RESUMO
Bacillus thuringiensis (Bt) is known for its Cry and Vip3A pesticidal proteins with high selectivity to target pests. Here, we assessed the potential of a novel neotropical Bt strain (UFT038) against six lepidopteran pests, including two Cry-resistant populations of fall armyworm, Spodoptera frugiperda. We also sequenced and analyzed the genome of Bt UFT038 to identify genes involved in insecticidal activities or encoding other virulence factors. In toxicological bioassays, Bt UFT038 killed and inhibited the neonate growth in a concentration-dependent manner. Bt UFT038 and HD-1 were equally toxic against S. cosmioides, S. frugiperda (S_Bt and R_Cry1 + 2Ab populations), Helicoverpa zea, and H. armigera. However, larval growth inhibition results indicated that Bt UFT038 was more toxic than HD-1 to S. cosmioides, while HD-1 was more active against Chrysodeixis includens. The draft genome of Bt UFT038 showed the cry1Aa8, cry1Ac11, cry1Ia44, cry2Aa9, cry2Ab35, and vip3Af5 genes. Besides this, genes encoding the virulence factors (inhA, plcA, piplC, sph, and chi1-2) and toxins (alo, cytK, hlyIII, hblA-D, and nheA-C) were also identified. Collectively, our findings reveal the potential of the Bt UFT038 strain as a source of insecticidal genes against lepidopteran pests, including S. cosmioides and S. frugiperda.
Assuntos
Bacillus thuringiensis , Inseticidas , Mariposas , Animais , Humanos , Recém-Nascido , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Glycine max , Endotoxinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Inseticidas/farmacologia , Inseticidas/metabolismo , Spodoptera/metabolismo , Larva , Fatores de Virulência/metabolismo , Controle Biológico de VetoresRESUMO
Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a significant fraction of the genomes of most eukaryotes and can impact their architecture and regulation. In this paper, we present the first data related to the identification and characterization of TEs present in the transcriptome of Anticarsia gemmatalis. Approximately, 835 transcripts showed significant similarity to TEs and (or) characteristic domains. Retrotransposons accounted for 71.2% (595 sequences) of the identified elements, while DNA transposons were less abundant, with 240 annotations (28.8%). TEs were classified into 30 superfamilies, with SINE3/5S and Gypsy being the most abundant. Based on the sequences of TEs found in the transcriptome, we were able to locate conserved regions in the chromosomes of this species. The analysis of differential expression of TEs in susceptible and resistant strains, challenged and not challenged with Bacillus thuringiensis (Bt) from in silico analysis, indicated that exposure to Bt can regulate the transcription of mobile genetic elements in the velvetbean caterpillar. Thus, these data contribute significantly to the knowledge of the structure and composition of these elements in the genome of this species, and suggest the role of stress on their expression.
Assuntos
Lepidópteros , Mariposas , Animais , Lepidópteros/genética , Elementos de DNA Transponíveis , Transcriptoma , Mariposas/genéticaRESUMO
Anticarsia gemmatalis is one of the main defoliators of soybean in Brazil. Bacillus thuringiensis (Bt) transgenic crops are used for their management. In this paper we used RNA-seq to explore the response of A. gemmatalis to Bt HD73, as well as to detect transcriptional differences after Bt infection between resistant and susceptible strains. A total of 3853 and 6224 differentially expressed genes (DGEs) were identified in susceptible and resistant larvae after Bt exposure, respectively. We identified 2143 DEGs between susceptible and resistant larvae and 1991 between susceptible and resistant larvae Bt exposed. Immunity-related genes, Bt toxins receptors, proteases, genes involved in metabolic processes, transporters, cuticle proteins and mobile elements have been identified. qRT-PCR data demonstrated upregulation of five genes in susceptible strain after Bt exposure. These results provide insights to understand the molecular and cellular mechanisms of response to Bt that could be used in strategies to control agricultural pests.
Assuntos
Bacillus thuringiensis , Mariposas , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Larva/genética , Mariposas/fisiologiaRESUMO
Multitoxin Bt-crops expressing insecticidal toxins with different modes of action, for example, Cry and Vip, are expected to improve resistance management in target pests. While Cry1A resistance has been relatively well characterized in some insect species, this is not the case for Vip3A, for which no mechanism of resistance has yet been identified. Here we applied HT-SuperSAGE to analyze the transcriptome of the gut tissue of tobacco budworm Heliothis virescens (F.) laboratory-selected for Vip3Aa resistance. From a total of 1 324 252 sequence reads, 5 895 126-bp tags were obtained representing 17 751 nonsingleton unique transcripts (UniTags) from genetically similar Vip3Aa-resistant (Vip-Sel) and susceptible control (Vip-Unsel) strains. Differential expression was significant (≥2.5 fold or ≤0.4; P < 0.05) for 1989 sequences (11.2% of total UniTags), where 420 represented overexpressed (OE) and 1569 underexpressed (UE) genes in Vip-Sel. BLASTN searches mapped 419 UniTags to H. virescens sequence contigs, of which, 416 (106 OE and 310 UE) were unambiguously annotated to proteins in NCBI nonredundant protein databases. Gene Ontology distributed 345 of annotated UniTags in 14 functional categories with metabolism (including serine-type hydrolases) and translation/ribosome biogenesis being the most prevalent. A UniTag homologous to a particular member of the REsponse to PAThogen (REPAT) family was found among most overexpressed, while UniTags related to the putative Vip3Aa-binding ribosomal protein S2 (RpS2) were underexpressed. qRT-PCR of a subset of UniTags validated the HT-SuperSAGE data. This study is the first providing lepidopteran gut transcriptome associated with Vip3Aa resistance and a foundation for future attempts to elucidate the resistance mechanism.
