Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 817
Filtrar
1.
Brain Struct Funct ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38969935

RESUMO

There is a growing interest in imaging understudied orthographies to unravel their neuronal correlates and their implications for existing computational and neuroanatomical models. Here, we review current brain mapping literature about Arabic words. We first offer a succinct description of some unique linguistic features of Arabic that challenge current cognitive models of reading. We then appraise the existing functional neuroimaging studies that investigated written Arabic word processing. Our review revealed that (1) Arabic is still understudied, (2) the most investigated features concerned the effects of vowelling and diglossia in Arabic reading, (3) findings were not always discussed in the light of existing reading models such as the dual route cascaded, the triangle, and the connectionist dual process models, and (4) current evidence is unreliable when it comes to the exact neuronal pathways that sustain Arabic word processing. Overall, despite the fact that Arabic has some unique linguistic features that challenge and ultimately enrich current reading models, the existing functional neuroimaging literature falls short of offering a reliable evidence about brain networks of Arabic reading. We conclude by highlighting the need for more systematic studies of the linguistic features of Arabic to build theoretical and neuroanatomical models that are concurrently specific and general.

2.
Exp Neurobiol ; 33(3): 140-151, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38993081

RESUMO

A single exposure to stress can induce functional changes in neurons, potentially leading to acute stress disorder or post-traumatic stress disorder. In this study, we used in vivo wide-field optical mapping to simultaneously measure neural calcium signals and hemodynamic responses over the whole cortical area. We found that cortical mapping to whisker stimuli was altered under acute stress conditions. In particular, callosal projections in the anterior cortex (primary/secondary motor, somatosensory forelimb cortex) relative to barrel field (S1BF) of somatosensory cortex were weakened. On the contrary, the projections in posterior cortex relative to S1BF were mostly unchanged or were only occasionally strengthened. In addition, changes in intra-cortical connection were opposite to those in inter-cortical connection. Thus, the S1BF connections to the anterior cortex were strengthened while those to the posterior cortex were weakened. This suggests that the well-known barrel cortex projection route was enhanced. In summary, our in vivo wide-field optical mapping study indicates that a single acute stress can impact whole-brain networks, affecting both neural and hemodynamic responses.

3.
Front Psychol ; 15: 1415523, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966723

RESUMO

The right hemisphere of the brain is often referred to as the non-dominant hemisphere. Though this is meant to highlight the specialized role of the left hemisphere in language, the use of this term runs the risk of oversimplifying or minimizing the essential functions of the right hemisphere. There is accumulating evidence from functional MRI, clinical lesion studies, and intraoperative mapping data that implicate the right hemisphere in a diverse array of cognitive functions, including visuospatial functions, attentional processes, and social cognitive functions. Neuropsychological deficits following right hemisphere resections are well-documented, but there is a general paucity of literature focusing on how to best map these functions during awake brain surgery to minimize such deficits. To address this gap in the literature, a systematic review was conducted to examine the cognitive and emotional processes associated with the right hemisphere and the neuropsychological tasks frequently used for mapping the right hemisphere during awake brain tumor surgery. It was found that the most employed tests to assess language and speech functions in patients with lesions in the right cerebral hemisphere were the naming task and the Pyramids and Palm Trees Test (PPTT). Spatial cognition was typically evaluated using the line bisection task, while social cognition was assessed through the Reading the Mind in the Eyes (RME) test. Dual-tasking and the movement of the upper and lower limbs were the most frequently used methods to evaluate motor/sensory functions. Executive functions were typically assessed using the N-back test and Stroop test. To the best of our knowledge, this is the first comprehensive review to help provide guidance on the cognitive functions most at risk and methods to map such functions during right awake brain surgery. Systematic Review Registration: PROSPERO database [CRD42023483324].

