Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
J Epilepsy Res ; 14(1): 29-36, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38978529

RESUMO

Cerebral folate transport deficiency due to folate receptor 1 gene (FOLR1) gene mutation results from impaired folate transport across the blood: choroidplexus: cerebrospinal fluid (CSF) barrier. This leads to low CSF 5-methyltetrahydrofolate, the active folate metabolite. We are reporting two children with this treatable cerebral folate transport deficiency. Eight years and 9-month-old female presented with delayed milestones followed by regression, seizures, and intention tremors. On examination child had microcephaly, generalized hypotonia, hyperreflexia, unsteady gait, and incoordination. Magnetic resonance imaging (MRI) of brain revealed dilated ventricular system and cerebellar atrophy. Computed tomography (CT) of brain showed brain calcifications. Whole exome sequencing was finally performed, revealing homozygous nonsense pathogenic variant in FOLR1 gene in exon 3 c.C382T p.R128W, confirming the diagnosis of cerebral folate deficiency. Twelve-year-old female child presented with global developmental delay since birth, myoclonic jerks and cognitive regression. Child had generalized hypotonia and hyperreflexia. Her coordination was markedly affected with intention tremors andunbalanced gait. CT brain showed bilateral basal ganglia and periventricular calcifications with brain atrophic changes. MRI brain showed a prominent cerebellar folia with mild brain atrophic changes. Genetic testing showed a homozygous pathogenic variant was identified in FOLR1 C.327_328 delinsAC, p.Cys109Ter. Both patients were started on intramuscular folinic acid injections with a decrease in seizure frequency. However, their seizures did not stop completely due to late initiation of therapy. In conclusion, cerebral folate transport deficiency should be suspected in every child with global developmental delay, intractable myoclonic epilepsy, ataxia with neuroimaging suggesting cerebellar atrophy and brain calcifications. Response to folinic acid supplementation is partial if diagnosed late and treatment initiation is delayed.

2.
Cureus ; 16(6): e62029, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38989370

RESUMO

Labrune syndrome is a rare neurogenetic disorder with varied presentations. Here, we report the case of a 53-year-old male who presented with seizures, gait imbalance, and upper limb tremors for two years. Imaging studies revealed extensive leukodystrophy, multiple cerebral calcifications, and cystic lesions characteristic of Labrune syndrome. However, whole exome sequencing did not detect the SNORD118 mutation, typically associated with Labrune syndrome. Although the SNORD118 mutation is commonly found in Labrune syndrome, a few cases of the syndrome without this mutation have also been reported. This suggests the possibility that other yet undiscovered mutations may cause the same phenotype.

3.
Front Neurol ; 15: 1382534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036637

RESUMO

Primary familial brain calcification (PFBC), also known as Fahr's disease, is a central nervous system calcium deposition disorder with symmetrical basal ganglia calcification. Most PFBC cases are caused by SLC20A2 gene variant. We report a Chinese female patient with PFBC and dopamine-responsive parkinsonism who had motor fluctuations and dyskinesia and recovered effectively after symptomatic medication adjustment. A novel heterozygous missense variant was found by whole-exome sequencing and proven harmful by family validation and genetic analysis. This example expands the phenotype of SLC20A2-associated PFBC patients and shows the clinical efficacy of dopaminergic replacement treatment.

4.
Neuron ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39019040

RESUMO

Aberrant inorganic phosphate (Pi) homeostasis causes brain calcification and aggravates neurodegeneration, but the underlying mechanism remains unclear. Here, we found that primary familial brain calcification (PFBC)-associated Pi transporter genes Pit2 and Xpr1 were highly expressed in astrocytes, with importer PiT2 distributed over the entire astrocyte processes and exporter XPR1 localized to astrocyte end-feet on blood vessels. This polarized PiT2 and XPR1 distribution endowed astrocyte with Pi transport capacity competent for brain Pi homeostasis, which was disrupted in mice with astrocyte-specific knockout (KO) of either Pit2 or Xpr1. Moreover, we found that Pi uptake by PiT2, and its facilitation by PFBC-associated galactosidase MYORG, were required for the high Pi transport capacity of astrocytes. Finally, brain calcification was suppressed by astrocyte-specific PiT2 re-expression in Pit2-KO mice. Thus, astrocyte-mediated Pi transport is pivotal for brain Pi homeostasis, and elevating astrocytic Pi transporter function represents a potential therapeutic strategy for reducing brain calcification.

