Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.168
Filtrar
1.
Biosci Microbiota Food Health ; 43(3): 275-281, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966053

RESUMO

The short-chain fatty acids responsible for gut homeostasis are volatile fatty acids produced by commensal bacteria in the gut as fermentation products from undigested food components. Among the short-chain fatty acids, butyrate is important for maintaining intestinal tract anaerobic conditions, promoting epithelial barrier functions, and inducing regulatory T cells that suppress inflammatory bowel disease and allergic diarrhea. However, the type of food-derived molecular components and mechanisms by which they regulate the growth and butyrate production of butyrate-producing bacteria are not clearly understood. Agathobacter rectalis is a butyrate-producing bacterium highly colonized in the gut of the Japanese population. In this study, we investigated the effects on A. rectalis of a soy sauce-like seasoning made by brewing with a low salt concentration. The soy sauce-like seasoning promoted the growth of A. rectalis 2.6-fold. An ethanol precipitate prepared from the soy sauce-like seasoning was critical for promoting the growth of A. rectalis and the production of butyrate, propionate, and lactate. Fourier transform infrared spectroscopy (FT-IR) analysis suggested that polysaccharides were active ingredients in the ethanol precipitate of the soy sauce-like seasoning. Inulin, a representative prebiotic with effects against butyrate-producing bacteria, had a limited effect on the growth of A. rectalis compared with the soy sauce-like seasoning. Our results indicate that polysaccharides in a soy sauce-like seasoning contributed to the growth of A. rectalis and enhanced production of butyrate, propionate, and lactate.

2.
mBio ; : e0153324, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953358

RESUMO

Emerging evidence indicates that gut dysbiosis is involved in the pathogenesis of visceral hypersensitivity (VH). However, how gut microbiota contributes to the development of VH is unknown. Here, we sought to examine the signal transduction pathways from gut to dorsal root ganglion (DRG) responsible for this. Therefore, abdominal withdrawal reflex (AWR) scores, fecal output, fecal water content, and total gastrointestinal transit time (TGITT) were assessed in Con rats, VH rats, rats treated with NaB, and VH rats treated with VSL#3. Fecal microbiota and its metabolite (short-chain fatty acids, SCFAs), mast cell degranulation in colon, lincRNA-01028, miR-143, and protease kinase C (PKC) and TRPV1 expression in DRGs were further detected. VH rats showed an increased fecal water content, a shortened TGITT, an increased abundance of Clostridium sensu stricto 1 and increased butyrate in fecal samples, an increased mast cell degranulation, an increased expression of lincRNA-01028, PKC, and TRPV1, and a decreased expression of miR-143 in DRGs compared with control rats, which could be restored by the application of probiotic VSL#3. The above-mentioned detection in rats treated with butyrate was similar to that of VH rats. We further confirm whether butyrate sensitized DRG neurons by a lincRNA-01028, miR-143, and PKC-dependent mechanism via mast cell in vitro. In co-cultures, MCs treated with butyrate elicited a higher TRPV1 current, a higher expression of lincRNA-01028, PKC, and a lower expression of miR-143 in DRG neurons, which could be inhibited by a lincRNA-01028 inhibitor. These findings indicate that butyrate promotes visceral hypersensitivity via mast cell-derived DRG neuron lincRNA-01028-PKC-TRPV1 pathway.IMPORTANCEIrritable bowel syndrome (IBS), characterized by visceral hypersensitivity, is a common gastrointestinal dysfunction syndrome. Although the gut microbiota plays a role in the pathogenesis and treatment of irritable bowel syndrome (IBS), the possible underlying mechanisms are unclear. Therefore, it is of critical importance to determine the signal transduction pathways from gut to DRG responsible for this in vitro and in vivo assay. This study demonstrated that butyrate sensitized TRPV1 in DRG neurons via mast cells in vivo and in vitro by a lincRNA-01028, miR-143, and PKC-dependent mechanism. VH rats similarly showed an increased abundance of Clostridium sensu stricto 1, an increased fecal butyrate, an increased mast cell degranulation, and increased expression of TRPV1 compared with control rats, which could be restored by the application of VSL#3. In conclusion, butyrate produced by the altered intestinal microbiota is associated with increased VH.

