Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Ecol ; 33(12): e17377, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38713089

RESUMO

The acquisition of microbial symbionts enables animals to rapidly adapt to and exploit novel ecological niches, thus significantly enhancing the evolutionary fitness and success of their hosts. However, the dynamics of host-microbe interactions and their evolutionary implications remain largely underexplored in marine invertebrates. Crabs of the family Sesarmidae (Crustacea: Brachyura) are dominant inhabitants of mangrove forests and are considered keystone species there. Their rapid diversification, particularly after adopting a plant-feeding lifestyle, is believed to have been facilitated by symbiotic gut microbes, enabling successful colonization of intertidal and terrestrial environments. To investigate the patterns and mechanisms shaping the microbial communities and the role of microbes in the evolution of Sesarmidae, we characterized and compared the gut microbiome compositions across 43 crab species from Sesarmidae and other mangrove-associated families using 16S metabarcoding. We found that the gut microbiome assemblages in crabs are primarily determined by host identity, with a secondary influence from environmental factors such as microhabitat and sampling location, and to a lesser extent influenced by biological factors such as sex and gut region. While patterns of phylosymbiosis (i.e. when microbial community relationships recapitulate the phylogeny of their hosts) were consistently observed in all beta-diversity metrics analysed, the strength of phylosymbiosis varied across crab families. This suggests that the bacterial assemblages in each family were differentially shaped by different degrees of host filtering and/or other evolutionary processes. Notably, Sesarmidae displayed signals of cophylogeny with its core gut bacterial genera, which likely play crucial functional roles in their hosts by providing lignocellulolytic enzymes, essential amino acids, and fatty acids supplementation. Our results support the hypothesis of microbial contribution to herbivory and terrestrialization in mangrove crabs, highlighting the tight association and codiversification of the crab holobiont.


Assuntos
Braquiúros , Microbioma Gastrointestinal , Filogenia , RNA Ribossômico 16S , Simbiose , Animais , Braquiúros/microbiologia , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Áreas Alagadas
2.
Genes (Basel) ; 15(4)2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38674372

RESUMO

Complete mitochondrial genomes (mitogenomes) can provide important information regarding the molecular evolution and phylogenetic relationships of marine invertebrates, especially in Brachyura. Only one Cancroidea species of mitogenomes has been sequenced before; in this research, the mitogenomic characteristics of Metacarcinus magister (Cancridae: Cancroidea) are newly studied. The length of the M. magister mitogenome was 48,820 bp, and it contained the typical 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. We performed a series of analyses on the characteristics of the mNCR of M. magister. The phylogenetics, life circumstances, and selective pressures were all analyzed to explain the formation of this length, which revealed the length of the M. magister mitogenome to be approximately three times greater than the normal length of Brachyuran mitogenomes. Phylogenetic analyses based on a dataset of 215 Decapodan mitogenomes indicated that all Eriphioidea crabs were clustered together as a group. Moreover, the rearrangement mechanism of the Cancroidea species was predicted to provide stronger evidence for the phylogenetic analysis. In general, the results obtained in this study will contribute to a better understanding of the cause of the unusual length of the M. magister mitogenome and provide new insights into the phylogeny of Brachyura.


Assuntos
Braquiúros , Genoma Mitocondrial , Filogenia , Animais , Braquiúros/genética , Braquiúros/classificação , RNA de Transferência/genética , Evolução Molecular , RNA Ribossômico/genética
3.
Zoology (Jena) ; 164: 126169, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38678791

