Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Alzheimers Dement ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899634

RESUMO

INTRODUCTION: Premenopausal bilateral oophorectomy (PBO) is associated with later-life cognition, but the underlying brain changes remain unclear. We assessed the impact of PBO and PBO age on white matter integrity. METHODS: Female participants with regional diffusion tensor imaging (DTI) metrics of fractional anisotropy (FA) and mean diffusivity (MD) were included (22 with PBO < 40 years; 43 with PBO 40-45 years; 39 with PBO 46-49 years; 907 referents without PBO < 50 years). Linear regression models adjusted for age and apolipoprotein E (APOE) genotype. RESULTS: Females with PBO < 40 years, compared to referents, had lower FA and higher MD in the anterior corona radiata, genu of the corpus collosum, inferior fronto-occipital fasciculus, superior occipital, and superior temporal white matter. Females who underwent PBO between 45 and 49 also had some changes in white matter integrity. DISCUSSION: Females who underwent PBO < 40 years had reduced white matter integrity across multiple regions in later-life. These results are important for females considering PBO for noncancerous conditions. HIGHLIGHTS: Females with premenopausal bilateral oophorectomy (PBO) < 40 years had lower FA versus referents. Females with PBO < 40 years had higher MD in many regions versus referents. Adjusting for estrogen replacement therapy use did not attenuate results. Females with PBO 45-49 years also had some white matter changes versus referents.

2.
ArXiv ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38463511

RESUMO

Joint modeling of diffusion and relaxation has seen growing interest due to its potential to provide complementary information about tissue microstructure. For brain white matter, we designed an optimal diffusion-relaxometry MRI protocol that samples multiple b-values, B-tensor shapes, and echo times (TE). This variable-TE protocol (27 min) has as subsets a fixed-TE protocol (15 min) and a 2-shell dMRI protocol (7 min), both characterizing diffusion only. We assessed the sensitivity, specificity and reproducibility of these protocols with synthetic experiments and in six healthy volunteers. Compared with the fixed-TE protocol, the variable-TE protocol enables estimation of free water fractions while also capturing compartmental T2 relaxation times. Jointly measuring diffusion and relaxation offers increased sensitivity and specificity to microstructure parameters in brain white matter with voxelwise coefficients of variation below 10%.

3.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38499361

RESUMO

Despite major advances, our understanding of the neurobiology of life course socioeconomic conditions is still scarce. This study aimed to provide insight into the pathways linking socioeconomic exposures-household income, last known occupational position, and life course socioeconomic trajectories-with brain microstructure and cognitive performance in middle to late adulthood. We assessed socioeconomic conditions alongside quantitative relaxometry and diffusion-weighted magnetic resonance imaging indicators of brain tissue microstructure and cognitive performance in a sample of community-dwelling men and women (N = 751, aged 50-91 years). We adjusted the applied regression analyses and structural equation models for the linear and nonlinear effects of age, sex, education, cardiovascular risk factors, and the presence of depression, anxiety, and substance use disorders. Individuals from lower-income households showed signs of advanced brain white matter (WM) aging with greater mean diffusivity (MD), lower neurite density, lower myelination, and lower iron content. The association between household income and MD was mediated by neurite density (B = 0.084, p = 0.003) and myelination (B = 0.019, p = 0.009); MD partially mediated the association between household income and cognitive performance (B = 0.017, p < 0.05). Household income moderated the relation between WM microstructure and cognitive performance, such that greater MD, lower myelination, or lower neurite density was only associated with poorer cognitive performance among individuals from lower-income households. Individuals from higher-income households showed preserved cognitive performance even with greater MD, lower myelination, or lower neurite density. These findings provide novel mechanistic insights into the associations between socioeconomic conditions, brain anatomy, and cognitive performance in middle to late adulthood.


Assuntos
Encéfalo , Cognição , Substância Branca , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Cognição/fisiologia , Substância Branca/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Fatores Socioeconômicos , Envelhecimento/fisiologia , Envelhecimento/psicologia , Imagem de Difusão por Ressonância Magnética , Renda
4.
Geroscience ; 46(2): 2641-2651, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38108993

RESUMO

In the context of a globally aging population, exploring interventions that counteract age-related cognitive decline and cerebral structural alterations is paramount. Among various strategies, physical exercise (PE) emerges as a prevalent activity routinely incorporated in many individuals' lives. This systematic review and meta-analysis aims to elucidate the impact of PE on white matter (WM) integrity and cognitive function in older adults. Data from 581 participants, 312 in the PE intervention group, and 269 in the control group were extracted from nine randomized controlled trials (RCTs) retrieved from databases including PubMed, Embase, Web of Science, and the Cochrane Library. The results indicated a significant improvement in white matter (WM) integrity in individuals engaged in PE, as evidenced by enhanced fractional anisotropy (FA) scores (SMD = 0.4, 95% confidence interval (CI) [0.05, 0.75], P = 0.024). The GRADE assessment revealed a moderate risk. However, no significant associations were found between PE and other metrics such as radial diffusivity (RD), mean diffusivity (MD), white matter volume (WMV), hippocampal volume (HV), and cognitive functions (executive function [EF], memory, processing speed). In conclusion, our study emphasizes the potential neurostructural and cognitive functional benefits of physical exercise for the brain health of older adults.


Assuntos
Substância Branca , Humanos , Idoso , Imagem de Tensor de Difusão/métodos , Cognição , Encéfalo , Exercício Físico
5.
Cancers (Basel) ; 15(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37627181

RESUMO

The effectiveness of surgical resection of meningioma, the most common primary CNS tumor, depends on the capability to intraoperatively discriminate between the meningioma tissue and the surrounding brain white and gray matter tissues. Aiming to find a potential biomarker based on tissue permittivity, dielectric spectroscopy of meningioma, white matter, and gray matter ex vivo tissues was performed using the open-ended coaxial probe method in the microwave frequency range from 0.5 to 18 GHz. The averages and the 95% confidence intervals of the measured permittivity for each tissue were compared. The results showed the absence of overlap between the 95% confidence intervals for meningioma tissue and for brain white and gray matter, indicating a significant difference in average permittivity (p ≤ 0.05) throughout almost the entire measured frequency range, with the most pronounced contrast found between 2 GHz and 5 GHz. The discovered contrast is relevant as a potential physical biomarker to discriminate meningioma tissue from the surrounding brain tissues by means of permittivity measurement, e.g., for intraoperative meningioma margin assessment. The permittivity models for each tissue, developed in this study as its byproducts, will allow more accurate electromagnetic modeling of brain tumor and healthy tissues, facilitating the development of new microwave-based medical devices and tools.

6.
Bioengineering (Basel) ; 10(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37627873

RESUMO

Pain is considered an unpleasant perceptual experience associated with actual or potential somatic and visceral harm. Human subjects have different sensitivity to painful stimulation, which may be related to different painful response pattern. Excellent studies using functional magnetic resonance imaging (fMRI) have found the effect of the functional organization of white matter (WM) on the descending pain modulatory system, which suggests that WM function is feasible during pain modulation. In this study, 26 pain sensitive (PS) subjects and 27 pain insensitive (PIS) subjects were recruited based on cold pressor test. Then, all subjects underwent the cold bottle test (CBT) in normal (26 degrees temperature stimulating) and cold (8 degrees temperature stimulating) conditions during fMRI scan, respectively. WM functional networks were obtained using K-means clustering, and the functional connectivity (FC) was assessed among WM networks, as well as gray matter (GM)-WM networks. Through repeated measures ANOVA, decreased FC was observed between the GM-cerebellum network and the WM-superior temporal network, as well as the WM-sensorimotor network in the PS group under the cold condition, while this difference was not found in PIS group. Importantly, the changed FC was positively correlated with the state and trait anxiety scores, respectively. This study highlighted that the WM functional network might play an integral part in pain processing, and an altered FC may be related to the descending pain modulatory system.

7.
bioRxiv ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37503293

RESUMO

Diffusion-weighted magnetic resonance imaging (dMRI) is widely used to assess the brain white matter. One of the most common computations in dMRI involves cross-subject tract-specific analysis, whereby dMRI-derived biomarkers are compared between cohorts of subjects. The accuracy and reliability of these studies hinges on the ability to compare precisely the same white matter tracts across subjects. This is an intricate and error-prone computation. Existing computational methods such as Tract-Based Spatial Statistics (TBSS) suffer from a host of shortcomings and limitations that can seriously undermine the validity of the results. We present a new computational framework that overcomes the limitations of existing methods via (i) accurate segmentation of the tracts, and (ii) precise registration of data from different subjects/scans. The registration is based on fiber orientation distributions. To further improve the alignment of cross-subject data, we create detailed atlases of white matter tracts. These atlases serve as an unbiased reference space where the data from all subjects is registered for comparison. Extensive evaluations show that, compared with TBSS, our proposed framework offers significantly higher reproducibility and robustness to data perturbations. Our method promises a drastic improvement in accuracy and reproducibility of cross-subject dMRI studies that are routinely used in neuroscience and medical research.

8.
Eur J Neurosci ; 58(3): 2874-2887, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423618

RESUMO

Accumulating evidence supports the hypothesis that white matter (WM) abnormalities are involved in the pathophysiology of bulimia nervosa (BN); however, findings from in vivo neuroimaging studies have been inconsistent. We aimed to investigate the possible brain WM alterations, including WM volume and microstructure, in patients with BN. We recruited 43 BN patients and 31 healthy controls (HCs). All participants underwent structural and diffusion tensor imaging. Differences in WM volume and microstructure were evaluated using voxel-based morphometry, tract-based spatial statistics, and automated fibre quantification analysis. Compared with HCs, BN patients showed significantly decreased fractional anisotropy in the middle part of the corpus callosum (nodes 31-32) and increased mean diffusivity in the right cranial nerve V (CN V) (nodes 27-33 and nodes 55-88) and vertical occipital fasciculus (VOF) (nodes 58-85). Moreover, we found decreased axial diffusivity in the right inferior fronto-occipital fasciculus (node 67) and increased radial diffusivity in the CN V (nodes 22-34 and nodes 52-89) and left VOF (nodes 60-66 and nodes 81-85). Meanwhile, WM microstructural changes were correlated with patients' clinical manifestations. We did not find any significant differences in WM volume and the main WM fibre bundle properties between BN patients and HCs. Taken together, these findings provide that BN shows significant brain WM reorganization, but primarily in microstructure (part of WM fibre bundle), which is not sufficient to cause changes in WM volume. The automated fibre quantification analysis could be more sensitive to detect the subtle pathological changes in a point or segment of the WM fibre bundle.


Assuntos
Bulimia Nervosa , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imagem de Tensor de Difusão/métodos , Bulimia Nervosa/diagnóstico por imagem , Encéfalo/patologia , Corpo Caloso/patologia
9.
J Mech Behav Biomed Mater ; 141: 105753, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36898357

RESUMO

White matter in the brain is structurally anisotropic consisting of large bundle of aligned axonal fibers. Hyperelastic, transversely isotropic constitutive models are typically used in the modeling and simulation of such tissues. However, most studies constrain the material models to describe the mechanical behavior of white matter in the limit of small deformation, without considering the experimentally observed damage initiation and damage-induced material softening in large strain regime. In this study, we extend a previously developed transversely isotropic hyperelasticity model for white matter by coupling it with damage equations within the framework of thermodynamics and using continuum damage mechanics method. Two homogeneous deformation cases are used to demonstrate the proposed model's capability in capturing the damage-induced softening behaviors of white matter under uniaxial loading and simple shear, along with the investigation of fiber orientation effect on such behaviors and material stiffness. As a demonstration case of inhomogeneous deformation, the proposed model is also implemented into finite element codes to reproduce the experimental data (nonlinear material behavior and damage initiation) from an indentation configuration of porcine white matter. Good agreement between numerical results and experimental data is achieved indicating the potential of the proposed model in characterizing the mechanical behaviors of white matter considering damage at large strain.


Assuntos
Substância Branca , Animais , Suínos , Estresse Mecânico , Modelos Biológicos , Encéfalo , Axônios , Anisotropia , Análise de Elementos Finitos , Elasticidade
10.
Zhongguo Zhen Jiu ; 43(2): 163-9, 2023 Feb 12.
Artigo em Chinês | MEDLINE | ID: mdl-36808510