3.
J Endocr Soc ; 8(8): bvae117, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38957653

RESUMO

Gut microbiota plays an important role in the regulation of bone homeostasis and bone health. Recent studies showed that these effects could be mediated through microbial metabolites released by the microbiota like short-chain fatty acids, metabolism of endogenous molecules such as bile acids, or a complex interplay between microbiota, the endocrine system, and the immune system. Importantly, some studies showed a reciprocal relationship between the endocrine system and gut microbiota. For instance, postmenopausal estrogen deficiency could lead to dysbiosis of the gut microbiota, which could in turn affect various immune response and bone remodeling. In addition, evidence showed that shift in the indigenous gut microbiota caused by antibiotics treatment may also impact normal skeletal growth and maturation. In this mini-review, we describe recent findings on the role of microbiome in bone homeostasis, with a particular focus on molecular mechanisms and their interactions with the endocrine and immune system. We will also discuss the recent findings on estrogen deficiency and microbiota dysbiosis, and the clinical implications for the development of new therapeutic strategies for osteoporosis and other bone disorders.

4.
Intern Emerg Med ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981984

RESUMO

The prevalence of pancreatic steatosis has increased and it has been linked to the rising prevalence of metabolic syndrome. Metabolic syndrome is known to have a strong connection with changes in intestinal microbiota. The aim of this study was to explore the relationship between pancreatic steatosis and the levels of trimethylamine N-oxide (TMAO) and butyrate. In this study, 136 individuals were randomly selected from outpatient clinics at Firat University Hospital. The study evaluated their demographic characteristics, anthropometric measurements, and biochemical parameters. The presence of pancreatic steatosis was assessed using abdominal ultrasonography. Additionally, the levels of TMAO and butyrate were measured. The mean age of individuals in the study was 44.5 ± 14.6. 84 of the subjects were females. Using the waist circumference, 61 were considered obese and 34 overweight. The detection rate of pancreatic steatosis was found to be 70.6%. The study found that individuals with steatosis had higher average age, presence of hepatic steatosis, BMI, waist circumference measurements, and presence of metabolic syndrome than those without steatosis. A significantly higher butyrate level was detected in those without steatosis (p = 0.001). TMAO levels were slightly higher in patients without steatosis than in those with steatosis; however, this was insignificant. Pancreatic steatosis is highly associated with alterations in levels of microbiota metabolites, indicating a potential role of these metabolites in the pathogenesis of the disease and subsequent therapeutic targets. Several other factors, such as age, hepatic steatosis, diabetes, and waist circumference, have also been identified as potential predictors of pancreatic steatosis.

5.
Methods Mol Biol ; 2829: 329-339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951347

RESUMO

Mammalian cell lines are one of the best options when it comes to the production of complex proteins requiring specific glycosylation patterns. Plasmid DNA transfection and stable cell lines are frequently used for recombinant protein production, but they are expensive at large scale or can become time-consuming, respectively. The BacMam baculovirus (BV) is a safe and cost-effective platform to produce recombinant proteins in mammalian cells. The process of generating BacMam BVs is straightforward and similar to the generation of "insect" BVs, with different commercially available platforms. Although there are several protocols that describe recombinant protein expression with the BacMam BV in adherent cell lines, limited information is available on suspension cells. Therefore, it is of relevance to define the conditions to produce recombinant proteins in suspension cell cultures with BacMam BVs that facilitate bioprocess transfer to larger volumes. Here, we describe a method to generate a high titer BacMam BV stock and produce recombinant proteins in suspension HEK293 cells.


Assuntos
Baculoviridae , Proteínas Recombinantes , Baculoviridae/genética , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Células HEK293 , Animais , Transfecção/métodos , Vetores Genéticos/genética , Técnicas de Cultura de Células/métodos , Expressão Gênica , Glicosilação
6.
J Nutr Biochem ; : 109699, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972609

RESUMO

Dietary strategies rich in fiber have been demonstrated to offer benefits to individuals afflicted with rheumatoid arthritis (RA). However, the specific mechanisms through which a high-fiber diet (HFD) mitigates RA's autoimmunity remain elusive. Herein, we investigate the influence of pectin- and inulin-rich HFD on collagen-induced arthritis (CIA). We establish that HFD significantly alleviates arthritis in CIA mice by regulating the Th17/Treg balance. The rectification of aberrant T cell differentiation by the HFD is linked to the modulation of gut microbiota, augmenting the abundance of butyrate in feces. Concurrently, adding butyrate to the drinking water mirrors the HFD's impact on ameliorating CIA, encompassing arthritis mitigation, regulating intestinal barrier integrity, and restoring the Th17/Treg equilibrium. Butyrate reshapes the metabolic profile of CD4+ T cells in an AMPK-dependent manner. Our research underscores the importance of dietary interventions in rectifying gut microbiota for RA management and offers an explanation of how diet-derived microbial metabolites influence RA's immune-inflammatory-reaction.

7.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000076

RESUMO

The gut microbiota is a diverse bacterial community consisting of approximately 2000 species, predominantly from five phyla: Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia. The microbiota's bacterial species create distinct compounds that impact the host's health, including well-known short-chain fatty acids. These are produced through the breakdown of dietary fibers and fermentation of undigested carbohydrates by the intestinal microbiota. The main short-chain fatty acids consist of acetate, propionate, and butyrate. The concentration of butyrate in mammalian intestines varies depending on the diet. Its main functions are use as an energy source, cell differentiation, reduction in the inflammatory process in the intestine, and defense against oxidative stress. It also plays an epigenetic role in histone deacetylases, thus helping to reduce the risk of colon cancer. Finally, butyrate affects the gut-brain axis by crossing the brain-blood barrier, making it crucial to determine the right concentrations for both local and peripheral effects. In recent years, there has been a significant amount of attention given to the role of dietary polyphenols and fibers in promoting human health. Polyphenols and dietary fibers both play crucial roles in protecting human health and can produce butyrate through gut microbiota fermentation. This paper aims to summarize information on the key summits related to the negative correlation between intestinal microbiota diversity and chronic diseases to guide future research on determining the specific activity of butyrate from polyphenols and dietary fibers that can carry out these vital functions.


Assuntos
Butiratos , Fibras na Dieta , Microbioma Gastrointestinal , Polifenóis , Microbioma Gastrointestinal/efeitos dos fármacos , Fibras na Dieta/metabolismo , Fibras na Dieta/farmacologia , Humanos , Polifenóis/farmacologia , Butiratos/metabolismo , Animais , Ácidos Graxos Voláteis/metabolismo , Fermentação
8.
Lipids Health Dis ; 23(1): 216, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003477

RESUMO

BACKGROUND: The regulation of the circadian clock genes, which coordinate the activity of the immune system, is disturbed in inflammatory bowel disease (IBD). Emerging evidence suggests that butyrate, a short-chain fatty acid produced by the gut microbiota is involved in the regulation of inflammatory responses as well as circadian-clock genes. This study was conducted to investigate the effects of sodium-butyrate supplementation on the expression of circadian-clock genes, inflammation, sleep and life quality in active ulcerative colitis (UC) patients. METHODS: In the current randomized placebo-controlled trial, 36 active UC patients were randomly divided to receive sodium-butyrate (600 mg/kg) or placebo for 12-weeks. In this study the expression of circadian clock genes (CRY1, CRY2, PER1, PER2, BMAl1 and CLOCK) were assessed by real time polymerase chain reaction (qPCR) in whole blood. Gene expression changes were presented as fold changes in expression (2^-ΔΔCT) relative to the baseline. The faecal calprotectin and serum level of high-sensitivity C-reactive protein (hs-CRP) were assessed by enzyme-linked immunosorbent assay method (ELIZA). Moreover, the sleep quality and IBD quality of life (QoL) were assessed by Pittsburgh sleep quality index (PSQI) and inflammatory bowel disease questionnaire-9 (IBDQ-9) respectively before and after the intervention. RESULTS: The results showed that sodium-butyrate supplementation in comparison with placebo significantly decreased the level of calprotectin (-133.82 ± 155.62 vs. 51.58 ± 95.57, P-value < 0.001) and hs-CRP (-0.36 (-1.57, -0.05) vs. 0.48 (-0.09-4.77), P-value < 0.001) and upregulated the fold change expression of CRY1 (2.22 ± 1.59 vs. 0.63 ± 0.49, P-value < 0.001), CRY2 (2.15 ± 1.26 vs. 0.93 ± 0.80, P-value = 0.001), PER1 (1.86 ± 1.77 vs. 0.65 ± 0.48, P-value = 0.005), BMAL1 (1.85 ± 0.97 vs. 0.86 ± 0.63, P-value = 0.003). Also, sodium-butyrate caused an improvement in the sleep quality (PSQI score: -2.94 ± 3.50 vs. 1.16 ± 3.61, P-value < 0.001) and QoL (IBDQ-9: 17.00 ± 11.36 vs. -3.50 ± 6.87, P-value < 0.001). CONCLUSION: Butyrate may be an effective adjunct treatment for active UC patients by reducing biomarkers of inflammation, upregulation of circadian-clock genes and improving sleep quality and QoL.