RESUMO

The diversity of primary freshwater crabs of Central America is underestimated and poorly known, specially when considering both Atlantic and Pacific drainages distribution. Among the family Pseudothelphusidae Ortmann, 1893, the genus Ptychophallus Smalley, 1964 was recently revised using morphological data and encompassing 14 valid species, which are distributed exclusively in Costa Rica and Panama. Despite the informative scenario constructed with this previous study, some uncertainties remained such as those related to the populations distributed along different drainages and the lack of complete information regarding the phylogenetic relationships among the species that belong to this genus. Our phylogenetic reconstruction based on multigenes revealed four lineages. Ptychophallus costaricensis, P. colombianus, P. lavallensis, P. montanus, and P. tumimanus are well-established species, while P. paraxanthusi, P. exilipes and P. tristani were recovered as non-monophyletic in some relationships. Ptychophallus tristani and P. paraxanthusi were determined to be close relatives one with other, but with some representatives showing no clear correspondence and positioning in the molecular phylogeny, which raised doubts about the validity as separate species and/or the accuracy of identifications for some GenBank sequences. Ptychophallus tumimanus and P. montanus are morphologically very similar, but they are positioned in distinct clades. The genetic results confirmed a previous proposal that P. barbillaensis is a junior synonym of P. uncinatus, and P. bilobatus is closely related to P. uncinatus. The findings revealed the presence of one peculiar lineage with one species from Costa Rica compound by the resurrected P. campylus and another species from Costa Rica, originally identified as "P. cf. exilipes"; its morphology, however, did not match with any other analyzed species, which requires further analysis. Finally, possible misidentification in some sequences deposited in the GenBank were detected and should be reviewed. The reconstructed molecular phylogeny for the genus that inhabits both Atlantic and Pacific drainages of Central America provides a better understanding of the knowledge on the evolution of freshwater crabs and represents key information that will serve as baseline for further taxonomic studies on the cryptic biodiversity of this group.


Assuntos
Braquiúros , Filogenia , Animais , Braquiúros/genética , Braquiúros/classificação , Braquiúros/anatomia & histologia , Especificidade da Espécie
4.
Bol. latinoam. Caribe plantas med. aromát ; 23(1): 41-60, ene. 2024. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1552796

RESUMO

Hystrix brach yura bezoar is calcified undigested material found in the gastrointestinal tract known for various medicinal benefits including as an anticancer agent. However, the H. brachyura population has been declining due to its demand and is under Malaysian law pro tection. Therefore, present study aimed to identify bezoar anticancer active compounds through metabolomics and in - silico approaches. Five replicates of bezoar powder were subjected to extraction using different solvent ratios of methanol - water (100, 75, 5 0, 25, 0% v/v). Cytotoxicity and metabolite profiling using liquid chromatography - mass spectrometry were conducted. Putative compounds identified were subjected to in - silico analysis with targeted anticancer proteins namely, Bcl - 2, Cyclin B/CDK1 complex, V EGF and NM23 - H1. The correlation of LC - MS and cytotoxicity profile pinpointed two compounds, mangiferin and propafenone. In - silico study showed both compounds exerted good binding scores to all proteins with hydrophobic interaction dominating the ligand - pr otein complex binding, suggesting the ligands act as hydrophobes in the interactions.


El bezpar de Hystrix branchyura es material calcificado sin digerir encontr ados en el tracto gastrointestinal, conocido por sus variados beneficios médicos, incluyendo propiedades anticancerosas. De todas formas, la población de H. Branchyura ha ido declinando debido a su demanda y está bajo la protección de la ley de Malasia. Po r esto, este estudio busca identificar los componentes activos anticancerosos del bezoar mediante abordajes metabolómico e in silico. Cinco réplicas de polvo de bezoar fueron sometidos a extracción usando solventes con diferentes proporciones metanol - agua (100, 75, 50, 25, 0% v/v). Se hicieron perfiles de citotoxicidad y de metabolitos usando cromatografía líquida - espectrometría de masa ( LC - MS ). Se identificaron compuestos putativos yse sometieron a a nálisis in silico, buscando las proteínas anticancerosas B cl - 2, complejo Cyclin B/CDK1, VEGF, y NM23 - H1. La correlación LC - MS y el perfil de citotoxicidad identificaron dos compuestos: mangiferina y propafenona. El estudio in silico mostró que ambos compuestos tenían buenos índices de enlace con todas las proteín as con interacción hidrofóbica dominando el enlace complejo proteína - ligando, sugeriendo que los ligandos actúan como hidrófobos en las interacciones