Assuntos
Proteínas de Bactérias , Mariposas/metabolismo , Transcriptoma , Animais , Biblioteca Gênica , Resistência a Inseticidas/genética , Larva/metabolismo , Mariposas/genética , Proteínas Ribossômicas/metabolismo , Serina Proteases/metabolismoRESUMO
Plodia interpunctella (Hübner) is an important stored grain insect pest worldwide, and the first lepidopteran with reported resistance to Bacillus thuringiensis (Bt) toxins. Since gut bacteria may affect Bt insecticidal activity, we evaluated whether P. interpunctella lacking gut bacteria had differences in immune responses and susceptibility to the Bt formulation, Bactospeine. In order to clear gut bacteria, third instar larvae were reared on artificial diet containing antibiotics, or were obtained from sterilized eggs and reared under sterile conditions, and larvae were fed diets with or without Bt. Mortality was significantly lower (p<0.05) in bacteria-free larvae treated with Bt, compared with Bt-treated larvae with unaffected gut bacteria. The number of hemocytes was lower in control and Bt-treated larvae, but was significantly higher (p<0.001) in larvae treated with antibiotics and Bt, and larvae from presterilized eggs and reared on sterile diet had the highest number of hemocytes. Phenoloxidase activity was significantly lower (p<0.05) in Bt-treated larvae from presterilized eggs reared on antibiotics for 24h or in larvae reared on antibiotic-treated diets prior to Bt introduction compared with those fed control diet. Hemolin gene expression was reduced in larvae fed Bt diets compared with control and was not detected in larvae treated with antibiotics. Larvae from sterilized eggs and fed sterile diet never reached the pupal stage. Therefore, the loss of gut bacteria in P. interpunctella larvae affected the host immune response and expression of the hemolin gene, and significantly reduced susceptibility to Bt.
Assuntos
Bacillus thuringiensis/fisiologia , Microbioma Gastrointestinal , Imunidade Inata , Imunoglobulinas/genética , Proteínas de Insetos/genética , Mariposas/imunologia , Mariposas/microbiologia , Animais , Imunoglobulinas/metabolismo , Proteínas de Insetos/metabolismo , Mariposas/genética , Mariposas/metabolismoRESUMO
BACKGROUND: The presence of fitness costs of resistance to Bacillus thuringiensis (Bt) insecticidal proteins in insect populations may delay or even reverse the local selection of insect resistance to Bt transgenic crops, and deserves rigorous investigation. Here we assessed the fitness costs associated with Cry1Fa resistance in two strains of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), derived from field collections in different Brazilian regions and further selected in the laboratory for high levels of resistance to Cry1Fa using leaves of TC1507 corn. RESULTS: Fitness components were compared using paired resistant and susceptible strains with similar genetic backgrounds and F1 generations from reciprocal crosses, all of them reared on non-transgenic corn leaves. No apparent life history costs in the larval stage were observed in the Bt-resistant strains. Moreover, the resistance remained stable for seven generations in the absence of selection, with no decrease in the proportion of resistant individuals. Larval respiration rates were also similar between resistant and susceptible homozygotes, and heterozygotes displayed respiration rates and demographic performance equal or superior to those of susceptible homozygotes. CONCLUSION: In combination, these results indicate the lack of strong fitness costs associated with resistance to Cry1Fa in the fall armyworm strains studied. These findings suggest that Cry1Fa resistance in S. frugiperda populations is unlikely to be counterselected in Cry1Fa-free environments. © 2016 Society of Chemical Industry.
Assuntos
Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Resistência a Inseticidas/genética , Spodoptera/genética , Animais , Toxinas de Bacillus thuringiensis , Brasil , Seleção Genética , Spodoptera/fisiologiaRESUMO
The widespread and sustainable exploitation of the entomopathogen Bacillus thuringiensis (Bt) in pest control is threatened by the evolution of resistance. Although resistance is often associated with loss of binding of the Bt toxins to the insect midgut cells, other factors have been implicated. Here we used suppressive subtractive hybridization and gene expression suppression to identify additional molecular components involved in Bt-resistance in Plutella xylostella. We isolated transcripts from genes that were differentially expressed in the midgut of larvae from a resistant population, following ingestion of a Bt kurstaki HD1 strain-based commercial formulation (DiPel), and compared with a genetically similar susceptible population. Quantitative real-time polymerase-chain reaction (RT-PCR) analysis confirmed the differential basal expression of a subset of these genes. Gene expression suppression of three of these genes (P. xylostella cyclin-dependent kinase 5 regulatory subunit associated protein 1-like 1, stromal cell-derived factor 2-like 1 and hatching enzyme-like 1) significantly increased the pathogenicity of HD1 to the resistant population. In an attempt to link the multitude of factors reportedly influencing resistance to Bt with the well-characterized loss of toxin binding, we also considered Bt-resistance models in P. xylostella and other insects.