Assuntos
Colite Ulcerativa , Suplementos Nutricionais , Qualidade do Sono , Humanos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Masculino , Feminino , Adulto , Método Duplo-Cego , Pessoa de Meia-Idade , Inflamação/genética , Inflamação/tratamento farmacológico , Proteína C-Reativa/metabolismo , Proteína C-Reativa/genética , Qualidade de Vida , Relógios Circadianos/genética , Relógios Circadianos/efeitos dos fármacos , Complexo Antígeno L1 Leucocitário/genética , Complexo Antígeno L1 Leucocitário/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Butiratos , Ácido Butírico
9.
Front Nutr ; 11: 1371064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006103

RESUMO

Introduction: Pulmonary neutrophilia is a hallmark of numerous airway diseases including Chronic Obstructive Pulmonary Disease (COPD), Neutrophilic asthma, Acute Lung Injury (ALI), Acute Respiratory Distress Syndrome (ARDS) and COVID-19. The aim of the current study was to investigate the effect of dietary interventions on lung health in context of pulmonary neutrophilia. Methods: Male BALB/cByJ mice received 7 intra-nasal doses of either a vehicle or lipopolysaccharides (LPS). To study the effect of nutritional interventions they received 16 intra-gastric doses of either a vehicle (PBS) or the following supplements (1) probiotic Bifidobacterium breve (B. breve) M16-V; (2) a prebiotic fiber mixture of short-chain galacto-oligosaccharides, long-chain fructo-oligosaccharides, and low-viscosity pectin in a 9:1:2 ratio (scGOS/lcFOS/lvPectin); and (3) A synbiotic combination B. breve M16-V and scGOS/lcFOS/lvPectin. Parameters for lung health included lung function, lung morphology and lung inflammation. Parameters for systemic immunomodulation included levels of fecal short chain fatty acids and regulatory T cells. Results: The synbiotic supplement protected against the LPS induced decline in lung function (35% improved lung resistance at baseline p = 0.0002 and 25% at peak challenge, p = 0.0002), provided a significant relief from pulmonary neutrophilia (40.7% less neutrophils, p < 0.01) and improved the pulmonary neutrophil-to-lymphocyte ratio (NLR) by 55.3% (p = 0.0033). Supplements did not impact lung morphology in this specific experiment. LPS applied to the upper airways induced less fecal SCFAs production compared to mice that received PBS. The production of acetic acid between day -5 and day 16 was increased in all unchallenged mice (PBS-PBS p = 0.0003; PBS-Pro p < 0.0001; PBS-Pre, p = 0.0045; PBS-Syn, p = 0.0005) which upon LPS challenge was only observed in mice that received the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin (p = 0.0003). A moderate correlation was found for butyric acid and lung function parameters and a weak correlation was found between acetic acid, butyric acid and propionic acid concentrations and NLR. Conclusion: This study suggests bidirectional gut lung cross-talk in a mouse model for pulmonary neutrophilia. Neutrophilic lung inflammation coexisted with attenuated levels of fecal SCFA. The beneficial effects of the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin on lung health associated with enhanced levels of SCFAs.