RESUMO

OBJECTIVE: To observe the clinical efficacy of scalp acupuncture for spastic cerebral palsy (CP), and to explore its possible mechanism based on brain white matter fiber bundles, nerve growth related proteins and inflammatory cytokines. METHODS: A total of 90 children with spastic CP were randomly divided into a scalp acupuncture group and a sham scalp acupuncture group, 45 cases in each group. The children in the two groups were treated with conventional comprehensive rehabilitation treatment. The children in the scalp acupuncture group were treated with scalp acupuncture at the parietal temporal anterior oblique line, parietal temporal posterior oblique line on the affected side, and parietal midline. The children in the sham scalp acupuncture group were treated with scalp acupuncture at 1 cun next to the above point lines. The needles were kept for 30 min, once a day, 5 days a week, for 12 weeks. Before and after treatment, the diffusion tensor imaging (DTI) indexes of magnetic resonance (FA values of corticospinal tract [CST], anterior limb of internal capsule [ICAL], posterior limb of internal capsule [ICPL], genu of internal capsule [ICGL], genu of corpus callosum [GCC], body of corpus callosum [BCC] and splenium of corpus callosum [SCC]), serum levels of nerve growth related proteins (neuron-specific enolase [NSE], glial fibrillary acidic protein [GFAP], myelin basic protein [MBP], ubiquitin carboxy terminal hydrolase-L1 [UCH-L1]) and inflammatory cytokines (interleukin 33 [IL-33], tumor necrosis factor α [TNF-α]), cerebral hemodynamic indexes (mean blood flow velocity [Vm], systolic peak flow velocity [Vs] and resistance index [RI], pulsatility index [PI] of cerebral artery), surface electromyography (SEMG) signal indexes (root mean square [RMS] values of rectus femoris, hamstring muscles, gastrocnemius muscles, tibialis anterior muscles), gross motor function measure-88 (GMFM-88) score, modified Ashworth scale (MAS) score, ability of daily living (ADL) score were observed in the two groups. The clinical effect of the two groups was compared. RESULTS: After treatment, the FA value of each fiber bundle, Vm, Vs, GMFM-88 scores and ADL scores in the two groups were higher than those before treatment (P<0.05), and the above indexes in the scalp acupuncture group were higher than those in the sham scalp acupuncture group (P<0.05). After treatment, the serum levels of NSE, GFAP, MBP, UCH-L1, IL-33, TNF-α as well as RI, PI, MAS scores and RMS values of each muscle were lower than those before treatment (P<0.05), and the above indexes in the scalp acupuncture group were lower than those in the sham scalp acupuncture group (P<0.05). The total effective rate was 95.6% (43/45) in the scalp acupuncture group, which was higher than 82.2% (37/45) in the sham scalp acupuncture group (P<0.05). CONCLUSION: Scalp acupuncture could effectively treat spastic CP, improve the cerebral hemodynamics and gross motor function, reduce muscle tension and spasticity, and improve the ability of daily life. The mechanism may be related to repairing the white matter fiber bundles and regulating the levels of nerve growth related proteins and inflammatory cytokines.


Assuntos
Terapia por Acupuntura , Paralisia Cerebral , Criança , Humanos , Paralisia Cerebral/terapia , Interleucina-33 , Imagem de Tensor de Difusão/métodos , Couro Cabeludo , Espasticidade Muscular , Fator de Necrose Tumoral alfa , Citocinas
11.
J Neuroinflammation ; 20(1): 50, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36829205

RESUMO

BACKGROUND: The repair of white matter injury is of significant importance for functional recovery after ischemic stroke, and the up-regulation of triggering receptors expressed on myeloid cells 2 (TREM2) after ischemic stroke is neuroprotective and implicated in remyelination. However, the lack of effective therapies calls for the need to investigate the regenerative process of remyelination and the role of rehabilitation therapy. This study sought to investigate whether and how moderate physical exercise (PE) promotes oligodendrogenesis and remyelination in rats with transient middle cerebral artery occlusion (tMCAO). METHODS: Male Sprague-Dawley rats (weighing 250-280 g) were subjected to tMCAO. AAV-shRNA was injected into the lateral ventricle to silence the Trem2 gene before the operation. The rats in the physical exercise group started electric running cage training at 48 h after the operation. The Morris water maze and novel object recognition test were used to evaluate cognitive function. Luxol fast blue staining, diffusion tensor imaging, and electron microscopy were used to observe myelin injury and repair. Immunofluorescence staining was applied to observe the proliferation and differentiation of oligodendrocyte precursor cells (OPCs). Expression of key molecules were detected using immunofluorescence staining, quantitative real-time polymerase chain reaction, Western blotting, and Enzyme-linked immunosorbent assay, respectively. RESULTS: PE exerted neuroprotective efects by modulating microglial state, promoting remyelination and recovery of neurological function of rats over 35 d after stroke, while silencing Trem2 expression in rats suppressed the aforementioned effects promoted by PE. In addition, by leveraging the activin-A neutralizing antibody, we found a direct beneficial effect of PE on microglia-derived activin-A and its subsequent role on oligodendrocyte differentiation and remyelination mediated by the activin-A/Acvr axis. CONCLUSIONS: The present study reveals a novel regenerative role of PE in white matter injury after stroke, which is mediated by upregulation of TREM2 and microglia-derived factor for oligodendrocytes regeneration. PE is an effective therapeutic approach for improving white matter integrity and alleviating neurological function deficits after ischemic stroke.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Substância Branca , Ratos , Masculino , Animais , Microglia/metabolismo , Substância Branca/metabolismo , AVC Isquêmico/metabolismo , Isquemia Encefálica/metabolismo , Imagem de Tensor de Difusão , Ratos Sprague-Dawley , Acidente Vascular Cerebral/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Lesões Encefálicas/metabolismo
12.
Biomech Model Mechanobiol ; 22(2): 495-513, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36550243

