Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.154
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38963553

RESUMO

RATIONALE: Our study aimed to unravel the unknown mechanisms behind the exceptional efficacy of Psilocybin (PSI) in treating treatment-resistant depression (TRD). Focusing on Wistar-Kyoto (WKY) rats with a TRD phenotype and Wistar (WIS) rats as a normative comparison, we investigated behavioral and neuroplasticity-related responses to PSI, striving to shed light on the distinctive features of its antidepressant effects. OBJECTIVES: We set out to assess the behavioral impact of acute and prolonged PSI administration on WKY and WIS rats, employing Novel Object Recognition (NORT), Social Interaction (SI), and Forced Swimming Test (FST). Our secondary objectives involved exploring strain-specific alterations in neuroplasticity-related parameters, including brain-derived neurotrophic factor (BDNF) and activity-regulated cytoskeleton-associated protein (Arc). METHODS: Conducting post-acute and extended assessments after a single PSI administration, we applied behavioral tests and biochemical analyses to measure serum BDNF levels and neuroplasticity-related parameters in the prefrontal cortex. Statistical analyses were deployed to discern significant differences between the rat strains and assess the impact of PSI on behavioral and biochemical outcomes. RESULTS: Our findings uncovered significant behavioral disparities between WKY and WIS rats, indicating passive behavior and social withdrawal in the former. PSI demonstrated pronounced pro-social and antidepressant effects in both strains, each with its distinctive temporal trajectory. Notably, we identified strain-specific variations in BDNF-related signaling and observed the modulation of Arc expression in WKY rats. CONCLUSIONS: Our study delineated mood-related behavioral nuances between WKY and WIS rat strains, underscoring the antidepressant and pro-social properties of PSI in both groups. The distinct temporal patterns of observed changes and the identified strain-specific neuroplasticity alterations provide valuable insights into the TRD phenotype and the mechanisms underpinning the efficacy of PSI.

2.
Cell Biochem Biophys ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990419

RESUMO

BACKGROUND: The neuroprotective effects of Dehydroepiandrosterone (DHEA) and Hericium erinaceus (H. erinaceus) mushroom extract against scopolamine-induced Alzheimer's disease-like symptoms in male Wistar rats were investigated. METHODS: Sixty-four male Wistar rats were divided into eight groups (n = 8). Scopolamine (SCO) was intraperitoneally injected at a dose of 1 mg/kg/day for 10 days. The treatment groups orally received DHEA (250 mg/kg/day) and/or H. erinaceus (300 mg/kg/day) for 14 days. Afterward, the Morris water maze (MWM) and novel object recognition tests were implemented. Then, animals were anesthetized and the brain tissue samples were separated. Levels of lipid peroxidation (LPO), total antioxidant capacity (TAC), catalase activity (CAT), and brain-derived neurotrophic factor (BDNF) were determined. Also, histopathological studies were evaluated in the brain tissue samples. RESULTS: Administration of SCO significantly decreased spatial and cognitive memory (p < 0.001). Not only did SCO injection significantly increase the levels of the LPO but also the SCO markedly reduced the levels of the TAC, CAT activity, and the BDNF in the brain tissue. On the other hand, a combination of the DHEA and H. erinaceus showed higher efficacy than the DHEA or H. erinaceus in attenuating behavioral anomalies and improving the antioxidant defense system and BDNF levels. Histological examination was well correlated with biochemical findings regarding SCO neurodegeneration and DHEA and/or H. erinaceus neuroprotection. CONCLUSION: Interestingly, ADHE and/or H. erinaceus may due to their potential neurotrophic properties be used as a new and beneficial concurrent therapy in the treatment of Alzheimer's disease-like symptoms caused by SCO.