4.
Artigo em Inglês | MEDLINE | ID: mdl-38885149

RESUMO

Objective: This study aims to elucidate the comprehensive effects of metabolic syndrome (MetS) on the structural integrity of subcortical brain regions and associated structures through high-resolution magnetic resonance imaging (MRI) volumetric analysis, thereby contributing to a deeper understanding of the neuroanatomical dimensions of MetS and its potential implications for cognitive functions and overall brain health. Methods: A cross-sectional design was implemented, involving 25 individuals diagnosed with MetS for at least one year and a healthy control group of 15 individuals at a tertiary hospital's family medicine clinic in Eastern Turkey. Participants underwent a high-resolution MRI scan using a 1.5T Siemens Aera scanner. The MRICloud platform was employed for comprehensive segmentation and quantitative analysis of various brain structures. Results: The study revealed significant volumetric reductions in all measured subcortical brain regions among individuals with MetS compared to the control group (all P < 0.05). Notable differences were observed in key structures such as the substantia nigra, corpus callosum, and thalamus. In subcortical structures, the largest volumetric differences were noted in the basal ganglia L (1322.4 mm³), while the most significant percentage differences were seen in the substantia nigra R (25.24%) and caudate nucleus L (21.02%). Conclusion: The findings from this study underscore the significant neuroanatomical changes associated with MetS, manifesting as volumetric reductions in critical subcortical brain areas. These alterations underscore the necessity for further research into the comprehensive influence of MetS on cognitive processes and the potential for early therapeutic interventions.

5.
World Neurosurg ; 189: 118-126, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38857864

RESUMO

BACKGROUND: Low-income countries (LICs) and lower-middle-income countries (LMICs) are presented with unique challenges and opportunities when performing awake craniotomy (AC) for brain tumors. These circumstances arise from factors that are financial, infrastructural, educational, personnel, and sociocultural in nature. METHODS: We performed a systematic narrative review of series on AC for intra-axial brain tumors in LICs/LMICs using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, focusing on the challenges and opportunities in these settings. The PubMed, Scopus, and Web of Science databases were searched. RESULTS: After initially identifying 74 studies, inclusion-exclusion criteria were applied, leaving a total of 14 studies included in the review. These involved 409 patients who underwent AC in LICs/LMICs. These series were from India, Ghana, Nigeria, Iran, Pakistan, Morocco, the Philippines, and Egypt. The most common pathology encountered were gliomas (10-70%). Most studies (11/14, 78.5%) reported on their technique of cortical-subcortical mapping. All reported on motor mapping and 8 of these performed language mapping. The most common outcomes reported were seizure and neurologic deficits, and longest follow-up was at 1 year. Challenges noted were lack of equipment and trained personnel, need for validated tests for the local setting, and sociocultural factors. Opportunities identified were volume for training, technique innovation, and international collaboration. CONCLUSIONS: There are numerous challenges and opportunities that arise when performing AC in LICs/LMICs. A collaborative approach toward harnessing the opportunities, and seeking creative solutions to address the challenges, would provide an ideal mechanism toward advancing neurosurgical care and specialty worldwide.

6.
Brain Inform ; 11(1): 15, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833195

RESUMO

Mapping neural connections within the brain has been a fundamental goal in neuroscience to understand better its functions and changes that follow aging and diseases. Developments in imaging technology, such as microscopy and labeling tools, have allowed researchers to visualize this connectivity through high-resolution brain-wide imaging. With this, image processing and analysis have become more crucial. However, despite the wealth of neural images generated, access to an integrated image processing and analysis pipeline to process these data is challenging due to scattered information on available tools and methods. To map the neural connections, registration to atlases and feature extraction through segmentation and signal detection are necessary. In this review, our goal is to provide an updated overview of recent advances in these image-processing methods, with a particular focus on fluorescent images of the mouse brain. Our goal is to outline a pathway toward an integrated image-processing pipeline tailored for connecto-informatics. An integrated workflow of these image processing will facilitate researchers' approach to mapping brain connectivity to better understand complex brain networks and their underlying brain functions. By highlighting the image-processing tools available for fluroscent imaging of the mouse brain, this review will contribute to a deeper grasp of connecto-informatics, paving the way for better comprehension of brain connectivity and its implications.