10.
Virol J ; 21(1): 157, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992629

RESUMO

Newborn piglets' health is seriously threatened by the porcine epidemic diarrhea virus (PEDV), which also has a significant effect on the pig industry. The gut microbiota produces butyrate, an abundant metabolite that modulates intestinal function through many methods to improve immunological and intestinal barrier function. The objective of this investigation was to ascertain how elevated butyrate concentrations impacted the host transcriptional profile of PEDV CV777 strain infection. Our findings showed that higher concentrations of butyrate have a stronger inhibitory effect on PEDV CV777 strain infection. According to RNA-seq data, higher concentrations of butyrate induced more significant transcriptional changes in IPEC-J2 cells, and signaling pathways such as PI3K-AKT may play a role in the inhibition of PEDV CV777 strain by high concentrations of butyrate. Ultimately, we offer a theoretical and experimental framework for future research and development of novel approaches to harness butyrate's antiviral infection properties.


Assuntos
Butiratos , Células Epiteliais , Vírus da Diarreia Epidêmica Suína , Animais , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Butiratos/farmacologia , Butiratos/metabolismo , Células Epiteliais/virologia , Células Epiteliais/efeitos dos fármacos , Linhagem Celular , Doenças dos Suínos/virologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/veterinária , Antivirais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/virologia , Mucosa Intestinal/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Intestinos/virologia
11.
Sci Rep ; 14(1): 15949, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987612

RESUMO

Metabolic-associated steatohepatitis (MASH) and ulcerative colitis (UC) exhibit a complex interconnection with immune dysfunction, dysbiosis of the gut microbiota, and activation of inflammatory pathways. This study aims to identify and validate critical butyrate metabolism-related shared genes between both UC and MASH. Clinical information and gene expression profiles were sourced from the Gene Expression Omnibus (GEO) database. Shared butyrate metabolism-related differentially expressed genes (sBM-DEGs) between UC and MASH were identified via various bioinformatics methods. Functional enrichment analysis was performed, and UC patients were categorized into subtypes using the consensus clustering algorithm based on sBM-DEGs. Key genes within sBM-DEGs were screened through Random Forest, Support Vector Machines-Recursive Feature Elimination, and Light Gradient Boosting. The diagnostic efficacy of these genes was evaluated using receiver operating characteristic (ROC) analysis on independent datasets. Additionally, the expression levels of characteristic genes were validated across multiple independent datasets and human specimens. Forty-nine shared DEGs between UC and MASH were identified, with enrichment analysis highlighting significant involvement in immune, inflammatory, and metabolic pathways. The intersection of butyrate metabolism-related genes with these DEGs produced 10 sBM-DEGs. These genes facilitated the identification of molecular subtypes of UC patients using an unsupervised clustering approach. ANXA5, CD44, and SLC16A1 were pinpointed as hub genes through machine learning algorithms and feature importance rankings. ROC analysis confirmed their diagnostic efficacy in UC and MASH across various datasets. Additionally, the expression levels of these three hub genes showed significant correlations with immune cells. These findings were validated across independent datasets and human specimens, corroborating the bioinformatics analysis results. Integrated bioinformatics identified three significant biomarkers, ANXA5, CD44, and SLC16A1, as DEGs linked to butyrate metabolism. These findings offer new insights into the role of butyrate metabolism in the pathogenesis of UC and MASH, suggesting its potential as a valuable diagnostic biomarker.


Assuntos
Butiratos , Colite Ulcerativa , Biologia Computacional , Humanos , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Butiratos/metabolismo , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Curva ROC , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Bases de Dados Genéticas , Transcriptoma , Microbioma Gastrointestinal/genética
12.
Animals (Basel) ; 14(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38998085