3.
CNS Neurosci Ther ; 30(7): e14855, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38992889

RESUMO

BACKGROUND: G1 is a specific agonist of G protein-coupled estrogen receptor 1 (GPER1), which binds and activates GPER1 to exert various neurological functions. However, the preventive effect of G1 on post-traumatic stress disorder (PTSD) and its mechanisms are unclear. OBJECTIVE: To evaluate the protective effect of G1 against synaptic and mitochondrial impairments and to investigate the mechanism of G1 to improve PTSD from brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) signaling. METHODS: This study initially detected GPER1 expression in the hippocampus of single prolonged stress (SPS) mice, utilizing both Western blot and immunofluorescence staining. Subsequently, the effects of G1 on PTSD-like behaviors, synaptic, and mitochondrial functions in SPS mice were investigated. Additionally, the involvement of BDNF/TrkB signaling involved in the protection was further confirmed using GPER1 antagonist and TrkB inhibitor, respectively. RESULTS: The expression of GPER1 was reduced in the hippocampus of SPS mice, and G1 treatment given for 14 consecutive days significantly improved PTSD-like behaviors in SPS mice compared with model group. Electrophysiological local field potential (LFP) results showed that G1 administration for 14 consecutive days could reverse the abnormal changes in the gamma oscillation in the CA1 region of SPS mice. Meanwhile, G1 administration for 14 consecutive days could significantly improve the abnormal expression of synaptic proteins, increase the expression of mitochondria-related proteins, increase the number of synapses in the hippocampus, and ameliorate the damage of hippocampal mitochondrial structure in SPS mice. In addition, G15 (GPER1 inhibitor) and ANA-12 (TrkB inhibitor) blocked the ameliorative effects of G1 on PTSD-like behaviors and aberrant expression of hippocampal synaptic and mitochondrial proteins in SPS mice and inhibited the reparative effects of G1 on structural damage to hippocampal mitochondria, respectively. CONCLUSION: G1 improved PTSD-like behaviors in SPS mice, possibly by increasing hippocampal GPER1 expression and promoting BDNF/TrkB signaling to repair synaptic and mitochondrial functional impairments. This study would provide critical mechanism for the prevention and treatment of PTSD.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Hipocampo , Mitocôndrias , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Transtornos de Estresse Pós-Traumáticos , Sinapses , Animais , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/prevenção & controle , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Camundongos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Receptores de Estrogênio/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Receptor trkB/metabolismo , Receptor trkB/antagonistas & inibidores , Camundongos Endogâmicos C57BL
4.
Brain Behav Immun Health ; 39: 100804, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38979093

RESUMO

Background: During gestation, the brain development of the fetus is affected by many biological markers, where inflammatory processes and neurotrophic factors have been of particular interest in the past decade. Aim: This exploratory study is the first attempt to explore the relationships between biomarker levels in maternal and cord-blood samples and human fetal brain activity measured with non-invasive fetal magnetoencephalography (fMEG). Method: Twenty-three women were enrolled in this study for collection of maternal serum and fMEG tracings immediately prior to their scheduled cesarean delivery. Twelve of these women had a preexisting diabetic condition. At the time of delivery, umbilical cord blood was also collected. Biomarker levels from both maternal and cord blood were measured and subsequently analyzed for correlations with fetal brain activity in four frequency bands extracted from fMEG power spectral densities. Results: Relative power in the delta, alpha, and beta frequency bands exhibited moderate-sized correlations with maternal BDNF and cord-blood CRP levels before and after adjusting for confounding diabetic status. These correlations were negative for the delta band, and positive for the alpha and beta bands. Maternal CRP and cord-blood BDNF and IL-6 exhibited negligible correlations with relative power in all four bands. Diabetes did not appear to be a strong confounding factor affecting the studied biomarkers. Conclusions: Maternal BDNF levels and cord-blood CRP levels appear to have a direct correlation to fetal brain activity. Our findings indicate the potential use of these biomarkers in conjunction with fetal brain electrophysiology to track fetal neurodevelopment.