7.
Eur Radiol Exp ; 8(1): 73, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38945979

RESUMO

Presurgical evaluation with functional magnetic resonance imaging (fMRI) can reduce postsurgical morbidity. Here, we discuss presurgical fMRI mapping at ultra-high magnetic fields (UHF), i.e., ≥ 7 T, in the light of the current growing interest in artificial intelligence (AI) and robot-assisted neurosurgery. The potential of submillimetre fMRI mapping can help better appreciate uncertainty on resection margins, though geometric distortions at UHF might lessen the accuracy of fMRI maps. A useful trade-off for UHF fMRI is to collect data with 1-mm isotropic resolution to ensure high sensitivity and subsequently a low risk of false negatives. Scanning at UHF might yield a revival interest in slow event-related fMRI, thereby offering a richer depiction of the dynamics of fMRI responses. The potential applications of AI concern denoising and artefact removal, generation of super-resolution fMRI maps, and accurate fusion or coregistration between anatomical and fMRI maps. The latter can benefit from the use of T1-weighted echo-planar imaging for better visualization of brain activations. Such AI-augmented fMRI maps would provide high-quality input data to robotic surgery systems, thereby improving the accuracy and reliability of robot-assisted neurosurgery. Ultimately, the advancement in fMRI at UHF would promote clinically useful synergies between fMRI, AI, and robotic neurosurgery.Relevance statement This review highlights the potential synergies between fMRI at UHF, AI, and robotic neurosurgery in improving the accuracy and reliability of fMRI-based presurgical mapping.Key points• Presurgical fMRI mapping at UHF improves spatial resolution and sensitivity.• Slow event-related designs offer a richer depiction of fMRI responses dynamics.• AI can support denoising, artefact removal, and generation of super-resolution fMRI maps.• AI-augmented fMRI maps can provide high-quality input data to robotic surgery systems.


Assuntos
Inteligência Artificial , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Procedimentos Cirúrgicos Robóticos , Humanos , Imageamento por Ressonância Magnética/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Mapeamento Encefálico/métodos , Procedimentos Neurocirúrgicos/métodos , Campos Magnéticos , Cuidados Pré-Operatórios/métodos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem
8.
Sci Rep ; 14(1): 10205, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702383

RESUMO

Mapping the localization of the functional brain regions in trigeminal neuralgia (TN) patients is still lacking. The study aimed to explore the functional brain alterations and influencing factors in TN patients using functional brain imaging techniques. All participants underwent functional brain imaging to collect resting-state brain activity. The significant differences in regional homogeneity (ReHo) and amplitude of low frequency (ALFF) between the TN and control groups were calculated. After familywise error (FWE) correction, the differential brain regions in ReHo values between the two groups were mainly located in bilateral middle frontal gyrus, bilateral inferior cerebellum, right superior orbital frontal gyrus, right postcentral gyrus, left inferior temporal gyrus, left middle temporal gyrus, and left gyrus rectus. The differential brain regions in ALFF values between the two groups were mainly located in the left triangular inferior frontal gyrus, left supplementary motor area, right supramarginal gyrus, and right middle frontal gyrus. With the functional impairment of the central pain area, the active areas controlling memory and emotion also change during the progression of TN. There may be different central mechanisms in TN patients of different sexes, affected sides, and degrees of nerve damage. The exact central mechanisms remain to be elucidated.


Assuntos
Imageamento por Ressonância Magnética , Neuralgia do Trigêmeo , Humanos , Neuralgia do Trigêmeo/fisiopatologia , Neuralgia do Trigêmeo/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Rede de Modo Padrão/fisiopatologia , Rede de Modo Padrão/diagnóstico por imagem , Idoso , Adulto
9.
Hum Brain Mapp ; 45(7): e26695, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727010

RESUMO

Human infancy is marked by fastest postnatal brain structural changes. It also coincides with the onset of many neurodevelopmental disorders. Atlas-based automated structure labeling has been widely used for analyzing various neuroimaging data. However, the relatively large and nonlinear neuroanatomical differences between infant and adult brains can lead to significant offsets of the labeled structures in infant brains when adult brain atlas is used. Age-specific 1- and 2-year-old brain atlases covering all major gray and white matter (GM and WM) structures with diffusion tensor imaging (DTI) and structural MRI are critical for precision medicine for infant population yet have not been established. In this study, high-quality DTI and structural MRI data were obtained from 50 healthy children to build up three-dimensional age-specific 1- and 2-year-old brain templates and atlases. Age-specific templates include a single-subject template as well as two population-averaged templates from linear and nonlinear transformation, respectively. Each age-specific atlas consists of 124 comprehensively labeled major GM and WM structures, including 52 cerebral cortical, 10 deep GM, 40 WM, and 22 brainstem and cerebellar structures. When combined with appropriate registration methods, the established atlases can be used for highly accurate automatic labeling of any given infant brain MRI. We demonstrated that one can automatically and effectively delineate deep WM microstructural development from 3 to 38 months by using these age-specific atlases. These established 1- and 2-year-old infant brain DTI atlases can advance our understanding of typical brain development and serve as clinical anatomical references for brain disorders during infancy.