5.
BMC Pulm Med ; 24(1): 343, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014333

RESUMO

BACKGROUND: Primary ciliary dyskinesia (PCD) is an autosomal recessive hereditary disease characterized by recurrent respiratory infections. In clinical manifestations, DNAH5 (NM_001361.3) is one of the recessive pathogenic genes. Primary familial brain calcification (PFBC) is a neurodegenerative disease characterized by bilateral calcification in the basal ganglia and other brain regions. PFBC can be inherited in an autosomal dominant or recessive manner. A family with PCD caused by a DNAH5 compound heterozygous variant and PFBC caused by a MYORG homozygous variant was analyzed. METHODS: In this study, we recruited three generations of Han families with primary ciliary dyskinesia combined with primary familial brain calcification. Their clinical phenotype data were collected, next-generation sequencing was performed to screen suspected pathogenic mutations in the proband and segregation analysis of families was carried out by Sanger sequencing. The mutant and wild-type plasmids were constructed and transfected into HEK293T cells instantaneously, and splicing patterns were detected by Minigene splicing assay. The structure and function of mutations were analyzed by bioinformatics analysis. RESULTS: The clinical phenotypes of the proband (II10) and his sister (II8) were bronchiectasis, recurrent pulmonary infection, multiple symmetric calcifications of bilateral globus pallidus and cerebellar dentate nucleus, paranasal sinusitis in the whole group, and electron microscopy of bronchial mucosa showed that the ciliary axoneme was defective. There was also total visceral inversion in II10 but not in II8. A novel splice variant C.13,338 + 5G > C and a frameshift variant C.4314delT (p. Asn1438lysfs *10) were found in the DNAH5 gene in proband (II10) and II8. c.347_348dupCTGGCCTTCCGC homozygous insertion variation was found in the MYORG of the proband. The two pathogenic genes were co-segregated in the family. Minigene showed that DNAH5 c.13,338 + 5G > C has two abnormal splicing modes: One is that part of the intron bases where the mutation site located is translated, resulting in early translation termination of DNAH5; The other is the mutation resulting in the deletion of exon76. CONCLUSIONS: The newly identified DNAH5 splicing mutation c.13,338 + 5G > C is involved in the pathogenesis of PCD in the family, and forms a compound heterozygote with the pathogenic variant DNAH5 c.4314delT lead to the pathogenesis of PCD.


Assuntos
Calcinose , Mutação , Linhagem , Humanos , Masculino , Calcinose/genética , Calcinose/patologia , Feminino , Dineínas do Axonema/genética , Adulto , Transtornos da Motilidade Ciliar/genética , Encefalopatias/genética , Fenótipo , Células HEK293 , China , Splicing de RNA/genética , Pessoa de Meia-Idade , Glicosídeo Hidrolases
6.
Neuron ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897208

RESUMO

Microglia are brain-resident macrophages that contribute to central nervous system (CNS) development, maturation, and preservation. Here, we examine the consequences of permanent microglial deficiencies on brain aging using the Csf1rΔFIRE/ΔFIRE mouse model. In juvenile Csf1rΔFIRE/ΔFIRE mice, we show that microglia are dispensable for the transcriptomic maturation of other brain cell types. By contrast, with advancing age, pathologies accumulate in Csf1rΔFIRE/ΔFIRE brains, macroglia become increasingly dysregulated, and white matter integrity declines, mimicking many pathological features of human CSF1R-related leukoencephalopathy. The thalamus is particularly vulnerable to neuropathological changes in the absence of microglia, with atrophy, neuron loss, vascular alterations, macroglial dysregulation, and severe tissue calcification. We show that populating Csf1rΔFIRE/ΔFIRE brains with wild-type microglia protects against many of these pathological changes. Together with the accompanying study by Chadarevian and colleagues1, our results indicate that the lifelong absence of microglia results in an age-related neurodegenerative condition that can be counteracted via transplantation of healthy microglia.

7.
Front Neurosci ; 18: 1381840, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859923

RESUMO

Primary familial brain calcification (PFBC) is a rare genetic neurodegenerative disorder characterized by bilateral calcifications in the brain. PFBC may manifest with a broad spectrum of motor, cognitive, and neuropsychiatric symptoms. Several causal genes have been identified in PFBC, which are inherited as both autosomal dominant and autosomal recessive traits. Herein, we present the case of a Chinese family diagnosed with PFBC. The family members carry a rare heterozygous variant (p. R334Q) in exon 7 of platelet-derived growth factor receptor ß (PDGFRB) gene. The platelet-derived growth factor-B/PDGF receptor ß (PDGF-B/PDGFRß) signaling pathway plays a crucial role in pericyte development in various organs and tissues. Notably, this variant uniquely coexists with nontraumatic osteonecrosis of the femoral head. Additionally, we reviewed previous studies on PFBC-causing variants in PDGFRB.

8.
J Mol Neurosci ; 74(2): 54, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760510

RESUMO

This article discusses a rare case of coexistent meningiomas and Primary familial brain calcification (PFBC). PFBC is a neurodegenerative disease characterized by brain calcifications and a variety of neuropsychiatric symptoms and signs, with pathogenic variants in specific genes. The study explores the potential link between PFBC and meningiomas, highlighting shared features like intralesional calcifications and common genes such as MEA6. The article also revisits PFBC patients developing other brain tumors, particularly gliomas, emphasizing the intersection of oncogenes like PDGFB and PDGFRB in both calcifications and tumor progression. In recent investigations, attention has extended beyond brain tumors to breast cancer metastasis, unveiling a noteworthy connection. These findings suggest a broader connection between brain calcifications and tumors, encouraging a reevaluation of therapeutic approaches for PFBC.


Assuntos
Neoplasias Encefálicas , Calcinose , Meningioma , Humanos , Calcinose/genética , Calcinose/patologia , Meningioma/genética , Meningioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Feminino , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Encefalopatias/genética , Encefalopatias/patologia , Encefalopatias/metabolismo
9.
J Clin Med ; 13(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38673641

RESUMO

Background: It is unclear whether patients with basal ganglia calcifications (BGC) should undergo infectious disease testing as part of their diagnostic work-up. We investigated the occurrence of possibly associated infections in patients with BGC diagnosed with Fahr's disease or syndrome and consecutively performed a systematic review of published infectious diseases associated with BGC. Methods: In a cross-sectional study, we evaluated infections in non-immunocompromised patients aged ≥ 18 years with BGC in the Netherlands, who were diagnosed with Fahr's disease or syndrome after an extensive multidisciplinary diagnostic work-up. Pathogens that were assessed included the following: Brucella sp., cytomegalovirus, human herpesvirus type 6/8, human immunodeficiency virus (HIV), Mycobacterium tuberculosis, rubella virus, and Toxoplasma gondii. Next, a systematic review was performed using MEDLINE and Embase (2002-2023). Results: The cross-sectional study included 54 patients (median age 65 years). We did not observe any possible related infections to the BGC in this population. Prior infection with Toxoplasma gondii occurred in 28%, and in 94%, IgG rubella antibodies were present. The positive tests were considered to be incidental findings by the multidisciplinary team since these infections are only associated with BGC when congenitally contracted and all patients presented with adult-onset symptoms. The systematic search yielded 47 articles, including 24 narrative reviews/textbooks and 23 original studies (11 case series, 6 cross-sectional and 4 cohort studies, and 2 systematic reviews). Most studies reported congenital infections associated with BGC (cytomegalovirus, HIV, rubella virus, Zika virus). Only two studies reported acquired pathogens (chronic active Epstein-Barr virus and Mycobacterium tuberculosis). The quality of evidence was low. Conclusions: In our cross-sectional study and systematic review, we found no convincing evidence that acquired infections are causing BGC in adults. Therefore, we argue against routine testing for infections in non-immunocompromised adults with BGC in Western countries.