5.
Mol Neurobiol ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965172

RESUMO

A pathological hallmark of Alzheimer's disease (AD) is the region-specific accumulation of the amyloid-beta protein (Aß), which triggers aberrant neuronal excitability, synaptic impairment, and progressive cognitive decline. Previous works have demonstrated that Aß pathology induced aberrant elevation in the levels and excessive enzymatic hydrolysis of voltage-gated sodium channel type 2 beta subunit (Navß2) in the brain of AD models, accompanied by alteration in excitability of hippocampal neurons, synaptic deficits, and subsequently, cognitive dysfunction. However, the mechanism is unclear. In this research, by employing cell models treated with toxic Aß1-42 and AD mice, the possible effects and potential mechanisms induced by Navß2. The results reveal that Aß1-42 induces remarkable increases in Navß2 intracellular domain (Navß2-ICD) and decreases in both BDNF exons and protein levels, as well as phosphorylated tropomyosin-related kinase B (pTrkB) expression in cells and mice, coupled with cognitive impairments, synaptic deficits, and aberrant neuronal excitability. Administration with exogenous Navß2-ICD further enhances these effects induced by Aß1-42, while interfering the generation of Navß2-ICD and/or complementing BDNF neutralize the Navß2-ICD-conducted effects. Luciferase reporter assay verifies that Navß2-ICD regulates BDNF transcription and expression by targeting its promoter. Collectively, our findings partially elucidate that abnormal enzymatic hydrolysis of Navß2 induced by Aß1-42-associated AD pathology leads to intracellular Navß2-ICD overload, which may responsible to abnormal neuronal excitability, synaptic deficit, and cognition dysfunction, through its transcriptional suppression on BDNF. Therefore, this work supplies novel evidences that Navß2 plays crucial roles in the occurrence and progression of cognitive impairment of AD by transcriptional regulatory activity of its cleaved ICD.

6.
Health Sci Rep ; 7(6): e2175, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895550

RESUMO

Background and Aims: Mild cognitive impairment (MCI) is a widespread condition in older individuals, posing significant risk of dementia. However, limited research has been conducted to explore effective interventions and clarify their impact at the neural level. Therefore, this study aimed to investigate the effects of computerized cognitive training (CCT) and explore the associated neural mechanisms in preventing dementia in older individuals with MCI, with a view to inform future intervention efforts. Methods: We reviewed the effects of CCT on biomarker outcomes in older adults with MCI. The search was conducted for studies published between 2010 and May 10, 2023, using three search engines: PubMed, Scopus, and Cumulative Index to Nursing and Allied Health Literature. The inclusion criteria were as follows: studies that involved participants diagnosed with MCI, included CCT, included quantitative assessment of biomarker results, and conducted randomized controlled trials. Results: Sixteen studies that used biomarkers, including magnetic resonance imaging, electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and blood or salivary biomarkers, were extracted. The results showed that CCT caused changes in structure and function within the main brain network, including the default mode network, and decreased both theta rhythm activity on EEG and prefrontal activity on fNIRS, with improvement in cognitive function. Furthermore, CCT combined with physical exercise showed more significant structural and functional changes in extensive brain regions compared with CCT alone. Virtual reality-based cognitive training improved not only executive function but also instrumental activities of daily living. Conclusion: CCT causes functional and structural changes in extensive brain regions and improves cognitive function in older adults with MCI. Our findings highlight the potential of individualized intervention methods and biomarker assessment according to the specific causes of MCI. Future research should aim to optimize these personalized therapeutic strategies to maximize the benefits of CCT in older adults with MCI.

7.
J Affect Disord ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897298

RESUMO

BACKGROUND: Brain-derived neurotrophic factor (BDNF) is crucial for neuronal survival and may be implicated in the pathophysiological process of depression. This study aimed to prospectively investigate the association between serum BDNF and post-stroke depression (PSD) at 3 months in a multicenter cohort study. METHODS: A total of 611 ischemic stroke patients with serum BDNF measurements from the China Antihypertensive Trial in Acute Ischemic Stroke were included in this analysis. We used the 24-item Hamilton Depression Rating Scale to assess depression status at 3 months after ischemic stroke, and PSD was defined as a score of ≥8. RESULTS: Baseline serum BDNF was inversely associated with the risk of depression after ischemic stroke. The multivariable-adjusted odds ratio of PSD for the highest tertile of BDNF was 0.53 (95 % confidence interval, 0.34-0.82; P for trend = 0.004) compared with the lowest tertile. Multivariable-adjusted spline regression model also showed a linear does-response association between serum BDNF levels and PSD at 3 months (P for linearity = 0.006). In addition, adding serum BDNF to conventional risk factors significantly improved the risk reclassification of PSD (net reclassification improvement: 16.98 %, P = 0.039; integrated discrimination index: 0.93 %, P = 0.026). LIMITATIONS: All patients in this study were Chinese, so our findings should be applied to other populations cautiously. CONCLUSIONS: Higher serum BDNF levels at baseline were significantly associated with a decreased risk of PSD at 3 months, suggesting that BDNF might be a valuable predictive biomarker and potential therapeutic target for PSD among ischemic stroke patients.