RESUMO

Biomechanical study of brain injuries originated from mechanical damages to white matter tissue requires detailed information on mechanical characteristics of its main components, the axonal fibers and extracellular matrix, which is very limited due to practical difficulties of direct measurement. In this paper, a new theoretical framework was established based on microstructural modeling of brain white matter tissue as a soft composite for bidirectional hyperelastic characterization of its main components. First the tissue was modeled as an Ogden hyperelastic material, and its principal Cauchy stresses were formulated in the axonal and transverse directions under uniaxial and equibiaxial tension using the theory of homogenization. Upon fitting these formulae to the corresponding experimental test data, direction-dependent hyperelastic constants of the tissue were obtained. These directional properties then were used to estimate the strain energy stored in the homogenized model under each loading scenario. A new microstructural composite model of the tissue was also established using principles of composites micromechanics, in which the axonal fibers and surrounding matrix are modeled as different Ogden hyperelastic materials with unknown constants. Upon balancing the strain energies stored in the homogenized and composite models under different loading scenarios, fully coupled nonlinear equations as functions of unknown hyperelastic constants were derived, and their optimum solutions were found in a multi-parametric multi-objective optimization procedure using the response surface methodology. Finally, these solutions were implemented, in a bottom-up approach, into a micromechanical finite element model to reproduce the tissue responses under the same loadings and predict the tissue responses under unseen non-equibiaxial loadings. Results demonstrated a very good agreement between the model predictions and experimental results in both directions under different loadings. Moreover, the axonal fibers with hyperelastic characteristics stiffer than the extracellular matrix were shown to play the dominant role in directional reinforcement of the tissue.


Assuntos
Substância Branca , Substância Branca/fisiologia , Estresse Mecânico , Fenômenos Biomecânicos , Elasticidade , Axônios/fisiologia , Análise de Elementos Finitos , Modelos Biológicos
13.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-969966

RESUMO

OBJECTIVE@#To observe the clinical efficacy of scalp acupuncture for spastic cerebral palsy (CP), and to explore its possible mechanism based on brain white matter fiber bundles, nerve growth related proteins and inflammatory cytokines.@*METHODS@#A total of 90 children with spastic CP were randomly divided into a scalp acupuncture group and a sham scalp acupuncture group, 45 cases in each group. The children in the two groups were treated with conventional comprehensive rehabilitation treatment. The children in the scalp acupuncture group were treated with scalp acupuncture at the parietal temporal anterior oblique line, parietal temporal posterior oblique line on the affected side, and parietal midline. The children in the sham scalp acupuncture group were treated with scalp acupuncture at 1 cun next to the above point lines. The needles were kept for 30 min, once a day, 5 days a week, for 12 weeks. Before and after treatment, the diffusion tensor imaging (DTI) indexes of magnetic resonance (FA values of corticospinal tract [CST], anterior limb of internal capsule [ICAL], posterior limb of internal capsule [ICPL], genu of internal capsule [ICGL], genu of corpus callosum [GCC], body of corpus callosum [BCC] and splenium of corpus callosum [SCC]), serum levels of nerve growth related proteins (neuron-specific enolase [NSE], glial fibrillary acidic protein [GFAP], myelin basic protein [MBP], ubiquitin carboxy terminal hydrolase-L1 [UCH-L1]) and inflammatory cytokines (interleukin 33 [IL-33], tumor necrosis factor α [TNF-α]), cerebral hemodynamic indexes (mean blood flow velocity [Vm], systolic peak flow velocity [Vs] and resistance index [RI], pulsatility index [PI] of cerebral artery), surface electromyography (SEMG) signal indexes (root mean square [RMS] values of rectus femoris, hamstring muscles, gastrocnemius muscles, tibialis anterior muscles), gross motor function measure-88 (GMFM-88) score, modified Ashworth scale (MAS) score, ability of daily living (ADL) score were observed in the two groups. The clinical effect of the two groups was compared.@*RESULTS@#After treatment, the FA value of each fiber bundle, Vm, Vs, GMFM-88 scores and ADL scores in the two groups were higher than those before treatment (P<0.05), and the above indexes in the scalp acupuncture group were higher than those in the sham scalp acupuncture group (P<0.05). After treatment, the serum levels of NSE, GFAP, MBP, UCH-L1, IL-33, TNF-α as well as RI, PI, MAS scores and RMS values of each muscle were lower than those before treatment (P<0.05), and the above indexes in the scalp acupuncture group were lower than those in the sham scalp acupuncture group (P<0.05). The total effective rate was 95.6% (43/45) in the scalp acupuncture group, which was higher than 82.2% (37/45) in the sham scalp acupuncture group (P<0.05).@*CONCLUSION@#Scalp acupuncture could effectively treat spastic CP, improve the cerebral hemodynamics and gross motor function, reduce muscle tension and spasticity, and improve the ability of daily life. The mechanism may be related to repairing the white matter fiber bundles and regulating the levels of nerve growth related proteins and inflammatory cytokines.