10.
J Neurol Sci ; 460: 123020, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642488

RESUMO

INTRODUCTION: Brain calcifications are frequent findings on imaging. In a small proportion of cases, these calcifications are associated with pathogenic gene variants, hence termed primary familial brain calcification (PFBC). The clinical penetrance is incomplete and phenotypic variability is substantial. This paper aims to characterize a Swedish PFBC cohort including 25 patients: 20 from seven families and five sporadic cases. METHODS: Longitudinal clinical assessment and CT imaging were conducted, abnormalities were assessed using the total calcification score (TCS). Genetic analyses, including a panel of six known PFBC genes, were performed in all index and sporadic cases. Additionally, three patients carrying a novel pathogenic copy number variant in SLC20A2 had their cerebrospinal fluid phosphate (CSF-Pi) levels measured. RESULTS: Among the 25 patients, the majority (76%) displayed varying symptoms during the initial assessment including motor (60%), psychiatric (40%), and/or cognitive abnormalities (24%). Clinical progression was observed in most patients (78.6%), but there was no significant difference in calcification between the first and second scans, with mean scores of 27.3 and 32.8, respectively. In three families and two sporadic cases, pathogenic genetic variants were identified, including a novel finding, in the SLC20A2 gene. In the three tested patients, the CSF-Pi levels were normal. CONCLUSIONS: This report demonstrates the variable expressivity seen in PFBC and includes a novel pathogenic variant in the SLC20A2 gene. In four families and three sporadic cases, no pathogenic variants were found, suggesting that new PFBC genes remain to be discovered.


Assuntos
Calcinose , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III , Humanos , Masculino , Feminino , Calcinose/genética , Calcinose/diagnóstico por imagem , Suécia/epidemiologia , Pessoa de Meia-Idade , Estudos de Coortes , Adulto , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Idoso , Encefalopatias/genética , Encefalopatias/diagnóstico por imagem , Encefalopatias/líquido cefalorraquidiano , Tomografia Computadorizada por Raios X , Estudos Longitudinais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
11.
Neurol Sci ; 45(8): 3829-3844, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38441788

RESUMO

INTRODUCTION: Mutations in JAM2 have been linked to ~ 2% of primary familial brain calcification (PFBC) cases. PFBC is a rare neurological disorder characterized by excessive calcium deposition in the brain. It causes movement disorders and psychiatric problems. Six other genes were identified as causing PFBC. However, the genetic basis of ~ 50% of PFBC cases remains unknown. This study presented the results of a comprehensive analysis of five unrelated Iranian PFBC families. METHODS: Clinical and paraclinical features of all patients were recorded. Whole-exome sequencing (WES) was done on the DNAs of probands. Data was analyzed, and haplotypes were determined. RESULTS: WES identified two homozygous variants in JAM2 across four families: a novel variant, c.426dup:p.Ser143Leufs*23, in one family and a known mutation, c.685C > T:p.Arg229*, in the remaining three families. Haplotype analysis using six intragenic single-nucleotide polymorphisms (SNPs) in JAM2 revealed an identical haplotype in probands who carried the same mutation, whereas two other probands presented diverse haplotypes. CONCLUSION: Based on our results, p.Arg229* may be a founder mutation in the Iranian population. The variant has been detected in two out of seven other reported JAM2-related families who may originate from the Middle East and exhibit an identical haplotype. Even though this particular mutation may not be classified as a founder mutation, it does appear to be a hotspot, given that it has been observed in 45% of the 11 JAM2-associated families. Our study expanded the clinical features and mutation spectrum of JAM2 and revealed that mutations in JAM2 may be more common than previously reported.


Assuntos
Encefalopatias , Calcinose , Linhagem , Humanos , Feminino , Masculino , Calcinose/genética , Pessoa de Meia-Idade , Encefalopatias/genética , Adulto , Irã (Geográfico) , Mutação , Moléculas de Adesão Celular/genética , Efeito Fundador , Polimorfismo de Nucleotídeo Único , Haplótipos
12.
Orphanet J Rare Dis ; 19(1): 49, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326858