8.
Zhongguo Zhen Jiu ; 44(6): 648-52, 2024 Jun 12.
Artigo em Chinês | MEDLINE | ID: mdl-38867626

RESUMO

OBJECTIVE: To observe the clinical effect of Tongdu Tiaoshen acupuncture (acupuncture for promoting the circulation of the governor vessel and regulating the spirit) for subjective tinnitus, and explore its potential mechanism. METHODS: A total of 92 patients with subjective tinnitus were randomly divided into an acupuncture group (46 cases, 5 cases dropped out) and a medication group (46 cases, 2 cases dropped out). The acupuncture group received Tongdu Tiaoshen acupuncture at Shuigou (GV 26), Yintang (GV 24+), Shenting (GV 24), Baihui (GV 20), Fengfu (GV 16), Dazhui (GV 14) and Zhongzhu (TE 3), Tinghui (GB 2), Yifeng (TE 17) on the affected side, 30 min each time, once every other day, 3 times a week. The medication group was orally administered ginkgo biloba leaves tablets (40 mg each time) and mecobalamin tablets (0.5 mg each time), 3 times a day. Both groups were treated for 4 weeks. The scores of tinnitus severity, tinnitus loudness visual analogue scale (VAS) and depression anxiety stress scale-21(DASS-21) before and after treatment were observed in the two groups, serum level of brain-derived neurotrophic factor (BDNF) before and after treatment in the two groups was detected, and the clinical effect was evaluated in the two groups. RESULTS: After treatment,the scores of tinnitus severity, tinnitus loudness VAS and DASS-21 were decreased compared with those before treatment in the two groups (P<0.01), and the scores in the acupuncture group were lower than those in the medication group (P<0.05). After treatment, the serum level of BDNF was decreased compared with that before treatment in the two groups (P<0.01), and the serum level of BDNF in the acupuncture group was lower than that in the medication group (P<0.05). The total effective rate of the acupuncture group was 82.9% (34/41), which was higher than 70.5% (31/44) in the medication group (P<0.05). CONCLUSION: Tongdu Tiaoshen acupuncture could improve the severity of tinnitus, tinnitus loudness and negative emotion in patients with subjective tinnitus. Its mechanism may be related to the regulation of serum level of BDNF and thus affect auditory central plasticity.


Assuntos
Pontos de Acupuntura , Terapia por Acupuntura , Zumbido , Humanos , Zumbido/terapia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Fator Neurotrófico Derivado do Encéfalo/sangue , Resultado do Tratamento , Adulto Jovem
9.
BMC Neurol ; 24(1): 197, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862912

RESUMO

INTRODUCTION: Individuals with spinal cord injury (SCI) can experience accelerated cognitive aging. Myokines (factors released from muscle cells during contractions), such as brain-derived neurotrophic factor (BDNF), are thought to have beneficial effects on cognition. Neuromuscular electrical stimulation (NMES) was shown to elicit a large release of myokines. However, the effects of NMES on cognitive function have not been studied. OBJECTIVE: To present the study protocol for a clinical trial evaluating the effects of NMES aimed at improving cognition and BDNF. METHODS: A replicated randomized three-phases single-case experimental design (SCED) with sequential multiple baseline time series and a single-armed prospective trial will be conducted with 15 adults with chronic SCI (> 12 months after injury) above L1 neurological level undergoing 30-min quadriceps NMES, 3 days per week for 12 weeks. MAIN STUDY ENDPOINTS: Primary endpoint is cognitive performance (assessed by a smartphone test) conducted three times per week during the baseline phase with random duration of 3 to 8 weeks, the intervention phase of 12 weeks, and the follow-up phase of 3 weeks after a no measurement rest period of 12 weeks. Secondary endpoints are changes in BDNF levels and cognitive performance measured before the baseline period, before and after intervention and after a 12 weeks follow-up. CONCLUSION: This will be the first study investigating the effects of 12 weeks NMES on both cognition and BDNF levels in individuals with SCI. The SCED results provide information on individual treatment effect courses which may direct future research. TRIAL REGISTRATION: ClinicalTrials.gov (NCT05822297, 12/01/2023).