Assuntos
Atlas como Assunto , Encéfalo , Imagem de Tensor de Difusão , Substância Cinzenta , Substância Branca , Humanos , Lactente , Pré-Escolar , Masculino , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Substância Branca/crescimento & desenvolvimento , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/crescimento & desenvolvimento , Substância Cinzenta/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Encéfalo/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos
10.
Exp Brain Res ; 242(7): 1609-1622, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38767666

RESUMO

Differences in organization of the primary motor cortex and altered trunk motor control (sensing, processing and motor output) have been reported in people with low back pain (LBP). Little is known to what extent these differences are related. We investigated differences in 1) organization of the primary motor cortex and 2) motor and sensory tests between people with and without LBP, and 3) investigated associations between the organization of the primary motor cortex and motor and sensory tests. We conducted a case-control study in people with (N=25) and without (N=25) LBP. The organization of the primary motor cortex (Center of Gravity (CoG) and Area of the cortical representation of trunk muscles) was assessed using neuronavigated transcranial magnetic stimulation, based on individual MRIs. Sensory tests (quantitative sensory testing, graphaesthesia, two-point discrimination threshold) and a motor test (spiral-tracking test) were assessed. Participants with LBP had a more lateral and lower location of the CoG and a higher temporal summation of pain. For all participants combined, better vibration test scores were associated with a more anterior, lateral, and lower CoG and a better two-point discrimination threshold was associated with a lower CoG. A small subset of variables showed significance. Although this aligns with the concept of altered organization of the primary motor cortex in LBP, there is no strong evidence of the association between altered organization of the primary motor cortex and motor and sensory test performance in LBP. Focusing on subgroup analyses regarding pain duration can be a topic for future research.


Assuntos
Dor Lombar , Imageamento por Ressonância Magnética , Córtex Motor , Estimulação Magnética Transcraniana , Humanos , Córtex Motor/fisiopatologia , Córtex Motor/fisiologia , Masculino , Feminino , Dor Lombar/fisiopatologia , Adulto , Pessoa de Meia-Idade , Estudos de Casos e Controles , Adulto Jovem , Potencial Evocado Motor/fisiologia
11.
Eur J Neurosci ; 60(1): 3772-3794, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38726801

RESUMO

Beside the well-documented involvement of secondary somatosensory area, the cortical network underlying late somatosensory evoked potentials (P60/N60 and P100/N100) is still unknown. Electroencephalogram and magnetoencephalogram source imaging were performed to further investigate the origin of the brain cortical areas involved in late somatosensory evoked potentials, using sensory inputs of different strengths and by testing the correlation between cortical sources. Simultaneous high-density electroencephalograms and magnetoencephalograms were performed in 19 participants, and electrical stimulation was applied to the median nerve (wrist level) at intensity between 1.5 and 9 times the perceptual threshold. Source imaging was undertaken to map the stimulus-induced brain cortical activity according to each individual brain magnetic resonance imaging, during three windows of analysis covering early and late somatosensory evoked potentials. Results for P60/N60 and P100/N100 were compared with those for P20/N20 (early response). According to literature, maximal activity during P20/N20 was found in central sulcus contralateral to stimulation site. During P60/N60 and P100/N100, activity was observed in contralateral primary sensorimotor area, secondary somatosensory area (on both hemispheres) and premotor and multisensory associative cortices. Late responses exhibited similar characteristics but different from P20/N20, and no significant correlation was found between early and late generated activities. Specific clusters of cortical activities were activated with specific input/output relationships underlying early and late somatosensory evoked potentials. Cortical networks, partly common to and distinct from early somatosensory responses, contribute to late responses, all participating in the complex somatosensory brain processing.