RESUMO

BACKGROUND: Fahr's disease and syndrome are rare disorders leading to calcification of the small arteries in the basal ganglia of the brain, resulting in a wide range of symptoms comprising cognitive decline, movement disorders and neuropsychiatric symptoms. No disease-modifying therapies are available. Studies have shown the potential of treatment of ectopic vascular calcifications with bisphosphonates. This paper describes the rationale and design of the CALCIFADE trial which evaluates the effects of etidronate in patients with Fahr's disease or syndrome. METHODS: The CALCIFADE trial is a randomised, placebo-controlled, double-blind trial which evaluates the effects of etidronate 20 mg/kg during 12 months follow-up in patients aged ≥ 18 years with Fahr's disease or syndrome. Etidronate and placebo will be administered in capsules daily for two weeks on followed by ten weeks off. The study will be conducted at the outpatient clinic of the University Medical Center Utrecht, the Netherlands. The primary endpoint is the change in cognitive functioning after 12 months of treatment. Secondary endpoints are the change in mobility, neuropsychiatric symptoms, volume of brain calcifications, dependence in activities of daily living, and quality of life. RESULTS: Patient recruitment started in April 2023. Results are expected in 2026 and will be disseminated through peer-reviewed journals as well as presentations at national and international conferences. CONCLUSIONS: Fahr's disease and syndrome are slowly progressive disorders with a negative impact on a variety of health outcomes. Etidronate might be a new promising treatment for patients with Fahr's disease or syndrome. TRIAL REGISTRATION: ClinicalTrials.gov, NCT05662111. Registered 22 December 2022, https://clinicaltrials.gov/ct2/show/NCT01585402 .


Assuntos
Doenças dos Gânglios da Base , Calcinose , Ácido Etidrônico , Doenças Neurodegenerativas , Humanos , Ácido Etidrônico/uso terapêutico , Atividades Cotidianas , Qualidade de Vida , Doenças dos Gânglios da Base/complicações , Doenças dos Gânglios da Base/diagnóstico , Doenças dos Gânglios da Base/psicologia , Encéfalo
13.
J Clin Med ; 13(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337525

RESUMO

(1) Background: Primary Familial Brain Calcification (PFBC) is a neurodegenerative disease characterized by bilateral calcifications of the basal ganglia and other intracranial areas. Many patients experience symptoms of motor dysfunction and cognitive disorders. The aim of this study was to investigate the association between the amount and location of intracranial calcifications with these symptoms. (2) Methods: Patients with suspected PFBC referred to our outpatient clinic underwent a clinical work-up. Intracranial calcifications were visualized on Computed Tomography (CT), and a Total Calcification Score (TCS) was constructed. Logistic and linear regression models were performed. (3) Results: Fifty patients with PFBC were included in this study (median age 64.0 years, 50% women). Of the forty-one symptomatic patients (82.0%), 78.8% showed motor dysfunction, and 70.7% showed cognitive disorders. In multivariate analysis, the TCS was associated with bradykinesia/hypokinesia (OR 1.07, 95%-CI 1.02-1.12, p < 0.01), gait ataxia (OR 1.06, 95%-CI 1.00-1.12, p = 0.04), increased fall risk (OR 1.04, 95%-CI 1.00-1.08, p = 0.03), and attention/processing speed disorders (OR 1.06, 95%-CI 1.01-1.12, p = 0.02). Calcifications of the lentiform nucleus and subcortical white matter were associated with motor and cognitive disorders. (4) Conclusions: cognitive and motor symptoms are common among patients with PFBC, and there is an association between intracranial calcifications and these symptoms.

14.
J Mol Neurosci ; 74(1): 2, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180527

RESUMO

Primary familial brain calcification (PFBC) is a rare disorder that can manifest with a wide spectrum of motor, cognitive, and psychiatric symptoms or even remain asymptomatic. Alzheimer disease (AD) is a common condition that typically starts as a progressive amnestic disorder and progresses to major cognitive impairment. Accurately attributing an etiology to cognitive impairment can sometimes be challenging, especially when multiple pathologies with potentially overlapping symptomatology contribute to the clinical phenotype. Here, we present the case of two patients with autosomal dominant PFBC and non-monogenic AD. Cerebrospinal fluid (CSF) biomarker analysis combined with genetic testing permitted the dual diagnosis. We emphasize the importance of thoroughly characterizing the patient's phenotype at onset and during the follow-up. Particular attention is placed on psychiatric symptoms given that both patients had a history of mood disorder, a frequent condition in the general population and in neurological diseases. We also discuss and challenge the paradigm of seeking a single diagnosis explaining all symptoms, remembering the possibility of a rare disease co-occurring with a common one.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Testes Genéticos , Fenótipo , Doenças Raras , Encéfalo
15.
Front Pediatr ; 11: 1178280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780041