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Terapia por Estimulação Elétrica , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/psicologia , Traumatismos da Medula Espinal/reabilitação , Terapia por Estimulação Elétrica/métodos , Adulto , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Masculino , Feminino , Estudos de Caso Único como Assunto , Cognição/fisiologia , Pessoa de Meia-Idade , Projetos de Pesquisa
10.
Neurochem Res ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856889

RESUMO

Brain-derived neurotrophic factor (BDNF) is vital for synaptic plasticity, cell persistence, and neuronal development in peripheral and central nervous systems (CNS). Numerous intracellular signalling pathways involving BDNF are well recognized to affect neurogenesis, synaptic function, cell viability, and cognitive function, which in turn affects pathological and physiological aspects of neurons. Stroke has a significant psycho-socioeconomic impact globally. Central post-stroke pain (CPSP), also known as a type of chronic neuropathic pain, is caused by injury to the CNS following a stroke, specifically damage to the somatosensory system. BDNF regulates a broad range of functions directly or via its biologically active isoforms, regulating multiple signalling pathways through interactions with different types of receptors. BDNF has been shown to play a major role in facilitating neuroplasticity during post-stroke recovery and a pro-nociceptive role in pain development in the nervous system. BDNF-tyrosine kinase receptors B (TrkB) pathway promotes neurite outgrowth, neurogenesis, and the prevention of apoptosis, which helps in stroke recovery. Meanwhile, BDNF overexpression plays a role in CPSP via the activation of purinergic receptors P2X4R and P2X7R. The neuronal hyperexcitability that causes CPSP is linked with BDNF-TrkB interactions, changes in ion channels and inflammatory reactions. This review provides an overview of BDNF synthesis, interactions with certain receptors, and potential functions in regulating signalling pathways associated with stroke and CPSP. The pathophysiological mechanisms underlying CPSP, the role of BDNF in CPSP, and the challenges and current treatment strategies targeting BDNF are also discussed.

11.
Brain Sci ; 14(6)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38928543

RESUMO

Depression is the most common mental disorder worldwide. Both antidepressants and psychotherapy are effective in treating depression, but the response to these treatments is often incomplete. Yoga-based interventions (YBIs) have been advocated by some researchers as a promising form of alternative treatment for depression. Recent research has attempted to identify the biological mechanisms associated with the antidepressant actions of YBIs. In this scoping review, conducted according to the PRISMA-ScR guidelines, the PubMed and Scopus databases were searched to retrieve research on biomarkers of response to YBIs in patients with depression. These studies were also critically reviewed to evaluate their methodological quality and any sources of bias. Nineteen studies were included in the review. Based on these studies, there is preliminary evidence that YBIs may be associated with increased serum brain-derived neurotrophic factor (BDNF) and reduced serum cortisol and interleukin-6 (IL-6) in patients with depression. However, many of these changes were also observed in the control arms, and the overall quality of the research was low. At present, it cannot be concluded that there are reliable biomarkers of response to YBIs in depression, though there are some potential biological correlates. Further advances in this field will depend critically on improvements in study design, particularly the minimization of sources of bias and the selection of more specific and sensitive biomarkers based on existing evidence from other treatment modalities.

12.
Cell Rep Med ; 5(6): 101593, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38843842

RESUMO

Aging compromises brain function leading to cognitive decline. A cyclic ketogenic diet (KD) improves memory in aged mice after long-term administration; however, short-term effects later in life and the molecular mechanisms that govern such changes remain unclear. Here, we explore the impact of a short-term KD treatment starting at elderly stage on brain function of aged mice. Behavioral testing and long-term potentiation (LTP) recordings reveal that KD improves working memory and hippocampal LTP. Furthermore, the synaptosome proteome of aged mice fed a KD long-term evidence changes predominantly at the presynaptic compartment associated to the protein kinase A (PKA) signaling pathway. These findings were corroborated in vivo by western blot analysis, with high BDNF abundance and PKA substrate phosphorylation. Overall, we show that a KD modifies brain function even when it is administered later in life and recapitulates molecular features of long-term administration, including the PKA signaling pathway, thus promoting synaptic plasticity at advanced age.