RESUMO

The experiment was conducted to evaluate the supplementary effects of gamma aminobutyric acid (GABA) and sodium butyrate (SB) when a graded level of fish meal (FM) was replaced with soy protein concentrate (SPC) in diets for juvenile red seabream (Pagrus major). A control diet was designed to contain 60% FM (F60). Two other diets were formulated by reducing FM levels to 40% and 20% with SPC (F40 and F20). Six more diets were formulated by adding 0.02% GABA or 0.2% SB to each F60, F40 and F20 diets (F60G, F60S, F40G, F40S, F20G and F20S). Each diet was randomly assigned to a triplicate group of fish (5.52 g/fish) and provided for eight weeks. Final body weight, weight gain and specific growth rate of fish fed F60G, F60S, F40G and F40S diets were comparable and significantly higher (p < 0.05) than other groups. The growth of fish fed SB-containing diets was significantly increased (p < 0.05) compared to fish fed the respective control diets. The feed efficiency and protein efficiency ratios were significantly higher (p < 0.05) in the fish fed all diets containing 60% and 40% FM compared to F20 and F20G groups. The F40S diet resulted in the highest feed utilization values. The F20S group exhibited significantly higher (p < 0.05) feed utilization than the F20 and F20G groups. Serum lysozyme activity was significantly higher (p < 0.05) in fish fed the GABA- and SB-containing diets compared to the F20 group. The F60S group exhibited the highest lysozyme activity which was significantly higher (p < 0.05) than in the F20 and F40 groups. Therefore, the growth performance, feed utilization and innate immunity of red seabream can be enhanced by dietary supplementation with GABA or SB in low-FM diets containing SPC. The FM level in the juvenile red seabream diet can be reduced to 40% with SPC and GABA or SB while maintaining performance better than a diet containing 60% FM.

13.
Gut Microbes ; 16(1): 2377567, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39012957

RESUMO

BACKGROUND: The intestinal-liver axis is associated with various liver diseases. Here, we verified the role of the gut microbiota and macrophage activation in the progression of pyrrolizidine alkaloids-induced hepatic sinusoidal obstruction syndrome (PA-HSOS), and explored the possible mechanisms and new treatment options. METHODS: The HSOS murine model was induced by gavage of monocrotaline (MCT). An analysis of 16S ribosomal DNA (16S rDNA) of the feces was conducted to determine the composition of the fecal microbiota. Macrophage clearance, fecal microbiota transplantation (FMT), and butyrate supplementation experiments were used to assess the role of intestinal flora, gut barrier, and macrophage activation and to explore the relationships among these three variables. RESULTS: Activated macrophages and low microflora diversity were observed in HSOS patients and murine models. Depletion of macrophages attenuated inflammatory reactions and apoptosis in the mouse liver. Moreover, compared with control-FMT mice, the exacerbation of severe liver injury was detected in HSOS-FMT mice. Specifically, butyrate fecal concentrations were significantly reduced in HSOS mice, and administration of butyrate could partially alleviated liver damage and improved the intestinal barrier in vitro and in vivo. Furthermore, elevated lipopolysaccharides in the portal vein and high proportions of M1 macrophages in the liver were also detected in HSOS-FMT mice and mice without butyrate treatment, which resulted in severe inflammatory responses and further accelerated HSOS progression. CONCLUSIONS: These results suggested that the gut microbiota exacerbated HSOS progression by regulating macrophage M1 polarization via altered intestinal barrier function mediated by butyrate. Our study has identified new strategies for the clinical treatment of HSOS.


Assuntos
Butiratos , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Hepatopatia Veno-Oclusiva , Fígado , Macrófagos , Animais , Camundongos , Butiratos/metabolismo , Macrófagos/imunologia , Masculino , Humanos , Hepatopatia Veno-Oclusiva/microbiologia , Fígado/metabolismo , Ativação de Macrófagos , Camundongos Endogâmicos C57BL , Mucosa Intestinal/microbiologia , Feminino , Fezes/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Função da Barreira Intestinal
14.
Microorganisms ; 12(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38930617