Assuntos
Eletroencefalografia , Potenciais Somatossensoriais Evocados , Magnetoencefalografia , Córtex Somatossensorial , Humanos , Potenciais Somatossensoriais Evocados/fisiologia , Magnetoencefalografia/métodos , Masculino , Feminino , Adulto , Eletroencefalografia/métodos , Córtex Somatossensorial/fisiologia , Córtex Somatossensorial/diagnóstico por imagem , Nervo Mediano/fisiologia , Adulto Jovem , Estimulação Elétrica/métodos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos
12.
Clin Neurophysiol ; 163: 102-111, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729074

RESUMO

OBJECTIVE: We investigated the role of transverse temporal gyrus and adjacent cortex (TTG+) in facial expressions and perioral movements. METHODS: In 31 patients undergoing stereo-electroencephalography monitoring, we describe behavioral responses elicited by electrical stimulation within the TTG+. Task-induced high-gamma modulation (HGM), auditory evoked responses, and resting-state connectivity were used to investigate the cortical sites having different types of responses on electrical stimulation. RESULTS: Changes in facial expressions and perioral movements were elicited on electrical stimulation within TTG+ in 9 (29%) and 10 (32%) patients, respectively, in addition to the more common language responses (naming interruptions, auditory hallucinations, paraphasic errors). All functional sites showed auditory task induced HGM and evoked responses validating their location within the auditory cortex, however, motor sites showed lower peak amplitudes and longer peak latencies compared to language sites. Significant first-degree connections for motor sites included precentral, anterior cingulate, parahippocampal, and anterior insular gyri, whereas those for language sites included posterior superior temporal, posterior middle temporal, inferior frontal, supramarginal, and angular gyri. CONCLUSIONS: Multimodal data suggests that TTG+ may participate in auditory-motor integration. SIGNIFICANCE: TTG+ likely participates in facial expressions in response to emotional cues during an auditory discourse.


Assuntos
Córtex Auditivo , Emoções , Expressão Facial , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Córtex Auditivo/fisiologia , Emoções/fisiologia , Potenciais Evocados Auditivos/fisiologia , Eletroencefalografia , Idoso , Adulto Jovem , Estimulação Elétrica
13.
J Neurosci Methods ; 408: 110177, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795978

RESUMO

BACKGROUND: Data on human brain function obtained with direct electrical stimulation (DES) in neurosurgical patients have been recently integrated and combined with modern neuroimaging techniques, allowing a connectome-based approach fed by intraoperative DES data. Within this framework is crucial to develop reliable methods for spatial localization of DES-derived information to be integrated within the neuroimaging workflow. NEW METHOD: To this aim, we applied the Kernel Density Estimation for modelling the distribution of DES sites from different patients into the MNI space. The algorithm has been embedded in a MATLAB-based User Interface, Peaglet. It allows an accurate probabilistic weighted and unweighted estimation of DES sites location both at cortical level, by using shortest path calculation along the brain 3D geometric topology, and subcortical level, by using a volume-based approach. RESULTS: We applied Peaglet to investigate spatial estimation of cortical and subcortical stimulation sites provided by recent brain tumour studies. The resulting NIfTI maps have been anatomically investigated with neuroimaging open-source tools. COMPARISON WITH EXISTING METHODS: Peaglet processes differently cortical and subcortical data following their distinguishing geometrical features, increasing anatomical specificity of DES-related results and their reliability within neuroimaging environments. CONCLUSIONS: Peaglet provides a robust probabilistic estimation of the cortical and subcortical distribution of DES sites going beyond a region of interest approach, respecting cortical and subcortical intrinsic geometrical features. Results can be easily integrated within the neuroimaging workflow to drive connectomic analysis.


Assuntos
Algoritmos , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/fisiopatologia , Conectoma/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Estimulação Elétrica , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Córtex Cerebral/fisiologia , Córtex Cerebral/diagnóstico por imagem
14.
World Neurosurg ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38796150

RESUMO

OBJECTIVE: This study investigated the neurologic symptoms and stimulus intensities in the stimulation of deep structures and subcortical fibers with the depth electrodes. METHODS: Seventeen patients with drug-refractory epilepsy who underwent functional brain mapping with the depth electrodes were enrolled. The 50 Hz electrical stimulation was applied, and the diffusion tensor image was used to identify subcortical fibers. The responsible structures and stimulus intensities for the induced neurologic symptoms were evaluated. RESULTS: Neurologic symptoms were induced in 11 of 17 patients. The opercular stimulation elicited the neurologic symptoms in 6 patients at the median threshold of 4.0 mA (visceral/face/hand sensory, hand/throat motor, negative motor and auditory symptoms). The insular stimulation induced the neurologic symptoms in 4 patients at the median threshold of 4.0 mA (auditory, negative motor, and sensory symptoms). The stimulation of subcortical fibers was induced in 5 of 9 patients at the median threshold of 4.5 mA. The thresholds of depth electrodes were significantly lower than those of subdural electrodes in 8 patients who used both subdural and depth electrodes and induced symptoms with both electrodes. CONCLUSIONS: The stimulation of depth electrodes can identify the function of deep structures and subcortical fibers with lower intensities than subdural electrodes.