Assuntos
Envelhecimento , Proteínas Quinases Dependentes de AMP Cíclico , Dieta Cetogênica , Potenciação de Longa Duração , Memória , Proteoma , Transdução de Sinais , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Dieta Cetogênica/métodos , Proteoma/metabolismo , Camundongos , Masculino , Memória/fisiologia , Potenciação de Longa Duração/fisiologia , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Sinapses/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Plasticidade Neuronal/fisiologia , Fosforilação
13.
Artigo em Inglês | MEDLINE | ID: mdl-38940908

RESUMO

RATIONALE: Since the precise mechanisms of posttraumatic stress disorder (PTSD) remain unknown, effective treatment interventions have not yet been established. Impaired extinction of fear memory (EFM) is one of the core symptoms of PTSD and is associated with stress-induced epigenetic change in gene expression. OBJECTIVES: In this study, we examined whether the involvement of histone H3 lysine 9 dimethylation (H3K9me2) in EFM is mediated through brain-derived neurotrophic factor (BDNF) expression in the hippocampus, and whether BIX01294, a selective G9a and GLP histone methyltransferase inhibitor, could be treatment for impaired EFM in an animal model of PTSD. METHODS: The single prolonged stress (SPS) paradigm was used to model PTSD. We measured BDNF mRNA levels by RT-PCR, and H3K9me2 levels in the BDNF gene promoters by chromatin immunoprecipitation-qPCR. After undergoing contextual fear conditioning and hippocampal injection of BIX01294, male rats were subjected to extinction training and extinction testing and their freezing times and BDNF mRNA levels were measured. RESULTS: Compared to sham rats, SPS rats showed decreased BDNF mRNA levels 2 h after extinction training, no significant changes in levels of global H3K9me2 prior to extinction training, and increased levels of H3K9me2 in BDNF gene promoter IV, but not in BDNF gene promoter I. Administration of BIX01294 ameliorated the decrease in BDNF mRNA levels 2 h after extinction training and subsequently alleviated impaired EFM in extinction tests in SPS rats. CONCLUSION: We conclude that reduced hippocampal levels of BDNF mRNA due to increase in H3K9me2 levels may play a role in PTSD-associated EFM impairment, and BIX01294 could be a PTSD treatment option.

14.
Neurosci Lett ; 836: 137880, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885757

RESUMO

Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays key roles in neuronal protection and synaptic plasticity. Changes in BDNF are associated with various pathological conditions, including methamphetamine (meth) addiction, although the effects of meth on BDNF expression are not always consistent. We have previously demonstrated region-specific effects of a chronic meth regime on BDNF methylation and expression in the rat brain. This study aims to determine the effect of chronic meth administration on the expression of BDNF protein using immunohistochemistry in the rat frontal cortex and hippocampus. Novel object recognition (NOR) as a measure of cognitive function was also determined. Male Sprague Dawley rats were administered a chronic escalating dose (0.1-4 mg/kg over 14 days) (ED) of meth or vehicle; a subgroup of animals receiving meth were also given an acute "binge" (4x6mg) dose on the final day before NOR testing. The results showed that hippocampal CA1 BDNF protein was significantly increased by 72 % above control values in the ED-binge rats, while other hippocampal regions and frontal cortex were not significantly affected. Meth-administered animals also demonstrated deficits in NOR after 24 h delay. No significant effect of the additional binge dose on BDNF protein or NOR findings was apparent. This finding is consistent with our previous results of reduced DNA methylation and increased expression of the BDNF gene in this region. The hippocampal BDNF increase may reflect an initial increase in a protective factor produced in response to elevated glutamate release resulting in neurodegenerative excitotoxicity.

15.
Zh Nevrol Psikhiatr Im S S Korsakova ; 124(5. Vyp. 2): 72-78, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38934669

