group. Carcass traits, meat quality, and blood lipids were not significantly affected by MPSM, autoclaving, and enzymes addition. However, intestine, cecum, and gizzard percentages increased (p < 0.05) with all 10% raw MPSM treatments, while all 10% autoclaved MPSM treatments could return these values (p > 0.05) to the control group, except with gizzard, which exhibited less improvement. Additionally, all autoclaved groups had lower meat pH measured 24 h postmortem (p <0.05) compared to the control group. In conclusion, autoclaved MPSM can be included in broilers' diets at a 10% level without negative effects on performance, carcass traits, meat quality, and blood lipids. This indicates that autoclaving alone is adequate.

8.
J Therm Biol ; 116: 103656, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37481935

RESUMO

In the present paper, the phenomena of heat transport inside human forearm tissue are studied through a one-dimensional nonlinear bioheat transfer model under the influence of various boundary and interface conditions. In this study, we considered temperature-dependent thermal conductivity and metabolic heat to predict temperature distribution inside the forearm tissue. We have studied the temperature distribution inside inner tissue and bone because it has been found that burn injuries are mostly affected by layer thickness. The temperature distribution inside human forearm tissue is analyzed using the finite difference and bvp4c numerical techniques. To examine the accuracy of present numerical code, we compare the obtained numerical result with the exact analytical result in a specific case and find an excellent agreement with the exact results. We also validated our present numerical code with a hybrid scheme based on Runge-Kutta (4,5) and finite difference technique and found it in good compliance. From the obtained results, we observed that the homogeneous heat flux has a greater impact on the temperature at the outer surface of the skin, but the sinusoidal heat flux has a greater impact on the temperature of the subcutaneous layer and inner tissue. It is found that there is no burn injury in the first type of heat source (Tw=44°C), but it may occur in the second and third types of heat sources. It has been observed that by raising the blood perfusion rate and reducing the values of reference metabolic heat, coefficient of thermal conductivity, and heat fluxes, we can manage and reduce burn injuries and achieve hyperthermia temperature.


Assuntos
Queimaduras , Hipertermia Induzida , Humanos , Temperatura Alta , Temperatura , Condutividade Térmica , Modelos Biológicos , Simulação por Computador
9.
Cell Rep ; 42(3): 112155, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36857182

RESUMO

The most abundant cellular divalent cations, Mg2+ (mM) and Ca2+ (nM-µM), antagonistically regulate divergent metabolic pathways with several orders of magnitude affinity preference, but the physiological significance of this competition remains elusive. In mice consuming a Western diet, genetic ablation of the mitochondrial Mg2+ channel Mrs2 prevents weight gain, enhances mitochondrial activity, decreases fat accumulation in the liver, and causes prominent browning of white adipose. Mrs2 deficiency restrains citrate efflux from the mitochondria, making it unavailable to support de novo lipogenesis. As citrate is an endogenous Mg2+ chelator, this may represent an adaptive response to a perceived deficit of the cation. Transcriptional profiling of liver and white adipose reveals higher expression of genes involved in glycolysis, ß-oxidation, thermogenesis, and HIF-1α-targets, in Mrs2-/- mice that are further enhanced under Western-diet-associated metabolic stress. Thus, lowering mMg2+ promotes metabolism and dampens diet-induced obesity and metabolic syndrome.


Assuntos
Tecido Adiposo Marrom , Metabolismo Energético , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Proteínas de Transporte de Cátions , Dieta , Dieta Hiperlipídica , Metabolismo Energético/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Obesidade/metabolismo , Termogênese/genética
10.
Front Endocrinol (Lausanne) ; 13: 843721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432190

RESUMO

Diabetic kidney disease (DKD) is a long-term major microvascular complication of uncontrolled hyperglycemia and one of the leading causes of end-stage renal disease (ESDR). The pathogenesis of DKD has not been fully elucidated, and effective therapy to completely halt DKD progression to ESDR is lacking. This study aimed to identify critical molecular signatures and develop novel therapeutic targets for DKD. This study enrolled 10 datasets consisting of 93 renal samples from the National Center of Biotechnology Information (NCBI) Gene Expression Omnibus (GEO). Networkanalyst, Enrichr, STRING, and Cytoscape were used to conduct the differentially expressed genes (DEGs) analysis, pathway enrichment analysis, protein-protein interaction (PPI) network construction, and hub gene screening. The shared DEGs of type 1 diabetic kidney disease (T1DKD) and type 2 diabetic kidney disease (T2DKD) datasets were performed to identify the shared vital pathways and hub genes. Strepotozocin-induced Type 1 diabetes mellitus (T1DM) rat model was prepared, followed by hematoxylin & eosin (HE) staining, and Oil Red O staining to observe the lipid-related morphological changes. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was conducted to validate the key DEGs of interest from a meta-analysis in the T1DKD rat. Using meta-analysis, 305 shared DEGs were obtained. Among the top 5 shared DEGs, Tmem43, Mpv17l, and Slco1a1, have not been reported relevant to DKD. Ketone body metabolism ranked in the top 1 in the KEGG enrichment analysis. Coasy, Idi1, Fads2, Acsl3, Oxct1, and Bdh1, as the top 10 down-regulated hub genes, were first identified to be involved in DKD. The qRT-PCR verification results of the novel hub genes were mostly consistent with the meta-analysis. The positive Oil Red O staining showed that the steatosis appeared in tubuloepithelial cells at 6 w after DM onset. Taken together, abnormal ketone body metabolism may be the key factor in the progression of DKD. Targeting metabolic abnormalities of ketone bodies may represent a novel therapeutic strategy for DKD. These identified novel molecular signatures in DKD merit further clinical investigation.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Feminino , Humanos , Cetonas/metabolismo , Cetonas/uso terapêutico , Rim/metabolismo , Metabolismo dos Lipídeos , Masculino , Proteínas de Membrana/metabolismo , Mapas de Interação de Proteínas/genética , Ratos
11.
Res Vet Sci ; 143: 134-141, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35026630

RESUMO

KBs (ketone bodies), i.e., acetoacetate, acetone, and (R)-3-Hydroxybutanoate, constitute the intermediate products of the incomplete oxidative degradation of fatty acids. These KBs are used as a source of energy in the hosts' brain, skeletal muscles, and heart. Additionally, they regulate inflammation and oxidative stress of the host by acting as signaling mediators. Parasitic infection is known to result in abnormal physiological and biochemical metabolism, ketoacidosis, and other damage to the host. In this study, we investigated the effects of Trypanosoma evansi and Toxoplasma gondii on ketone body metabolism in mice, as well as the KB levels in the brain, liver, and peripheral blood. T. gondii was found to significantly increase the KB levels, resulting in ketonemia; T. evansi was found to stabilize KB levels in mice. Further investigations showed that T. evansi downregulated the expression of genes encoding enzymes involved in KBs synthesizing pathway and enhanced KBs synthesizing to eliminate ketonemia. Conversely, T. gondii significantly increased the expression of genes encoding enzymes involved in KBs synthesizing pathway and decreased KBs metabolism pathway ones and resulting in increased KBs levels in peripheral blood, culminating in ketonemia. These findings elucidate the differences in the KBs metabolism resulting from infection with T. evansi and T. gondii.


Assuntos
Toxoplasma , Trypanosoma , Animais , Encéfalo/metabolismo , Corpos Cetônicos/metabolismo , Corpos Cetônicos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C
12.
Front Oncol ; 11: 689068, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692477

RESUMO

BACKGROUND: The Warburg effect, also termed "aerobic glycolysis", is one of the most remarkable and ubiquitous metabolic characteristics exhibited by cancer cells, representing a potential vulnerability that might be targeted for tumor therapy. Ketogenic diets (KDs), composed of high-fat, moderate-protein and low carbohydrates, are aimed at targeting the Warburg effect for cancer treatment, which have recently gained considerable attention. However, the efficiency of KDs was inconsistent, and the genotypic contribution is still largely unknown. METHODS: The bulk RNA-seq data from The Cancer Genome Atlas (TCGA), single cell RNA sequencing (scRNA-seq), and microarray data from Gene Expression Omnibus (GEO) and Cancer Cell Line Encyclopedia (CCLE) were collected. A joint analysis of glycolysis and ketone bodies metabolism (KBM) pathway was performed across over 10,000 tumor samples and nearly 1,000 cancer cell lines. A series of bioinformatic approaches were combined to identify a metabolic subtype that may predict the response to ketogenic dietary therapy (KDT). Mouse xenografts were established to validate the predictive utility of our subtypes in response to KDT. RESULTS: We first provided a system-level view of the expression pattern and prognosis of the signature genes from glycolysis and KBM pathway across 33 cancer types. Analysis by joint stratification of glycolysis and KBM revealed four metabolic subtypes, which correlated extensively but diversely with clinical outcomes across cancers. The glycolytic subtypes may be driven by TP53 mutations, whereas the KB-metabolic subtypes may be mediated by CTNNB1 (ß-catenin) mutations. The glycolytic subtypes may have a better response to KDs compared to the other three subtypes. We preliminarily confirmed the idea by literature review and further performed a proof-of-concept experiment to validate the predictive value of the metabolic subtype in liver cancer xenografts. CONCLUSIONS: Our findings identified a metabolic subtype based on glycolysis and KBM that may serve as a promising biomarker to predict the clinical outcomes and therapeutic responses to KDT.

14.
Nutrients ; 13(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34579133

RESUMO

Selenium (Se) is a micronutrient essential for life. Dietary intake of Se within the physiological range is critical for human health and reproductive functions. Selenium levels outside the recommended range have been implicated in infertility and variety of other human diseases. However, presently it is not clear how different dietary Se sources are processed in our bodies, and in which form or how much dietary Se is optimum to maintain metabolic homeostasis and boost reproductive health. This uncertainty leads to imprecision in published dietary guidelines and advice for human daily intake of Se and in some cases generating controversies and even adverse outcomes including mortality. The chief aim for this review is to describe the sources of organic and inorganic Se, the metabolic pathways of selenoproteins synthesis, and the critical role of selenprotenis in the thyroid gland homeostasis and reproductive/fertility functions. Controversies on the use of Se in clinical practice and future directions to address these challenges are also described and discussed herein.


Assuntos
Homeostase/fisiologia , Reprodução/fisiologia , Selênio/fisiologia , Dieta , Feminino , Fertilidade/fisiologia , Humanos , Masculino , Selênio/administração & dosagem , Selênio/deficiência , Selenoproteínas/biossíntese , Selenoproteínas/fisiologia , Glândula Tireoide/fisiologia
15.
Sci Prog ; 104(3): 368504211031749, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34260294

RESUMO

This integrated bioinformatic study aimed to investigate potential prognostic candidates in hepatocellular carcinoma (HCC). In the GSE14520, GSE101685, and The Cancer Genome Atlas (TCGA) datasets, differentially expressed genes (DEGs) were identified and functional pathways of common DEGs were enriched. The least absolute shrinkage and selection operator (LASSO) model was used to screen the potential parameters associated with overall survival (OS) in HCC patients. Metabolic pathways were the most significantly enriched functional pathways of common DEGs in these three datasets. After LASSO model analysis, HMGCS2, UGP2, BCLC staging and TNM staging were screened as potential prognostic candidates for OS in HCC patients in GSE14520. HMGCS2 in the metabolic pathway was significantly downregulated in tumor tissues and peripheral blood mononuclear cells in HCC patients (all p < 0.05). Cox regression model indicated that HMGCS2 might be associate with OS in HCC patients in GSE14520 and in the TCGA (p = 0.029 and p = 0.05, respectively). Kaplan-Meier analysis demonstrated that HMGCS2 downregulation in tumors contributed to an unfavorable OS in HCC patients, both in GSE14520 and in the TCGA (p = 0.0001 and p = 0.0002, respectively). Additionally, HMGCS2 was significantly downregulated in HCC patients with high alpha-fetoprotein (AFP), main tumor size >5 cm, multinodular, advanced tumor staging including BCLC, TNM and CLIP (all p < 0.05). HMGCS2 was involved in metabolic pathways, and downregulated HMGCS2 in tumors was associated with unfavorable OS in HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Perfilação da Expressão Gênica , Humanos , Hidroximetilglutaril-CoA Sintase/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Redes e Vias Metabólicas/genética
16.
Metabolites ; 11(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207054

RESUMO

The promotion of ketone body (KB) metabolism via ketosis has been suggested as a strategy to increase exercise performance. However, studies in humans and animals have yielded inconsistent results. The purpose of the current study was to examine the effects of ketosis, achieved via fasting or a short-term ketogenic diet (KD), on endurance exercise performance in female mice. After 8 h of fasting, serum KB significantly increased and serum glucose significantly decreased in fasted compared to fed mice. When subjected to an endurance exercise capacity (EEC) test on a motorized treadmill, both fed and fasted mice showed similar EEC performance. A 5-week KD (90% calories from fat) significantly increased serum KB but did not increase EEC times compared to chow-fed mice. KD mice gained significantly more weight than chow-fed mice and had greater adipose tissue mass. Biochemical tissue analysis showed that KD led to significant increases in triglyceride content in the heart and liver and significant decreases in glycogen content in the muscle and liver. Furthermore, KD downregulated genes involved in glucose and KB oxidation and upregulated genes involved in lipid metabolism in the heart. These findings suggest that a short-term KD is not an effective strategy to enhance exercise performance and may lead to increased adiposity, abnormal endogenous tissue storage, and cardiometabolic remodeling.

17.
Biochim Biophys Acta Mol Basis Dis ; 1867(5): 166036, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33508421

RESUMO

High consumption of fructose has paralleled an explosion in metabolic disorders including obesity and type 2 diabetes. Even more problematic, sustained consumption of fructose is perceived as a threat for brain function and development of neurological disorders. The action of fructose on peripheral organs is an excellent model to understand how systemic physiology impacts the brain. Given the recognized action of fructose on liver metabolism, here we discuss mechanisms by which fructose can impact the brain by interacting with liver and other organs. The interaction between peripheral and central mechanisms is a suitable target to reduce the pathophysiological consequences of neurological disorders.


Assuntos
Encefalopatias/etiologia , Sacarose Alimentar/efeitos adversos , Frutose/efeitos adversos , Doenças Metabólicas/patologia , Plasticidade Neuronal , Encefalopatias/patologia , Humanos , Doenças Metabólicas/induzido quimicamente , Fenômenos Fisiológicos do Sistema Nervoso , Edulcorantes/farmacologia
18.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-908490

RESUMO

Intra-abdominal infection is often secondary to the injury or lesion of various organs in the abdominal cavity, or after abdominal surgery. With the continuous development of its concept and technology, nutritional support has gradually become one of the important means for the treatment of patients with intra-abdominal infection. The comprehensive treatment of abdo-minal infection includes controlling of infection source, reasonable antimicrobial therapy, supporting of organ function, nutritional treatment, regulating of immune function, etc. Combined with their clinical experiences, the authors review the relevant researches at home and abroad and analyze and expound the nutritional support strategies for patients with intra-abdominal infection.

19.
Front Pharmacol ; 11: 1255, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922293

RESUMO

BACKGROUND: Metabolic remodeling plays a vital role in the development of heart failure. The trimetazidine can optimize fatty acid and glucose oxidation via inhibition of long-chain 3-ketoacyl CoA thiolase in the heart. So, trimetazidine commonly used in cardiovascular therapy as a myocardial metabolic drug. This study was conducted to assess the effects and mechanisms of trimetazidine on ketone body metabolism in heart failure rats. METHODS: A rat model of heart failure was established by continuous subcutaneous injection of isoproterenol in 10 mg/kg/d. We examined body weight, heart weight index, and tested B-type natriuretic peptide by kit. We detected the structure and function of the heart. Hematoxylin-eosin staining and Masson's trichrome staining was performed to assess myocardial tissue morphology. To evaluate apoptosis, we used Tunel staining. Metabolic substrate contents of glucose, free fatty acid, ketone bodies, lactic acid, and pyruvate and ATP levels in myocardial tissues were measured with the corresponding kit. We detected the levels of protein expressions related to myocardial substrate uptake and utilization by Western blot. RESULTS: Trimetazidine remarkably reduced the heart weight index and B-type natriuretic peptide levels. Besides, trimetazidine increased the level of blood pressure and decreased heart rate. Moreover, trimetazidine inhibited decreases in left ventricular ejection fraction and left ventricular fractional shortening. Further, trimetazidine decreased the levels of collagen volume fraction and promoted ATP production in myocardial tissues. Trimetazidine also reduced the levels of free fatty acid, ketone bodies, lactic acid, and increased glucose and pyruvate levels in myocardial tissues. Furthermore, trimetazidine markedly inhibited apoptosis. More importantly, the protein expression levels related to myocardial substrate uptake and utilization increased dramatically in the trimetazidine group. In particular, the protein expressions related to ketone body utilization were prominent. CONCLUSIONS: Trimetazidine could attenuate metabolic remodeling and improve cardiac function in heart failure rats. The potential mechanism for the cardioprotective effect of trimetazidine may be highly associated with its regulation of adenosine monophosphate-activated protein kinase, and peroxisome proliferator activated receptor α expressions. Along with the regulation, myocardial substrate utilization was improved, especially the utilization of ketone bodies.

20.
Mol Carcinog ; 59(6): 640-650, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32232919

RESUMO

A few single-nucleotide polymorphisms (SNPs) have been identified to be associated with cutaneous melanoma (CM) survival through genome-wide association studies, but stringent multiple testing corrections required for the hypothesis-free testing may have masked some true associations. Using a hypothesis-driven analysis approach, we sought to evaluate associations between SNPs in ketone body metabolic pathway genes and CM survival. We comprehensively assessed associations between 4196 (538 genotyped and 3658 imputed) common SNPs in 44 ketone body metabolic pathway genes and CM survival, using a dataset of 858 patients of a case-control study from The University of Texas M.D. Anderson Cancer Center as the discovery set and another dataset of 409 patients from the Nurses' Health Study and the Health Professionals Follow-up Study as the replication set. There were 95/858 (11.1%) and 48/409 (11.7%) patients who died of CM, respectively. We identified two independent SNPs (ie, PDSS1 rs12254548 G>C and SLC16A6 rs71387392 G>A) that were associated with CM survival, with allelic hazards ratios of 0.58 (95% confidence interval [CI] = 0.44-0.76, P = 9.00 × 10-5 ) and 1.98 (95% CI = 1.34-2.94, P = 6.30 × 10-4 ), respectively. Additionally, associations between genotypes of the SNPs and messenger RNA expression levels of their corresponding genes support the biologic plausibility of a role for these two variants in CM tumor progression and survival. Once validated by other larger studies, PDSS1 rs12254548 and SLC16A6 rs71387392 may be valuable biomarkers for CM survival.


Assuntos
Alquil e Aril Transferases/genética , Biomarcadores Tumorais/genética , Cetonas/metabolismo , Melanoma/mortalidade , Transportadores de Ácidos Monocarboxílicos/genética , Polimorfismo de Nucleotídeo Único , Neoplasias Cutâneas/mortalidade , Simportadores/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Prognóstico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Taxa de Sobrevida , Adulto Jovem , Melanoma Maligno Cutâneo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...