RESUMO

Introduction: Pathogenic variants of the junctional adhesion molecule 3 (JAM3/JAM-C; OMIM#606871) is the cause of the rare recessive disorder called hemorrhagic destruction of the brain, subependymal calcification, and cataracts (HDBSCC, OMIM#613730) disease. A similar phenotype is universal, including congenital cataracts and brain hemorrhages with high mortality rate in the first few weeks of life and with a poor neurologic outcome in survivors. We aim to describe and enlighten novel phenotype and genotype of a new patient and review the literature regarding all reported patients worldwide. Case report: We report the case of a prenatal and postnatal phenotype of a new patient with a novel pathogenic loss-of-function variant in JAM3, who presented prenatally with cataracts and brain anomalies and postnatally with brain hemorrhages, failure to thrive (FTT), progressive microcephaly, recurrent posterior capsule opacities, and auditory neuropathy. Discussion: This study enlightens novel possible functions of JAM3 in the normal development of the brain, the ocular lenses, the auditory system, and possibly the gastrointestinal tract. This study is the first to report of cataracts evident in as early as 23 weeks of gestation and a rare phenomenon of recurrent posterior capsule opacities despite performing recurrent posterior capsulectomy and anterior vitrectomy. We suggest that auditory neuropathy, which is reported here for the first time, is part of the phenotype of HDBSCC, probably due to an endothelial microvasculature disruption of the peripheral eighth nerve or possibly due to impaired nerve conduction from the synapse to the brainstem. Conclusions: Prenatal cataracts, brain anomalies, FTT, and auditory neuropathy are part of the phenotype of the HDBSCC disease. We suggest including JAM3 in the gene list known to cause congenital cataracts, brain hemorrhages, and hearing loss. Further studies should address the auditory neuropathy and FTT phenomena in knockout mice models. We further suggest performing comprehensive ophthalmic, audiologic, and gastroenterologic evaluations for living patients worldwide to further confirm these novel phenomena in this rare entity.

16.
Front Neurol ; 14: 1235909, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780723

RESUMO

Fahr's disease, or primary familial brain calcification (PFBC), is a rare genetic neurologic disease characterized by abnormal calcification of the basal ganglia, subcortical white matter and cerebellum. Common clinical features include parkinsonism, neuropsychiatric symptoms, and cognitive decline. Genes implicated in Fahr's disease include PDGFB, PDGFRB, SLC20A2, XPR1, MYORG, and JAM2. We present the case of a 51-year-old woman who developed subacute cognitive and behavioral changes primarily affecting frontal-subcortical pathways and parkinsonism in association with extensive bilateral calcifications within the basal ganglia, subcortical white matter, and cerebellum on neuroimaging. Relevant family history included a paternal aunt with parkinsonism at age 50. Normal parathyroid hormone and calcium levels in the patient's serum ruled out hypoparathyroidism or pseudohypoparathyroidism as causes for the intracranial calcifications. Genetic panel sequencing revealed a variant of unknown significance in the PDGFRB gene resulting in a p.Arg919Gln substitution in the tyrosine kinase domain of PDGFRB protein. To our knowledge this is the first report of a p.Arg919Gln variant in the PDGFRB gene associated with PFBC. Although co-segregation studies were not possible in this family, the location of the variant is within the tyrosine kinase domain of PDGFRB and pathogenicity calculators predict it is likely to be pathogenic. This report adds to the list of genetic variants that warrant functional analysis and could underlie the development of PFBC, which may help to further our understanding of its pathogenesis and the development of targeted therapies for this disorder.