RESUMO

OBJECTIVE: To study the relationship between brain-derived neurotrophic factor (BDNF) and the severity of nocturnal hypoxemia in patients in the acute and early recovery period of ischemic stroke (IS). MATERIAL AND METHODS: We enrolled 44 patients (27 men, 17 women), aged 18-85 years, in the acute phase of IS. At 3-month follow-up, 35 people were examined (21 men and 14 women). In the acute period, in addition to routine diagnostic procedures, respiratory monitoring was carried out, and the serum level of BDNF was measured by enzyme-linked immunosorbent assay. BDNF level was also evaluated at 3-month follow-up visit. Neurological status and its dynamics in the acute period of stroke were assessed as part of the clinical routine according to the National Institutes of Health Stroke Scale (NIHSS) at admission and discharge. RESULTS: We found a direct correlation between the duration of hypoxemia with SpO2 less than 90% (r=0.327, p=0.035) and less than 85% (r=0.461, p=0.003) and BDNF level in the acute phase of IS. BDNF level in the acute period of IS was negatively correlated with the minimum saturation value (r=-0.328, p=0.034). There was a direct relationship between BDNF level in the early recovery period and the duration of hypoxemia with SpO2 less than 85% (r=-0.389, p=0.028). A regression model showed that BDNF level was associated with the minimum SpO2 level. No significant associations were found with indicators of sleep-disordered breathing severity, such as the apnea-hypopnea index and the oxygen desaturation index. CONCLUSION: The severity of nocturnal hypoxemia is associated with the increase in BDNF levels both in the acute and recovery periods of IS, regardless of the presence of concomitant breathing disorders during sleep.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Hipóxia , AVC Isquêmico , Humanos , Masculino , Fator Neurotrófico Derivado do Encéfalo/sangue , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Hipóxia/sangue , Hipóxia/complicações , Idoso de 80 Anos ou mais , Adolescente , AVC Isquêmico/sangue , AVC Isquêmico/complicações , Adulto Jovem
16.
Psychopathology ; : 1-8, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934178

RESUMO

INTRODUCTION: Considering the importance of neuroinflammation and neurodegeneration in the pathophysiology of major depressive disorder (MDD), peripheral blood biomarkers are promising for the prediction of diagnosis and treatment outcomes. We aimed to elucidate the neuroinflammatory pathophysiology of depression by evaluating serum levels of FAM19A5 as a new biomarker of inflammatory activation, proinflammatory cytokines, brain-derived neurotrophic factor (BDNF), and oxidative stress parameters. METHODS: Adolescents diagnosed with first-episode drug-naive MDD (n = 35) were compared neurobiologically healthy control group (n = 33). Serum FAM19A5 levels, cytokine levels, BDNF and oxidative stress parameters were evaluated using the enzyme-linked immunoassay method. All participants were assessed with the Level-2 Depression Severity Scale, Sleep Disturbance Scale, Somatic Symptom Scale. RESULTS: BDNF levels were significantly higher in the patient group compared to the control group. While BDNF showed a positive correlation with all scale scores; BDNF was significantly higher in the suicide risk groups than the control group. IL-1ß levels displayed a negative correlation with the severity of sleep disturbances. CONCLUSIONS: In adolescents with MDD, inflammatory and oxidative stress markers were not raised in peripheral blood, unlike in adults. However, BDNF levels, which typically decrease in neurodegenerative conditions, were higher in those with MDD.

17.
Nutrients ; 16(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931243

RESUMO

The brain-derived neurotrophic factor (BDNF) plays a crucial role during neuronal development as well as during differentiation and synaptogenesis. They are important proteins present in the brain that support neuronal health and protect the neurons from detrimental signals. The results from the present study suggest BDNF expression can be increase up to ~8-fold by treating the neuroblastoma cells SHSY-5Y with an herbal extract of Oroxylum indicum (50 µg/mL) and ~5.5-fold under lipopolysaccharides (LPS)-induced inflammation conditions. The Oroxylum indicum extract (Sabroxy) was standardized to 10% oroxylin A, 6% chrysin, and 15% baicalein. In addition, Sabroxy has shown to possess antioxidant activity that could decrease the damage caused by the exacerbation of radicals during neurodegeneration. A mode of action of over expression of BDNF with and without inflammation is proposed for the Oroxylum indicum extract, where the three major hydroxyflavones exert their effects through additive or synergistic effects via five possible targets including GABA, Adenoside A2A and estrogen receptor bindings, anti-inflammatory effects, and reduced mitochondrial ROS production.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Flavanonas , Inflamação , Lipopolissacarídeos , Neurônios , Fármacos Neuroprotetores , Extratos Vegetais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Extratos Vegetais/farmacologia , Humanos , Fármacos Neuroprotetores/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Linhagem Celular Tumoral , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/metabolismo , Flavanonas/farmacologia , Bignoniaceae/química , Regulação para Cima/efeitos dos fármacos , Flavonoides/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia
18.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931465