Assuntos
Bezoares/metabolismo , Braquiúros/química , Bezoares/tratamento farmacológico , Espectrometria de Massa com Cromatografia Líquida , Neoplasias/tratamento farmacológico
5.
Syst Biol ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37941464

RESUMO

For much of terrestrial biodiversity, the evolutionary pathways of adaptation from marine ancestors are poorly understood, and have usually been viewed as a binary trait. True crabs, the decapod crustacean infraorder Brachyura, comprise over 7,600 species representing a striking diversity of morphology and ecology, including repeated adaptation to non-marine habitats. Here, we reconstruct the evolutionary history of Brachyura using new and published sequences of 10 genes for 344 tips spanning 88 of 109 brachyuran families. Using 36 newly vetted fossil calibrations, we infer that brachyurans most likely diverged in the Triassic, with family-level splits in the late Cretaceous and early Paleogene. By contrast, the root age is underestimated with automated sampling of 328 fossil occurrences explicitly incorporated into the tree prior, suggesting such models are a poor fit under heterogeneous fossil preservation. We apply recently defined trait-by-environment associations to classify a gradient of transitions from marine to terrestrial lifestyles. We estimate that crabs left the marine environment at least seven and up to 17 times convergently, and returned to the sea from non-marine environments at least twice. Although the most highly terrestrial- and many freshwater-adapted crabs are concentrated in Thoracotremata, Bayesian threshold models of ancestral state reconstruction fail to identify shifts to higher terrestrial grades due to the degree of underlying change required. Lineages throughout our tree inhabit intertidal and marginal marine environments, corroborating the inference that the early stages of terrestrial adaptation have a lower threshold to evolve. Our framework and extensive new fossil and natural history datasets will enable future comparisons of non-marine adaptation at the morphological and molecular level. Crabs provide an important window into the early processes of adaptation to novel environments, and different degrees of evolutionary constraint that might help predict these pathways.

6.
Mar Pollut Bull ; 196: 115657, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37864863

RESUMO

Microplastic (MP) prevalence has been well documented, however, knowledge gaps exist for African mangrove forests. This research is the first to compare MP pollution (using FT-IR analysis) in an urban (Durban Bay) and peri-urban (Mngazana Estuary) mangrove forest in South Africa, across different compartments. MP pollution (typology, abundance, and distribution) was quantified in estuarine surface water, sediment and the soft tissue of three keystone species (Austruca occidentalis, Chiromantes eulimene and Cerithidea decollata) in relation to disturbances acting on these systems. MP averages ranged from 99 to 82 MPs/kg sediment, 177 to 76 MPs/L water and 82 to 59 MP/g-1 DW in biota. Overall fibres were the dominant MP type across all compartments. The three invertebrate species exhibited MP bioaccumulation, however, significant differences were observed between MP concentrations in the soft body tissue of invertebrates and abiotic compartments, providing evidence that they are not effective biomonitors of MP pollution.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/análise , Plásticos/análise , Estuários , Espectroscopia de Infravermelho com Transformada de Fourier , Estudos de Viabilidade , África do Sul , Poluentes Químicos da Água/análise , Monitoramento Ambiental , África Austral , Água/análise , Invertebrados
7.
Virology ; 588: 109910, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37844408

RESUMO

Menippe mercenaria, the Florida stone crab, supports an unconventional fishery across the southern USA and Caribbean that involves claw-removal and the return of de-clawed animals to the sea. We provide pathological, ultrastructural, and genomic detail for a novel hepatopancreatic, nucleus-specific virus - Menippe mercenaria nudivirus (MmNV) - isolated from M. mercenaria, captured during fisheries-independent monitoring. The virus has a genome of 99,336 bp and encodes 84 predicted protein coding genes and shows greatest similarity to Aratus pisonii nudivirus (ApNV) (<60% protein similarity and 31 shared genes of greatest similarity), collected from the Florida Keys, USA. MmNV is a member of the Gammanudivirus genus (Naldaviricetes: Lefavirales: Nudiviridae). Comparisons of virus genome size, preferred host environment, and gene number revealed no clear associations between the viral traits and phylogenetic position. Evolution of the virus alongside the diversification of host taxa, with the potential for host-switching, remain more likely evolutionary pathways.


Assuntos
Braquiúros , Mercenaria , Nudiviridae , Animais , Braquiúros/metabolismo , Florida , Filogenia
8.
Zookeys ; 1160: 89-108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187461

RESUMO

A new species of freshwater crab, Potamonautesamatholesp. nov., is described from the Winterberg-Amathole mountain range in the Eastern Cape Province, South Africa. Morphologically, P.amathole Peer & Gouws, sp. nov. most closely resembles P.tuerkayi but can be distinguished by key morphological characters including the variation in the shape of the subterminal segment of gonopod 2 between both species. Genetically, P.amathole Peer & Gouws, sp. nov. is placed within the clade of small-bodied, mountain-dwelling crabs including P.parvispina, P.parvicorpus, P.brincki, P.tuerkayi, P.baziya, and P.depressus. The new species is found in slow-moving mountain streams and pools at high altitudes. The continued discovery and description of new freshwater crab species reinforces the need for ongoing research, especially in under-sampled regions.

9.
J Evol Biol ; 36(2): 432-443, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36537369

RESUMO

Uncovering what predicts genetic diversity (GD) within species can help us access the status of populations and their evolutionary potential. Traits related to effective population size show a proportional association to GD, but evidence supports life-history strategies and habitat as the drivers of GD variation. Instead of investigating highly divergent taxa, focusing on one group could help to elucidate the factors influencing the GD. Additionally, most empirical data is based on vertebrate taxa; therefore, we might be missing novel patterns of GD found in neglected invertebrate groups. Here, we investigated the predictors of the GD in crabs (Brachyura) by compiling the most comprehensive cytochrome c oxidase subunit I (COI) available. Eight predictor variables were analysed across 150 species (16 992 sequences) using linear models (multiple linear regression) and comparative methods (PGLS). Our results indicate that population size fluctuation represents the most critical trait predicting GD, with species that have undergone bottlenecks followed by population expansion showing lower GD. Egg size, pelagic larval duration and habitat might play a role probably because of their association with how species respond to disturbances. Ultimately, K-strategists that have undergone bottlenecks are the species showing lower GD. Some variables do not show an association with GD as expected, most likely due to the taxon-specific role of some predictors, which should be considered in further investigations and generalizations. This work highlights the complexity underlying the predictors of GD and adds results from a marine invertebrate group to the current understanding of this topic.


Assuntos
Braquiúros , Animais , Braquiúros/genética , Variação Genética , Evolução Biológica , Ecossistema , Invertebrados , Demografia , Filogenia
10.
Genes (Basel) ; 13(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36553531

RESUMO

The Amazon-Orinoco plume (AOP) is the world's largest freshwater and sediment discharge into the ocean. Previous studies limited to mtDNA suggest that the swimming crab Callinectes ornatus Ordway, 1863 exists as two distinct genetic clusters separated by the AOP. However, questions concerning migration, diversification time, and species delimitation are unresolved. Densely sampling markers across the genome (SNPs) could elucidate the evolutionary processes within this species. Here, we combined mtDNA data and ddRAD-seq to explore the diversification patterns and processes within the swimming crab C. ornatus. We show great genetic differentiation between groups on the north and south sides of the plume but also signs of hybridization. Demographic modeling indicates the divergence between groups starting around 8 Mya following the AOP's formation. After a period of isolation, we detect two incidences of secondary contact with stronger migration in concordance with the North Brazil Current flow. Our results suggest speciation with gene flow explained by the interplay among the AOP, oceanographic currents, and long larval dispersal. This work represents the first investigation employing ddRAD-seq in a marine invertebrate species with distribution encompassing the north and south Atlantic and sheds light on the role of the AOP in the diversification of a marine species.


Assuntos
Braquiúros , Animais , Filogenia , Braquiúros/genética , Natação , Genômica , DNA Mitocondrial/genética
11.
Front Zool ; 19(1): 24, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36303161

RESUMO

Portunoidea (Heterotremata) is a morphologically disparate taxon of true crabs (Brachyura) best-known for many of its representatives being considered "swimming crabs". The term "swimming crab", however, sometimes refers to a distinct taxon (traditionally to Portunidae within Portunoidea), and sometimes to a certain morphotype in which the 5th pereiopod (P5) has a specific shape that facilitates swimming. We use the term "P5-swimming crab" or "P5-swimmer" herein, not only to restrict it to the morphotype, but also to distinguish the swimming in question from other kinds of swimming in Brachyura. The evolution of P5-swimming crabs has not yet been satisfactorily investigated. In particular, it is not known whether the morphotype evolved several times independently in different lineages of Portunoidea or whether it evolved only once and was lost in several lineages. Ours is the first approach combining molecular with morphological data to result in a new phylogenetic positioning of some members of Portunoidea. For the first time, data from the axial skeleton and extrinsic musculature are used. Morphological examinations reveal that the axial skeleton and extrinsic musculature in P5-swimming crabs are more diverse than previously thought, with the exception of the P5 anterior coxa muscle, which originates at the median plate in all P5-swimmers. Ancestral state reconstructions based on parsimony reveal that the stem species of Portunoidea already showed the morphotype of a P5-swimming crab, but with a long merus which probably resulted in less effective P5-swimming than in extant P5-swimming crab species with a short merus. Several other extant taxa represent a reversal of the P5-swimmer morphotype to varying degrees, with some extant species showing a complete reversal of unambiguous P5-swimming crab character states-one example being the well-known common shore crab Carcinus maenas. The absence of a connection between interosternite 7/8 and the sella turcica (the secondary loss of the "brachyuran sella turcica") in the stem species of Heterotremata, resulting in a junction plate which forms a cavity that offers room and attachment sites for the P5 extrinsic musculature is uncovered as preadaptation to the P5-swimmer morphotype in Heterotremata. This preadaptation is missing in Podotremata and Thoracotremata, the other two traditional main taxa of Brachyura.

12.
Mol Phylogenet Evol ; 177: 107627, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096461

RESUMO

Maximum likelihood and Bayesian phylogenies for the brachyuran crab superfamily Xanthoidea were estimated based on three mitochondrial and four nuclear genes to infer phylogenetic relationships and inform taxonomy. Habitat data was then used in conjunction with several diversification rates analyses (BAMM, BiSSE, HiSSE, and FiSSE) to test evolutionary hypotheses regarding the diversification of xanthoid crabs. The phylogenies presented are the most comprehensive to date in terms of global diversity as they include all four constituent families (Xanthidae, Panopeidae, Pseudorhombilidae, and Linnaeoxanthidae) spanning all oceans in which xanthoid crabs occur. Six Xanthoidea families are recognised. Panopeidae and Xanthidae sensu stricto are the two largest family-level clades, which are reciprocally monophyletic. Pseudorhombilidae is nested within and is here treated as a subfamily of Panopeidae. Former subfamilies or tribes of Xanthidae sensu lato are basally positioned clades in Xanthoidea and are here assigned family-level ranks: Garthiellidae, Linnaeoxanthidae, Antrocarcinidae, and Nanocassiopidae. The genera Linnaeoxantho and Melybia were recovered in separate clades with Linnaeoxantho being sister to the family Antrocarcinidae, while Melybia was recovered within the family Panopeidae. The existing subfamily classification of Xanthidae and Panopeidae is drastically restructured with 20 xanthid and four panopeid subfamilies provisionally recognised. Diversification-time analyses inferred the origin of Xanthoidea and Garthiellidae in the Eocene, while the other families originated during the Oligocene. The majority of genus- and species-level diversification took place during the Miocene. Ancestral state reconstruction based on depth of occurrence (shallow vs. deep water) shows some ambiguity for the most recent common ancestor of Xanthoidea and Nanocassiopidae. The most recent common ancestors of Antrocarcinidae and Panopeidae were likely deep-water species, while those of Garthiellidae and Xanthidae were probably shallow-water species. Several shifts in net diversification rates were detected but they were not associated with depth-related habitat transitions.


Assuntos
Braquiúros , Animais , Teorema de Bayes , Evolução Biológica , Braquiúros/genética , Humanos , Filogenia , Água
13.
J Evol Biol ; 35(12): 1797-1805, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36156325

RESUMO

We report the discovery of a novel neo-sex chromosome in an African warbler, Sylvietta brachyura (northern crombec; Macrosphenidae). This species is part of the Sylvioidea superfamily, where four separate autosome-sex chromosome translocation events have previously been discovered via comparative genomics of 11 of the 22 families in this clade. Our discovery here resulted from analyses of genomic data of single species-representatives from three additional Sylvioidea families (Macrosphenidae, Pycnonotidae and Leiothrichidae). In all three species, we confirmed the translocation of a part of chromosome 4A to the sex chromosomes, which originated basally in Sylvioidea. In S. brachyura, we found that a part of chromosome 8 has been translocated to the sex chromosomes, forming a unique neo-sex chromosome in this lineage. Furthermore, the non-recombining part of 4A in S. brachyura is smaller than in other Sylvioidea species, which suggests that recombination continued along this region after the fusion event in the Sylvioidea ancestor. These findings reveal additional sex chromosome diversity among the Sylvioidea, where five separate translocation events are now confirmed.


Assuntos
Braquiúros , Aves Canoras , Animais , Aves Canoras/genética , Cromossomos Sexuais/genética , Genômica
14.
Zoology (Jena) ; 154: 126041, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35994874

RESUMO

At the south of its geographical distribution, the fiddler crab Leptuca uruguayensis shows two population spawning events, with more than 65 % of the females being ovigerous. The aim of this study was to assess the energy dynamics in L. uruguayensis females to estimate how they mix the capital and the income breeding strategies in the first and second spawns of the short reproductive season. The relationship between the hepatosomatic (HIS) and gonadosomatic (GSI) indices was used to assess the contribution of the hepatopancreas to ovary maturation, as indicative of the capital breeding strategy, whereas the feeding rate and the energy available in the food resource (sediment) were estimated to assess the importance of energy intake in ovary maturation, as indicative of the income breeding strategy. Before the first spawn, a significant negative relationship between the HSI and GSI (p < 0.001) and an increase of 28.2 % in the feeding rate were recorded. This suggests that the first spawn was mainly supported by energy reserves in the hepatopancreas, indicating that females used mostly the capital breeding strategy. After the first spawn, total lipid content in the hepatopancreas decreased by 33 %. On the days before the second spawn, the relationship between the HSI and GSI showed a negative but not significant (p = 0.125) trend, whereas the feeding rate increased even more. This suggests that the intense feeding activity provided the most important energetic source for ovary re-maturation, indicating that females used mostly the income breeding strategy. Also, in the second spawn, the GSI was 24.1% smaller, a fact that affected female fecundity and weight of the egg clutches, which were respectively 12 % and 11 % lower than in the first spawn. However, the energy supply allocated to each embryo was equivalent in both spawns. This study shows how L. uruguayensis females mixed the capital and income breeding strategies to take advantage of all available resources to produce two spawns in a short reproductive season.


Assuntos
Braquiúros , Animais , Feminino , Reprodução , Estações do Ano
15.
Genes (Basel) ; 13(7)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35885910

RESUMO

Characterizing the complete mitochondrial genome (mitogenome) of an organism is useful for genomic studies in taxonomy and evolution. The mitogenomic characteristics of Eucrate crenata (Decapoda: Brachyura: Goneplacidae) have never been studied. The present study decodes the first mitogenome of E. crenata by high-throughput sequencing (HTS). The length of the mitogenome is 15,597 bp, and it contains 13 protein-coding genes, 2 ribosomal RNA genes (rrnS and rrnL), and 22 transfer RNA genes. There are 14 and 23 genes observed on the heavy and light strands, respectively. E. crenata possesses a trnH-cac translocation, with the trnH-cac shifted between trnE-gaa and trnF-ttc instead of the usual location between nad5 and nad4 in decapods. Phylogenetic analyses based on the current dataset of 33 Brachyuran mitogenomes indicate that E. crenata. is closely related to Ashtoret lunaris of Matutidae. The similar codon usage and rearrangements in the two species provide evidence for their close phylogenetic relationship. Positive selection analysis showed that one residue located in cox1 was identified as a positively selected site with high BEB value (>95%), indicating that this gene was under positive selection pressure. This study is the first complete mitogenome record for the family Goneplacidae, and the results obtained may improve the understanding of the phylogeny of Goneplacidae in Brachyura.


Assuntos
Braquiúros , Genoma Mitocondrial , Animais , Braquiúros/genética , Rearranjo Gênico , Genoma Mitocondrial/genética , Filogenia , RNA de Transferência/genética
16.
PeerJ ; 10: e12774, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35228905

RESUMO

BACKGROUND: Holothuriophilus trapeziformis Nauck, 1880 is a holothurian-dweller pinnotherid crab representing one of the two species of the genus distributed along the Pacific coast of Mexico and Chile, respectively. While the parasitic ecological interaction with its host is well established, the morphology of the male remains unknown, and DNA information for the species is not available. Furthermore, the only morphological trait separating both species of the genus is subjective and corresponds to the presence or absence of a gap between the fingers of the chelae. Our goal is to complete and clarify the taxonomic status of H. trapeziformis and describe the male morphology with the use of the integrative taxonomy, providing additional characters to differentiate this species. METHODS: We collected new biological material in the Pacific coast of Mexico including the topotypes. We also reviewed material from national collections to integrate morphology (based on a complete and detailed description and illustration of the species using light microscopy), ecological data (based on the identification of the host and the place where it was located within the host), and the mtCOI gene information (commonly known as DNA barcode) to differentiate Holothuriophilus trapeziformis from other related crabs. RESULTS: This species presents marked sexual dimorphism only in the primary sexual characters. For the first time we describe morphological variability of traditionally stable characters. In addition to the gap between the fingers of the chelae, Holothuriophilus trapeziformis differs from H. pacificus (Poeppig, 1836) by their ornamentation, the shape of the male abdomen, and the gonopod. Cytocrome Oxidase 1 gene (COI) distance divergence was >3% between both Holothuriophilus species forming a clear clade. DNA barcoding indicates only one taxon, with a maximum divergence of 2.2%. All the specimens have the same Barcode Index Number (BIN; BOLD: ADE9974). All the hosts for H. trapeziformis were identified as Holothuria (Halodeima) inornata Semper, 1868; the presence of the crab in the host's coelomic cavity was confirmed, and for the first time we found it within the intestine. The geographical distribution is the Pacific coast of Mexico. Based on the data presented here, the taxonomic status of Holothuriophilus trapeziformis is now complete.


Assuntos
Cipriniformes , Decápodes , Holothuria , Animais , Masculino , México , Chile , Alimentos Marinhos
17.
BMC Ecol Evol ; 21(1): 180, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556035

RESUMO

BACKGROUND: Mangroves are tropical and subtropical intertidal forests colonising sheltered coasts across the world. They host a unique faunal community, dominated by brachyuran crabs and gastropods. These invertebrates strongly contribute to the functionality of the entire forest. The reliable assessment of mangrove faunal diversity is, thus, a crucial step for efficient management and conservation plans, but it is hindered by difficulties in species identification. Here we provide a verified DNA barcode library for brachyuran crabs and gastropods inhabiting the mangroves of the Greater Bay Area, Southern China. In particular, we collected and morphologically identified 1100 specimens of mangrove associated brachyuran crabs and gastropods. The partial sequences of the mtDNA cytochrome oxidase subunit I gene were obtained from 275 specimens. Barcode sequences were then used to delineate Molecular Operational Taxonomic Units (MOTUs), employing three different delimitation methods: the automatic barcode gap discovery (ABGD) method, the general mixed Yule coalescent (GMYC) model and a Bayesian implementation of the Poisson tree processes (bPTP) model. RESULTS: By integrating DNA barcodes with morphology, we identified 44 gastropod species and 58 brachyuran species associated with Hong Kong mangroves, with five and seven new records, for gastropods and crabs, respectively, for the Greater Bay Area. The delineation of MOTUs based on barcode sequences revealed a strong congruence between morphological and molecular identification for both taxa, showing the high reliability of the barcode library. CONCLUSIONS: This study provides the first reference barcode library for mangrove-associated macrobenthic fauna in the Greater Bay Area and represents a reliable tool to management and conservation plans. Our molecular analyses resolved long lasting taxonomic misidentifications and inconsistencies and updated the knowledge on the geographical distribution of Asian mangrove associated fauna, ultimately highlighting a level of biodiversity higher than previously thought for Southern China.