RESUMO

The discovery of immune checkpoints (CTLA-4, PD-1, and PD-L1) and their impact on the prognosis of oncological diseases have paved the way for the development of revolutionary oncological treatments. These treatments do not combat tumors with drugs "against" cancer cells but rather support and enhance the ability of the immune system to respond directly to tumor growth by attacking the cancer cells with lymphocytes. It has now been widely demonstrated that the presence of an adequate immune response, essentially represented by the number of TILs (tumor-infiltrating lymphocytes) present in the tumor mass decisively influences the response to treatments and the prognosis of the disease. Therefore, immunotherapy is based on and cannot be carried out without the ability to increase the presence of lymphocytic cells at the tumor site, thereby limiting and nullifying certain tumor evasion mechanisms, particularly those expressed by the activity (under positive physiological conditions) of checkpoints that restrain the response against transformed cells. Immunotherapy has been in the experimental phase for decades, and its excellent results have made it a cornerstone of treatments for many oncological pathologies, especially when combined with chemotherapy and radiotherapy. Despite these successes, a significant number of patients (approximately 50%) do not respond to treatment or develop resistance early on. The microbiota, its composition, and our ability to modulate it can have a positive impact on oncological treatments, reducing side effects and increasing sensitivity and effectiveness. Numerous studies published in high-ranking journals confirm that a certain microbial balance, particularly the presence of bacteria capable of producing short-chain fatty acids (SCFAs), especially butyrate, is essential not only for reducing the side effects of chemoradiotherapy treatments but also for a better response to immune treatments and, therefore, a better prognosis. This opens up the possibility that favorable modulation of the microbiota could become an essential complementary treatment to standard oncological therapies. This brief review aims to highlight the key aspects of using precision probiotics, such as Clostridium butyricum, that produce butyrate to improve the response to immune checkpoint treatments and, thus, the prognosis of oncological diseases.

15.
Diabetologia ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910152

RESUMO

This article summarises the state of the science on the role of the gut microbiota (GM) in diabetes from a recent international expert forum organised by Diabetes, Diabetes Care, and Diabetologia, which was held at the European Association for the Study of Diabetes 2023 Annual Meeting in Hamburg, Germany. Forum participants included clinicians and basic scientists who are leading investigators in the field of the intestinal microbiome and metabolism. Their conclusions were as follows: (1) the GM may be involved in the pathophysiology of type 2 diabetes, as microbially produced metabolites associate both positively and negatively with the disease, and mechanistic links of GM functions (e.g. genes for butyrate production) with glucose metabolism have recently emerged through the use of Mendelian randomisation in humans; (2) the highly individualised nature of the GM poses a major research obstacle, and large cohorts and a deep-sequencing metagenomic approach are required for robust assessments of associations and causation; (3) because single time point sampling misses intraindividual GM dynamics, future studies with repeated measures within individuals are needed; and (4) much future research will be required to determine the applicability of this expanding knowledge to diabetes diagnosis and treatment, and novel technologies and improved computational tools will be important to achieve this goal.

16.
Open Vet J ; 14(5): 1243-1250, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38938426

RESUMO

Background: Feed additives are products used in poultry nutrition to improve the quality of feed and the safety of food byproducts from animal origin. They are promising antibiotic alternatives for the production of broilers. Aim: This study aimed to investigate the effect of sodium butyrate (SB) and RL on growth performance, biochemical profile, immunity, and carcass traits of broilers. Methods: Five hundred-one-day-old chicks of the Hubbard breed were reared on floor pens in a privet farm, Giza. The chicks were weighed on arrival (each chick weighted 43-45 gm) and randomly assigned into five equal groups, with four replicates each (25 chicks/replicate). Group 1 was fed on a broiler diet without any additions (control). The diets of groups 2 and 3 were supplemented with 500 g/ton SB and 4 kg/ton RL, respectively. In group 4, the diet was enriched with 250 g/ton SB plus 2 kg/ton RL. Chicks in group 5 were fed on a diet fortified with 500 g/ton SB plus 4 kg/ton RL. Results: Supplementation of broiler diet with 500 g/ton SB plus 4 kg /ton RL increased body weight gain (BWG) and feed efficiency ratio (FER) of birds. It decreased serum levels of aspartate aminotransferase, alanine aminotransferase, total cholesterol triglycerides, and malondialdehyde, but increased superoxide dismutase, catalase, and immunoglobulins, phagocytic activity, lysozyme activity, and nitric oxide concentrations. Antibody titers against the Newcastle disease virus were also elevated. Conclusion: Supplementation of broiler diet with 500 g/ton SB plus 4 kg/ton RL gives the best result regarding productive efficiency and immunity of broiler chickens.