Assuntos
Criança , Humanos , Paralisia Cerebral/terapia , Interleucina-33 , Imagem de Tensor de Difusão/métodos , Couro Cabeludo , Espasticidade Muscular , Fator de Necrose Tumoral alfa , Terapia por Acupuntura , Citocinas
14.
Front Neuroendocrinol ; 67: 101031, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35998859

RESUMO

Worldwide over 150 million women use oral contraceptives (OCs), which are the most prescribed form of contraception in both the United States and in European countries. Sex hormones, such as estradiol and progesterone, are important endogenous hormones known for shaping the brain across the life span. Synthetic hormones, which are present in OCs, interfere with the natural hormonal balance by reducing the endogenous hormone levels. Little is known how this affects the brain, especially during the most vulnerable times of brain maturation. Here, we review studies that investigate differences in brain gray and white matter in women using OCs in comparison to naturally cycling women. We focus on two neuroimaging methods used to quantify structural gray and white matter changes, namely structural MRI and diffusion MRI. Finally, we discuss the potential of these imaging techniques to advance knowledge about the effects of OCs on the brain and wellbeing in women.


Assuntos
Anticoncepcionais Orais , Objetivos , Humanos , Feminino , Anticoncepcionais Orais/farmacologia , Progesterona/farmacologia , Estradiol , Encéfalo/diagnóstico por imagem
15.
BMC Med Imaging ; 22(1): 86, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562722

RESUMO

PURPOSE: To analyse the changes in brain white matter before and after radiotherapy (RT) by applying multisequence MR radiomics features and to establish a relationship between the changes in radiomics features and radiation dose. METHODS: Eighty-eight patients with brain tumours who had undergone RT were selected in this study, and MR images (T1, T1+C, T2FLAIR, T2, DWI, and ASL) before and after RT were obtained. The brain white matter was delineated as an ROI under dose gradients of 0-5 Gy, 5-10 Gy, 10-15 Gy, 15-20 Gy, 20-30 Gy, 30-40 Gy, and 40-50 Gy. The radiomics features of each ROI were extracted, and the changes in radiomics features before and after RT for different sequences under different dose gradients were compared. RESULTS: At each dose gradient, statistically significant features of different MR sequences were mainly concentrated in three dose gradients, 5-10 Gy, 20-30 Gy, and 30-40 Gy. The T1+C sequence held the most features (66) under the 20-30 Gy dose gradient. There were 20 general features at dose gradients of 20-30 Gy, 30-40 Gy, and 40-50 Gy, and the changes in features first decreased and then increased following dose escalation. With dose gradients of 5-10 Gy and 10-15 Gy, only T1 and T2FLAIR had general features, and the rates of change were - 24.57% and - 29.32% for T1 and - 3.08% and - 10.87% for T2FLAIR, respectively. The changes showed an upward trend with increasing doses. For different MR sequences that were analysed under the same dose gradient, all sequences with 5-10 Gy, 20-30 Gy and 30-40 Gy had general features, except the T2FLAIR sequence, which was concentrated in the FirstOrder category feature, and the changes in features of T1 and T1+C were more significant than those of the other sequences. CONCLUSIONS: MR radiomics features revealed microscopic changes in brain white matter before and after RT, although there was no constant dose-effect relationship for each feature. The changes in radiomics features in different sequences could reveal the radiation response of brain white matter to different doses.