15.
Brain Tumor Res Treat ; 12(2): 100-108, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38742258

RESUMO

BACKGROUND: Gliomas, characterized by their invasive persistence and tendency to affect critical brain regions, pose a challenge in surgical resection due to the risk of neurological deficits. This study focuses on a personalized approach to achieving an optimal onco-functional balance in glioma resections, emphasizing maximal tumor removal while preserving the quality of life. METHODS: A retrospective analysis of 57 awake surgical resections of gliomas at the National University Hospital, Singapore, was conducted. The inclusion criteria were based on diagnosis, functional boundaries determined by direct electrical stimulation, preoperative Karnofsky Performance Status score, and absence of multifocal disease on MRI. The treatment approach included comprehensive neuropsychological evaluation, determination of suitability for awake surgery, and standard asleep-awake-asleep anesthesia protocol. Tumor resection techniques and postoperative care were systematically followed. RESULTS: The study included 53 patients (55.5% male, average age 39 years), predominantly right-handed. Over half reported seizures as their chief complaint. Tumors were mostly low-grade gliomas. Positive mapping of the primary motor cortex was conducted in all cases, with awake surgery completed in 77.2% of cases. New neurological deficits were observed in 26.3% of patients at 1 month after operation; most showed significant improvement at 6 months. CONCLUSION: The standardized treatment paradigm effectively achieved an optimal onco-functional balance in glioma patients. While some patients experienced neurological deficits postoperatively, the majority recovered to their preoperative baseline within 3 months. The approach prioritizes patient empowerment and customized utilization of functional mapping techniques, considering the challenge of preserving diverse languages in a multilingual patient population.

16.
J Alzheimers Dis Rep ; 8(1): 681-696, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746624

RESUMO

Background: Some pathological changes occur in patients with Alzheimer's disease (AD) prior to the onset of clinical symptoms. Objective: In the present study, we aimed to investigate the potential of event-related potential (ERP) components in error processing performance as a neuromarker of mild cognitive impairment (MCI) and transition to AD and their relation with cognitive functions. Methods: We conducted an evaluation of 16 patients diagnosed with AD, 16 patients with MCI, and 15 normal controls using three subtests from the Cambridge Neuropsychological Testing Automated Battery (CANTAB). The ERP components of error processing were extracted and compared among the three groups using a modified version of the Eriksen flanker task. Additionally, we assessed the correlation between the cognitive results and the ERP components. Results: Significant differences were observed among the three groups in terms of providing correct responses following errors and the amplitude of error-related negativity (ERN). These differences were also significant between all paired groups. Regarding other ERP components of error processing and the peak latency of ERN, no significant differences were observed among the three groups. The findings revealed that the spatial working memory and new learning were correlated with the amplitude of ERN. Conclusions: In the context of error processing performance, both the accuracy of responses following an error and the amplitude of ERN can be considered as indicators of MCI and its progression to AD. The present findings do not support the use of other error processing components as differential markers in the three groups.

17.
London; Homeopathy; Apr. 18, 2024. 11 p.
Não convencional em Inglês | HomeoIndex - Homeopatia | ID: biblio-1552586

RESUMO

Homeopathy uses the "similitude principle" to arouse a therapeutic reaction in the body against its own disorders. For this to occur optimally, the medicinal pathogenetic effects must present similarity with the totality of the individual's symptoms. To assess if this similarity has been successfully achieved, Hahnemann states that "improvement in the disposition and mind"­i.e., subjective well-being­is the most important parameter to consider. Aim Our aim was to perform a narrative review of the literature, exploring what is known about subjective well-being as a marker of therapeutic action, and to formulate ways in which subjective well-being might be quantifiable and applied in future homeopathy research. The concept of subjective well-being has been extensively studied in the complementary and conventional medical literature. Improved well-being has been observed in clinical trials, including those in the fields of positive psychology and meditation. Positive subjective outcomes of this nature are supported by objective evidence through associated changes in brain oscillatory activity using electroencephalography and/or "brain mapping" by functional magnetic resonance imaging. Neurophysiological responses in the brain have been identified in subjects after they ingested a homeopathic medicine. The concept of subjective well-being is supported by a body of literature and is a measurable entity. When viewed from the perspective of electrophysiological changes, brain activity is an objective neurophysiological biomarker with a potential to quantify individual well-being in the context of homeopathy research.