RESUMO

The effects of brain-derived neurotrophic factor (BDNF) on retinal ganglion cell (RGC) survival and visual function were assessed in rat and mouse models of optic nerve (ON) crush. ONs were crushed on Day 1, followed by intravitreal injections of a vehicle or BDNF on Days 1 and 8. The spatial frequency threshold was measured using optokinetic tracking on Days 7 and 14. On Day 15, ganglion cell complex (GCC) thickness was quantified using optical coherence tomography. Furthermore, all eyes were enucleated for immunohistochemical analysis of the surviving RGC somas and axons. BDNF significantly reduced the RGC soma in mice and increased GCC thickness in intact eyes, with apparent axonal swelling in both species. It displayed significantly greater RGC soma survival in eyes with ON injury, with moderately thicker axonal bundles in both species and a thicker GCC in rats. Visual function was significantly reduced in all ON-crushed animals, regardless of BDNF treatment. Thus, we obtained a comprehensive analysis of the structural and functional impact of BDNF in intact and ON-crushed eyes in two rodent models. Our results provide a foundation for further BDNF evaluation and the design of preclinical studies on neuroprotectants using BDNF as a reference positive control.

19.
Brain Behav Immun ; 120: 471-487, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925417

RESUMO

Activity-induced muscle pain increases interleukin-1ß (IL-1ß) release from muscle macrophages and the development of hyperalgesia is prevented by blockade of IL-1ß in muscle. Brain derived neurotrophic factor (BDNF) is released from sensory neurons in response to IL-1ß and mediates both inflammatory and neuropathic pain. Thus, we hypothesize that in activity-induced pain, fatigue metabolites combined with IL-1ß activate sensory neurons to increase BDNF release, peripherally in muscle and centrally in the spinal dorsal horn, to produce hyperalgesia. We tested the effect of intrathecal or intramuscular injection of BDNF-Tropomyosin receptor kinase B (TrkB) inhibitors, ANA-12 or TrkB-Fc, on development of activity-induced pain. Both inhibitors prevented the hyperalgesia when given before or 24hr after induction of the model in male but not female mice. BDNF messenger ribonucleic acid (mRNA) and protein were significantly increased in dorsal root ganglion (DRG) 24hr after induction of the model in both male and female mice. Blockade of IL-1ß in muscle had no effect on the increased BNDF mRNA observed in the activity-induced pain model, while IL-1ß applied to cultured DRG significantly induced BDNF expression, suggesting IL-1ß is sufficient but not necessary to induce BNDF. Thus, fatigue metabolites, combined with IL-1ß, upregulate BDNF in primary DRG neurons in both male and female mice, but contribute to activity-induced pain only in males.

20.
Biol Res Nurs ; : 10998004241257664, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840298

RESUMO

Objectives: Inflammation contributes to disparate neurodevelopmental outcomes between preterm and term-born infants. In this context, DNA methylation may contribute to inflammation by affecting gene expression. Brain-derived neurotrophic factor (BDNF) and nuclear factor-kappa-B-inhibitor alpha (NFKBIA) are important genes for targeted DNA methylation analysis. The aims of this study were to (1) identify associations between inflammatory factors and BDNF and NFKBIA methylation, and (2) identify associations between BDNF and NFKBIA methylation and early neurobehavior in preterm infants. Methods: In a longitudinal cohort study of preterm infants born 28-31 weeks gestational age, blood samples were collected weekly for the quantification of inflammatory factors. We extracted DNA from saliva samples and quantified methylation of six BDNF cytosine-phosphate-guanine (CpG) sites and five NFKBIA CpG sites. Neurobehavior was assessed using the Neurobehavioral Assessment of the Preterm Infant. Results: Sixty-five infants were included in the analysis. In females, inflammatory factors were positively associated with BDNF methylation of most CpG sites. Interleukin-1 receptor antagonist was negatively associated with NFKBIA methylation at two CpG sites. In males, interleukin-6 was negatively associated with BDNF and NFKBIA methylation at most CpG sites. In females, BDNF methylation at two sites was inversely associated with motor performance. In males, NFKBIA methylation at one site was inversely associated with motor performance. Conclusion: This study provides evidence for the relationship between inflammation and neurobehavior in preterm infants, working mechanistically through DNA methylation. The finding of a difference between males and females suggests that female infants are potentially more vulnerable to inflammation and warrants future study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...