Assuntos
Neoplasias Encefálicas , Substância Branca , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Humanos , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem
16.
J Neurovirol ; 28(1): 168-171, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35235153

RESUMO

The origin of brain white matter lesion found in HTLV-1-associated myelopathy (HAM/TSP) remains undefined. We investigated the association between white matter lesions in HAM/TSP with cardiovascular risk factors. The group of 40 patients with HAM/TSP included 60% females and mean age of 58.6 ± 8 years old. The probability of 10-year cardiovascular disease was low in 53%, moderate in 38%, and high in 10% of the patients. There was no difference between the cardiovascular risk factors in HAM/TSP patients with and without brain lesions (p > 0.05). Our data suggest that the brain white matter abnormalities are not associated to increased cardiovascular risk in HAM/TSP.


Assuntos
Doenças Cardiovasculares , Vírus Linfotrópico T Tipo 1 Humano , Doenças do Sistema Nervoso , Paraparesia Espástica Tropical , Substância Branca , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Feminino , Fatores de Risco de Doenças Cardíacas , Humanos , Masculino , Pessoa de Meia-Idade , Paraparesia Espástica Tropical/patologia , Fatores de Risco , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
17.
Ethn Health ; 27(7): 1599-1615, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33853442

RESUMO

OBJECTIVE: Investigate the associations between self-reported physical activity (PA) engagement and white matter (WM) health (i.e. volume, integrity, and hyperintensities) in older Latinos. DESIGN: Cross-sectional study with community-dwelling older adults from predominantly Latino neighborhoods. Participants: Thirty-four cognitively healthy older Latinos from two different cohorts. Measurements: Participants self-reported demographic information, PA engagement [Community Healthy Activities Model Program for Seniors (CHAMPS) Physical Activity Questionnaire for Older Adults] and magnetic resonance imaging (MRI). We used high-resolution three-dimensional T1- and T2-FLAIR weighted images and diffusion tensor imaging acquired via 3 T MRI. We performed a series of hierarchical linear regression models with the addition of relevant covariates to examine the associations between self-reported PA levels and WM volume, integrity, and hyperintensities (separately). We adjusted p-values with the use of the Benjamini-Hochberg's false discovery rate procedure. RESULTS: Higher reported levels of leisure-time moderate-to-vigorous PA were significantly associated with higher WM volume of the posterior cingulate (ß = 0.220, SE = 0.125, 95% CI 0.009-0.431, p = 0.047) and isthmus cingulate (ß = 0.212, SE = 0.110, 95% CI 0.001-0.443, p = 0.044) after controlling for intracranial volume. Higher levels of total PA were significantly associated with higher overall WM volume of these same regions (posterior cingulate: ß = 0.220, SE = 0.125, CI 0.024-0.421, p = 0.046; isthmus cingulate: ß = 0.220, SE = 0.125, 95% CI 0.003-0.393; p = 0.040). Significant p-values did not withstand Benjamini-Hochberg's adjustment. PA was not significantly associated with WM integrity or WM hyperintensities. CONCLUSION: Higher levels of PA, particularly higher leisure-time moderate-to-vigorous PA, might be associated with greater WM volume in select white matter regions key to brain network integration for physical and cognitive functioning in older Latinos. More research is needed to further confirm these associations.


Assuntos
Substância Branca , Idoso , Encéfalo , Estudos Transversais , Imagem de Tensor de Difusão , Exercício Físico , Hispânico ou Latino , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
18.
Mol Genet Metab ; 135(1): 72-81, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34916127

RESUMO

INTRODUCTION: The mitochondrial DNA (mtDNA) m.3243A > G mutation in the MT-TL1 gene results in a multi-systemic disease, that is commonly associated with neurodegenerative changes in the brain. METHODS: Seventeen patients harboring the m3243A > G mutation were enrolled (age 43.1 ± 11.4 years, 10 M/7F). A panel of plasma biomarkers including lactate acid, alanine, L-arginine, fibroblast growth factor 21 (FGF-21), growth/differentiation factor 15 (GDF-15) and circulating cell free -mtDNA (ccf-mtDNA), as well as blood, urine and muscle mtDNA heteroplasmy were evaluated. Patients also underwent a brain standardized MR protocol that included volumetric T1-weighted images and diffusion-weighted MRI. Twenty sex- and age-matched healthy controls were included. Voxel-wise analysis was performed on T1-weighted and diffusion imaging, respectively with VBM (voxel-based morphometry) and TBSS (Tract-based Spatial Statistics). Ventricular lactate was also evaluated by 1H-MR spectroscopy. RESULTS: A widespread cortical gray matter (GM) loss was observed, more severe (p < 0.001) in the bilateral calcarine, insular, frontal and parietal cortex, along with infratentorial cerebellar cortex. High urine mtDNA mutation load, high levels of plasma lactate and alanine, low levels of plasma arginine, high levels of serum FGF-21 and ventricular lactate accumulation significantly (p < 0.05) correlated with the reduced brain GM density. Widespread microstructural alterations were highlighted in the white matter, significantly (p < 0.05) correlated with plasma alanine and arginine levels, with mtDNA mutation load in urine, with high level of serum GDF-15 and with high content of plasma ccf-mtDNA. CONCLUSIONS: Our results suggest that the synergy of two pathogenic mechanisms, mtDNA-related mitochondrial respiratory deficiency and defective nitric oxide metabolism, contributes to the brain neurodegeneration in m.3243A > G patients.