Assuntos
Braquiúros , Gastrópodes , Animais , Teorema de Bayes , Braquiúros/genética , China , Código de Barras de DNA Taxonômico , Florestas , Gastrópodes/genética , Hong Kong , Filogenia , Reprodutibilidade dos Testes
18.
G3 (Bethesda) ; 11(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34544121

RESUMO

The blue crab, Callinectes sapidus (Rathbun, 1896) is an economically, culturally, and ecologically important species found across the temperate and tropical North and South American Atlantic coast. A reference genome will enable research for this high-value species. Initial assembly combined 200× coverage Illumina paired-end reads, a 60× 8 kb mate-paired library, and 50× PacBio data using the MaSuRCA assembler resulting in a 985 Mb assembly with a scaffold N50 of 153 kb. Dovetail Chicago and HiC sequencing with the 3d DNA assembler and Juicebox assembly tools were then used for chromosome scaffolding. The 50 largest scaffolds span 810 Mb are 1.5-37 Mb long and have a repeat content of 36%. The 190 Mb unplaced sequence is in 3921 sequences over 10 kb with a repeat content of 68%. The final assembly N50 is 18.9 Mb for scaffolds and 9317 bases for contigs. Of arthropod BUSCO, ∼88% (888/1013) were complete and single copies. Using 309 million RNAseq read pairs from 12 different tissues and developmental stages, 25,249 protein-coding genes were predicted. Between C. sapidus and Portunus trituberculatus genomes, 41 of 50 large scaffolds had high nucleotide identity and protein-coding synteny, but 9 scaffolds in both assemblies were not clear matches. The protein-coding genes included 9423 one-to-one putative orthologs, of which 7165 were syntenic between the two crab species. Overall, the two crab genome assemblies show strong similarities at the nucleotide, protein, and chromosome level and verify the blue crab genome as an excellent reference for this important seafood species.


Assuntos
Braquiúros , Animais , Braquiúros/genética , Cromossomos/genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala
19.
Mitochondrial DNA B Resour ; 6(3): 865-867, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33796660

RESUMO

In this study, the complete mitochondrial genome of Norwegian skates imported to Korea was sequenced with a circular molecule of 17,121 bp, which consisted of 13 protein-coding genes (PCGs), 2 ribosomal RNAs, 22 transfer RNA genes, and a control region (D-loop). And among these sequences, 193 bp sequence in the D-loop of the genus Raja suggested the possibility of being used as a genetic marker for classification of Raja and Dipturus species. The BI phylogenetic tree by using the nucleotide sequences of 13 PCGs from 15 available mitogenomes of family Rajidae confirmed also that Norwegian skates imported to Korea form a group with Raja brachyura species with high branch value, and that this was a species of Raja brachyura. As above, these results would be expected to provide for the further understanding on the phylogenetic relationship, taxonomic classification and phylogeography of the family Rajidae.

20.
Mitochondrial DNA B Resour ; 6(3): 1236-1237, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33829092

RESUMO

The complete mitochondrial genome of the majoid crab, Oregonia gracilis, was determined from a specimen collected in Korea. The mitochondrial genome is 15,737 bp long and contains 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, and two ribosomal RNA (rRNA) genes. A maximum-likelihood phylogenetic tree based on the 13 PCGs of the mitochondria showed that O. gracilis is closely related to the genus Chinoecetes. The complete mitochondrial genome of O. gracilis provides valuable information on the mitochondrial evolution of majoid crabs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...