Assuntos
Humanos , Mapeamento Encefálico , Diagnóstico Medicamentoso , Meditação , Eletroencefalografia , Psicologia Positiva , Bem-Estar Psicológico
19.
Artigo em Inglês | MEDLINE | ID: mdl-38663994

RESUMO

BACKGROUND: Alzheimer's disease (AD)-related neuropathological changes can occur decades before clinical symptoms. We aimed to investigate whether neurodevelopment and/or neurodegeneration affects the risk of AD, through reducing structural brain reserve and/or increasing brain atrophy, respectively. METHODS: We used bidirectional two-sample Mendelian randomisation to estimate the effects between genetic liability to AD and global and regional cortical thickness, estimated total intracranial volume, volume of subcortical structures and total white matter in 37 680 participants aged 8-81 years across 5 independent cohorts (Adolescent Brain Cognitive Development, Generation R, IMAGEN, Avon Longitudinal Study of Parents and Children and UK Biobank). We also examined the effects of global and regional cortical thickness and subcortical volumes from the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium on AD risk in up to 37 741 participants. RESULTS: Our findings show that AD risk alleles have an age-dependent effect on a range of cortical and subcortical brain measures that starts in mid-life, in non-clinical populations. Evidence for such effects across childhood and young adulthood is weak. Some of the identified structures are not typically implicated in AD, such as those in the striatum (eg, thalamus), with consistent effects from childhood to late adulthood. There was little evidence to suggest brain morphology alters AD risk. CONCLUSIONS: Genetic liability to AD is likely to affect risk of AD primarily through mechanisms affecting indicators of brain morphology in later life, rather than structural brain reserve. Future studies with repeated measures are required for a better understanding and certainty of the mechanisms at play.

20.
J Neurotrauma ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38588255

RESUMO

Traumatic axonal injury (TAI) is a common finding on magnetic resonance imaging (MRI) in patients with moderate-severe traumatic brain injury (TBI), and the burden of TAI is associated with outcome in this patient group. Lesion mapping offers a way to combine imaging findings from numerous individual patients into common lesion maps where the findings from a whole patient cohort can be assessed. The aim of this study was to evaluate the spatial distribution of TAI lesions on different MRI sequences and its associations to outcome with use of lesion mapping. Included prospectively were 269 patients (8-70 years) with moderate or severe TBI and MRI within six weeks after injury. The TAI lesions were evaluated and manually segmented on fluid-attenuated inversed recovery (FLAIR), diffusion weighted imaging (DWI), and either T2* gradient echo (T2*GRE) or susceptibility weighted imaging (SWI). The segmentations were registered to the Montreal Neurological Institute space and combined to lesion frequency distribution maps. Outcome was assessed with Glasgow Outcome Scale Extended (GOSE) score at 12 months. The frequency and distribution of TAI was assessed qualitatively by visual reading. Univariable associations to outcome were assessed qualitatively by visual reading and also quantitatively with use of voxel-based lesion-symptom mapping (VLSM). The highest frequency of TAI was found in the posterior half of corpus callosum. The frequency of TAI was higher in the frontal and temporal lobes than in the parietal and occipital lobes, and in the upper parts of the brainstem than in the lower. At the group level, all voxels in mesencephalon had TAI on FLAIR. The patients with poorest outcome (GOSE scores ≤4) had higher frequencies of TAI. On VLSM, poor outcome was associated with TAI lesions bilaterally in the splenium, the right side of tectum, tegmental mesencephalon, and pons. In conclusion, we found higher frequency of TAI in posterior corpus callosum, and TAI in splenium, mesencephalon, and pons were associated with poor outcome. If lesion frequency distribution maps containing outcome information based on imaging findings from numerous patients in the future can be compared with the imaging findings from individual patients, it would offer a new tool in the clinical workup and outcome prediction of the patient with TBI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...