Assuntos
Substância Branca , Adulto , Biomarcadores , Encéfalo/patologia , DNA Mitocondrial/genética , Substância Cinzenta , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Mutação , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
19.
Front Neurol ; 13: 1086772, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588888

RESUMO

Purpose: In individuals with chronic kidney disease (CKD), neurological damage is commonly observed. This neurodegeneration is closely linked to microstructural damage to the brain white matter due to the high incidence of cognitive dysfunction. However, the specific pathogenesis of CKD nephropathy caused by cognitive system developmental disorders remains unclear. This study aimed to examine the correlation between cognitive impairment and diffusion parameters obtained on diffusion tensor imaging (DTI) of abnormal white matter tracts in CKD patients. Methods: Sixty-four patients with CKD were divided into the non-dialysis-dependent CKD (NDD-CKD) group (N = 26) and dialysis-dependent CKD (DD-CKD) group (N = 38) according to the estimated glomerular filtration rate, whereas 43 healthy control subjects (normal control [NC]) were included and underwent cranial magnetic resonance imaging during the same period. Differences in the abnormal white matter microstructure and correlations between them and cognitive scores were assessed using several parameters between the groups. Results: There were more extensive peri-lesions and distant white matter microstructural changes in the DD-CKD and NDD-CKD groups than in the NC group. DTI diffusion parameters in abnormal white matter regions were associated with impaired cognitive function in CKD patients. The DD-CKD group had worse cognitive function and more severe microstructural damage in the cerebral white matter than the NDD-CKD group. Conclusion: CKD patients showed cognitive impairment and changes in the brain white matter microstructure; CKD can lead to extensive white matter tract damage. Additionally, diffusion parameters can be used as a complement to describe structural brain damage in CKD patients.

20.
J Mech Behav Biomed Mater ; 124: 104782, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34536799

RESUMO

The response of fibrous soft tissues undergoing torsional deformations is a topic of current interest. Such deformations are common in ligaments and tendons and are also of particular interest in cardiac mechanics. The problem of torsion superimposed on extension of incompressible hyperelastic solid circular cylinders is a classic problem of nonlinear elasticity that has been considered by many authors in the context of rubber elasticity particularly for isotropic materials. A striking feature of such problems is the instability that arises with sufficiently large twist where a kink and then a knot suddenly appears. An energy approach to examining this instability when the extension and twist are prescribed was described by Gent and Hua (2004) and illustrated there for a neo-Hookean isotropic elastic material. The theoretical results were compared with experimental observations on natural rubber rods. Murphy (2015) has shown that the approach of Gent and Hua (2004) for isotropic materials can be simplified when the rods are assumed to be thin and this theory was applied to transversely isotropic materials by Horgan and Murphy (2016). In contrast with the case for isotropic materials, it was shown there that the kinking instability occurs even in the absence of stretch, i.e., for the case of pure torsion. Here we are concerned with the implications of this simplified thin rod instability theory for fiber-reinforced transversely isotropic materials that reflect fiber-matrix interaction. It is again shown that the kinking instability occurs even in the absence of stretch, i.e., for the case of pure torsion. The results are illustrated for a specific strain-energy density function that models fiber-matrix interaction. It is shown that the critical twist at which kinking occurs decreases as a measure of fiber-matrix interaction is increased so that the fiber-matrix interaction has a destabilizing effect. The results are illustrated using experimental data of other authors for skeletal muscles and for porcine brain white matter tissue.


Assuntos
Ligamentos , Tendões , Animais , Anisotropia , Elasticidade , Modelos Biológicos , Estresse Mecânico , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...