Assuntos
Ração Animal , Ácido Butírico , Galinhas , Dieta , Suplementos Nutricionais , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/imunologia , Galinhas/fisiologia , Ração Animal/análise , Ácido Butírico/administração & dosagem , Ácido Butírico/farmacologia , Dieta/veterinária , Suplementos Nutricionais/análise , Rosmarinus/química , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Distribuição Aleatória
17.
Food Chem X ; 22: 101438, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38846796

RESUMO

This study explored the effects of steam explosion-modified rice bran dietary fiber (S-RBDF) on red date-flavored naan quality and flavor characteristics. The results revealed that the rheological properties of the dough were improved with the incremental addition of S-RBDF (0-5%). The microstructure revealed that adding an appropriate amount of S-RBDF (1-5%) enabled more starch granules to be embedded in the dough network. Notably, the addition of 5% S-RBDF resulted in naan with an optimum specific volume and texture, which consumers preferred. Additionally, gas chromatography-mass spectrometry analysis showed that adding S-RBDF to naan contributed to the retention and sustained release of pleasant volatile compounds (e.g. red date flavor, etc.), while inhibiting the development of unpleasant volatile compounds by delaying the oxidation and decomposition of lipids and preserving the antioxidant phenolic compounds, thus contributing to flavor maintenance of naan during storage. Overall, these results provided a foundation for developing high-quality flavored naan.

18.
AIMS Microbiol ; 10(2): 311-319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919716

RESUMO

The microbial community of the human large intestine mainly ferments dietary fiber to short chain fatty acids (SCFAs), which are efficiently absorbed by the host. The three major SCFAs (acetate, propionate, and butyrate) have different fates within the body and different effects on health. A recent analysis of 10 human volunteer studies established that the proportions of these SCFA in fecal samples significantly shifted towards butyrate as the overall concentration of SCFA increased. Butyrate plays a key role in gut health and is preferentially utilized as an energy source by the colonic epithelium. Here we discuss possible mechanisms that underlie this 'butyrate shift'; these include the selection for butyrate-producing bacteria within the microbiota by certain types of fiber, and the possibility of additional butyrate formation from lactate and acetate by metabolite cross-feeding. However, a crucial factor appears to be the pH in the proximal colon, which decreases as the SCFA concentrations increase. A mildly acidic pH has been shown to have an important impact on microbial competition and on the stoichiometry of butyrate production. Understanding these complex interactions has been greatly aided by the refinement of theoretical models of the colonic microbiota that assume a small number (10) of microbial functional groups (MFGs).

19.
Adv Genet ; 111: 237-310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38908901

RESUMO

Microorganisms have been used in nutrition and medicine for thousands of years worldwide, long before humanity knew of their existence. It is now known that the gut microbiota plays a key role in regulating inflammatory, metabolic, immune and neurobiological processes. This text discusses the importance of microbiota-based precision nutrition in gut permeability, as well as the main advances and current limitations of traditional probiotics, new-generation probiotics, psychobiotic probiotics with an effect on emotional health, probiotic foods, prebiotics, and postbiotics such as short-chain fatty acids, neurotransmitters and vitamins. The aim is to provide a theoretical context built on current scientific evidence for the practical application of microbiota-based precision nutrition in specific health fields and in improving health, quality of life and physiological performance.


Assuntos
Microbioma Gastrointestinal , Prebióticos , Probióticos , Humanos , Probióticos/administração & dosagem , Prebióticos/administração & dosagem , Medicina de Precisão/métodos
20.
Front Microbiol ; 15: 1406874, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863751

RESUMO

While neurological complications of COVID-19, such as encephalopathy, are relatively rare, their potential significant impact on long-term morbidity is substantial, especially given the large number of infected patients. Two proposed hypotheses for the pathogenesis of this condition are hypoxia and the uncontrolled release of proinflammatory cytokines. The gut microbiota plays an important role in regulating immune homeostasis and overall gut health, including its effects on brain health through various pathways collectively termed the gut-brain axis. Recent studies have shown that COVID-19 patients exhibit gut dysbiosis, but how this dysbiosis can affect inflammation in the central nervous system (CNS) remains unclear. In this context, we discuss how dysbiosis could contribute to neuroinflammation and provide recent data on the features of neuroinflammation in COVID-19 patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...