17.
Mol Genet Genomic Med ; 11(12): e2276, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37680026

RESUMO

BACKGROUND: Primary familial brain calcification (PFBC) is a rare hereditary neurodegenerative disorder associated with the MYORG gene; however, the clinical and radiological characteristics of MYORG-PFBC remain unclear. METHODS: We present relevant medical data obtained from a patient affected by PFBC with a novel MYORG variant and conducted a mutational analysis of MYORG in her family members. We reviewed all reported PFBC cases with biallelic MYORG mutations until April 1, 2023, and summarized the associated clinical and radiological features and mutation sites. RESULTS: The patient (22-year-old woman) exhibited paroxysmal limb stiffness and dysarthria for 3 years. Computed tomography revealed calcifications in the paraventricular white matter, basal ganglia, thalamus, and cerebellum. Whole-exome sequencing revealed a novel homozygous frameshift variant (c.743delG: p.G248Afs*32) in exon 2 of the MYORG gene (NM_020702.5). To date, 62 families and 64 mutation sites have been reported. Among the reported biallelic MYORG mutations, 57% were homozygous and 43% were compound heterozygous. Individuals with biallelic MYORG mutations experience more severe brain calcification with approximately 100% clinical penetrance. Ten single heterozygous mutation sites are associated with significant brain calcifications. CONCLUSION: All patients with primary brain calcification, particularly younger patients without a family history of the disease, should be screened for MYORG mutations.


Assuntos
Encefalopatias , Doenças Neurodegenerativas , Feminino , Humanos , Adulto Jovem , Encefalopatias/genética , Disartria/genética , Mutação , Doenças Neurodegenerativas/genética , Linhagem
19.
J Mol Neurosci ; 73(7-8): 563-565, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37420094

RESUMO

Primary familial brain calcification (PFBC), often called Fahr's disease, is a condition in which calcium phosphate accumulates in the brain, mainly in the basal ganglia, thalamus, and cerebellum, and without the association of any metabolic or infectious cause. Patients present a variety of neurological and psychiatric disorders, usually during adulthood. The disease is caused by autosomal dominant pathogenic variants in genes such as SLC20A2, PDGFRB, PDGFB, and XPR1. MYORG and JAM2 are the other genes linked to homozygous patterns of inheritance. Here, we briefly discuss the recent cases reported by Ceylan et al. (2022) and Al-Kasbi et al. (2022), which challenge the current association with two previous genes and a clear pattern of inheritance. Ceylan et al. report a new biallelic variant related to a pathogenic variant in the SLC20A2 gene, which is typically associated with a heterozygous mutation pattern. The affected siblings displayed a severe and early onset of the disease, revealing a phenotype similar to that seen in CMV infections, often named as pseudo-TORCH. Furthermore, a study of genes related to intellectual disability conducted by Al-Kasbi et al. demonstrated that the biallelic manifestation of the XPR1 gene was associated with early symptoms, leading to the belief that the homozygous pattern of genes responsible for causing PFBC with an autosomal dominant pattern may also be linked to early-onset manifestations of PFBC. Further studies might explore the variety of clinical presentations linked to PFBC genes, especially if we pay attention to complex patterns of inheritance, reinforcing the need for a more detailed bioinformatic analysis.


Assuntos
Doenças dos Gânglios da Base , Encefalopatias , Humanos , Adulto , Encefalopatias/metabolismo , Receptor do Retrovírus Politrópico e Xenotrópico , Encéfalo/metabolismo , Mutação , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
20.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446066

RESUMO

Primary familial brain calcification (PFBC), also known as Fahr's disease, is a rare inherited disorder characterized by bilateral calcification in the basal ganglia according to neuroimaging. Other brain regions, such as the thalamus, cerebellum, and subcortical white matter, can also be affected. Among the diverse clinical phenotypes, the most common manifestations are movement disorders, cognitive deficits, and psychiatric disturbances. Although patients with PFBC always exhibit brain calcification, nearly one-third of cases remain clinically asymptomatic. Due to advances in the genetics of PFBC, the diagnostic criteria of PFBC may need to be modified. Hitherto, seven genes have been associated with PFBC, including four dominant inherited genes (SLC20A2, PDGFRB, PDGFB, and XPR1) and three recessive inherited genes (MYORG, JAM2, and CMPK2). Nevertheless, around 50% of patients with PFBC do not have pathogenic variants in these genes, and further PFBC-associated genes are waiting to be identified. The function of currently known genes suggests that PFBC could be caused by the dysfunction of the neurovascular unit, the dysregulation of phosphate homeostasis, or mitochondrial dysfunction. An improved understanding of the underlying pathogenic mechanisms for PFBC may facilitate the development of novel therapies.


Assuntos
Doenças dos Gânglios da Base , Encefalopatias , Humanos , Encefalopatias/genética , Encefalopatias/patologia , Doenças dos Gânglios da Base/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Fenótipo , Proteínas Proto-Oncogênicas c-sis/genética , Mutação , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...