Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172308, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599396

RESUMO

Despite the diverse research into the environmental impact of plastics, several stones have yet to be unraveled in terms of their ecotoxicological potential. Moreover, their detrimental impacts have become terrifying in recent years as the understanding of their tendency to associate and form cohorts with other emerging contaminants grew. Despite the hypothesis that microplastics may potentially adsorb organic pollutants, sequestering and making them not bioavailable for enhanced toxicity, evidence with pollutants such as Tetrabromobisphenol A (TBBPA) defers this assertion. TBBPA, one of the most widely used brominated flame retardants, has been enlisted as an emerging contaminant of serious environmental and human health concerns. Being also an additive to plasticware, it is not far to suspect that TBBPA could be found in association with micro/nanoplastics in our environment. Several pieces of evidence from recent studies have confirmed the micro/nanoplastics-TBBPA association and have exposed their compounded detrimental impacts on the environment and human health. This study, therefore, presents a comprehensive and up-to-date review of recent findings regarding their occurrence, factors that foster their association, including their sorption kinetics and isotherms, and their impacts on aquatic/agroecosystem and human health. The way forward and prospects for future studies were presented. This research is believed to be of significant interest to the readership due to its relevance to current environmental challenges posed by plastics and TBBPA. The study not only contributes valuable insights into the specific interaction between micro/nanoplastics and TBBPA but also suggests the way forward and prospects for future studies in this field.


Assuntos
Ecotoxicologia , Poluentes Ambientais , Microplásticos , Bifenil Polibromatos , Humanos , Monitoramento Ambiental , Retardadores de Chama
2.
Molecules ; 28(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36770833

RESUMO

Diverse reducing mediators have often been used to increase the degradation of emerging pollutants (EPs) and dyes through the Fenton reaction (Fe2+ + H2O2 → Fe3+ + HO● + HO-). Adding reductants can minimize the accumulation of Fe3+ in a solution, leading to accelerated Fe2+ regeneration and the enhanced generation of reactive oxygen species, such as the HO● radical. The present study consisted in reviewing the effects of gallic acid (GA), a plant-extracted reductant, on the Fenton-based oxidation of several EPs and dyes. It was verified that the pro-oxidant effect of GA was not only reported for soluble iron salts as a catalyst (homogeneous Fenton), but also iron-containing solid materials (heterogeneous Fenton). The most common molar proportion verified in the studies was catalyst:oxidant:GA equal to 1:10-20:1. This shows that the required amount of both catalyst and GA is quite low in comparison with the oxidant, which is generally H2O2. Interestingly, GA has proven to be an effective mediator at pH values well above the ideal range of 2.5-3.0 for Fenton processes. This allows treatments to be carried out at the natural pH of the wastewater. The use of plant extracts or wood barks containing GA and other reductants is suggested to make GA-mediated Fenton processes easier to apply for treating real wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA