Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143.332
Filtrar
1.
Clin Chim Acta ; 564: 119907, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39127297

RESUMO

BACKGROUND: Various biomarkers reportedly predict persistent acute kidney injury (AKI) despite their varying predictive performance across clinical trials. This study aims to compare the accuracy of various biomarkers in predicting persistent AKI in different populations and regions. METHODS: In this meta-analysis, we searched for urinary C-C motif chemokine ligand 14 (CCL14), Tissue inhibitor of metalloproteinase-2&insulin-like growth factor-binding protein-7 (TIMP-2&IGFBP7), Neutrophil Gelatinase-Associated Lipocalin (NGAL), plasma Cystatin C (pCysC), Soluble urokinase plasminogen activator receptor (suPAR), Proenkephalin (PenK) and urinary dickkopf-3:urinary creatinine (uDKK3:uCr) from various databases including Medline, PubMed, Embase, and Cochrane. This was geared towards predicting persistent AKI in adults (>18 years). Hierarchically summarized subject work characteristic curves (HSROC) and diagnostic odds ratio (DOR) values were used to summarize the diagnostic accuracy of the biomarkers. Further, meta-regression and subgroup analyses were carried out to identify sources of heterogeneity as well as evaluate the best predictive biomarkers in different populations and regions. RESULTS: We screened 31 studies from 2,356 studies and assessed the diagnostic value of 7 biomarkers for persistent AKI. Overall, CCL14 had the best diagnostic efficacy with an AUC of 0.79 (95 % CI 0.75-0.82), whereas TIMP-2 & IGFBP7, NGAL, and pCysC had diagnostic efficacy of 0.75 (95 % CI 0.71-0.79),0.71 (95 % CI 0.67-0.75), and 0.7007, respectively. Due to a limited number of studies, PenK, uDKK3:uCr, and suPAR were not subjected to meta-analysis; however, relevant literature reported diagnostic efficacy above 0.70. Subgroup analyses based on population, region, biomarker detection time, AKI onset time, and AKI duration revealed that in the intensive care unit (ICU) population, the AUC of CCL14 was 0.8070, the AUC of TIMP-2 & IGFBP7 was 0.726, the AUC of pCysC was 0.72, and the AUC of NGAL was 0.7344; in the sepsis population, the AUC of CCL14 was 0.85, the AUC of TIMP-2&IGFBP7 was 0.7438, and the AUC of NGAL was 0.544; in the post-operative population, the AUC of CCL14 was 0.83-0.93, the AUC of TIMP-2&IGFBP7 was 0.71, and the AUC of pCysC was 0.683. Regional differences were observed in biomarker prediction of persistent kidney injury, with AUCs of 0.8558 for CCL14, 0.7563 for TIMP-2 & IGFBP7, and 0.7116 for NGAL in the Eurasian American population. In the sub-African population, TIMP-2 & IGFBP7 had AUCs of 0.7945, 0.7418 for CCL14, 0.7097 for NGAL, and 0.7007 for pCysC. for TIMP-2 & IGFBP7 was 0.7945, AUC for CCL14 was 0.7418, AUC for NGAL was 0.7097, and AUC for pCysC was 0.7007 in the sub-African population. Duration of biomarker detection, AKI onset, and AKI did not influence the optimal predictive performance of CCL14. Subgroup analysis and meta-regression of CCL14-related studies revealed that CCL14 is the most appropriate biomarker for predicting persistent stage 2-3 AKI, with heterogeneity stemming from sample size and AKI staging. CONCLUSION: This meta-analysis discovered CCL14 as the best biomarker to predict persistent AKI, specifically persistent stage 2-3 AKI.


Assuntos
Injúria Renal Aguda , Biomarcadores , Humanos , Biomarcadores/sangue , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/sangue , Injúria Renal Aguda/urina , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/urina , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/sangue
2.
Methods Mol Biol ; 2856: 3-9, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39283443

RESUMO

Recent analyses revealed the essential function of chromatin structure in maintaining and regulating genomic information. Advancements in microscopy, nuclear structure observation techniques, and the development of methods utilizing next-generation sequencers (NGSs) have significantly progressed these discoveries. Methods utilizing NGS enable genome-wide analysis, which is challenging with microscopy, and have elucidated concepts of important chromatin structures such as a loop structure, a domain structure called topologically associating domains (TADs), and compartments. In this chapter, I introduce chromatin interaction techniques using NGS and outline the principles and features of each method.


Assuntos
Cromatina , Sequenciamento de Nucleotídeos em Larga Escala , Cromatina/genética , Cromatina/metabolismo , Cromatina/química , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genômica/métodos , Estudo de Associação Genômica Ampla/métodos , Animais
3.
Methods Mol Biol ; 2856: 71-78, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39283447

RESUMO

Hi-C reads, which represent ligation events between different regions of the genome, must be processed into matrices of interaction frequencies for downstream analysis. Here, I describe a procedure for mapping Hi-C reads to the genome and conversion of mapped reads into the HOMER tag directory format and interaction matrix format for visualization with Juicebox. The method is demonstrated for the mouse composite X chromosome in which reads from the active and inactive X chromosomes are combined after mock DMSO treatment or targeted degradation of cohesin.


Assuntos
Cromossomo X , Animais , Cromossomo X/genética , Camundongos , Software , Coesinas , Mapeamento Cromossômico/métodos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Biologia Computacional/métodos
4.
Methods Mol Biol ; 2856: 63-70, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39283446

RESUMO

Three-dimensional (3D) chromosome structures are closely related to various chromosomal functions, and deep analysis of the structures is crucial for the elucidation of the functions. In recent years, chromosome conformation capture (3C) techniques combined with next-generation sequencing analysis have been developed to comprehensively reveal 3D chromosome structures. Micro-C is one such method that can detect the structures at nucleosome resolution. In this chapter, I provide a basic method for Micro-C analysis. I present and discuss a series of data analyses ranging from mapping to basic downstream analyses, including loop detection.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Fluxo de Trabalho , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Cromossomos/genética , Biologia Computacional/métodos , Mapeamento Cromossômico/métodos , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo
5.
Methods Mol Biol ; 2856: 119-131, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39283449

RESUMO

The three-dimensional (3D) structure of the genome undergoes dynamic changes during the developmental process. While Hi-C is a technique that enables the acquisition of genome 3D structure data across various species and cell types, existing Hi-C analysis programs may face challenges in detecting and comparing structures effectively depending on the characteristics of the genome or cell type. Here, we describe a method for acquiring Hi-C data from medaka early embryos and quantifying the structural changes during the developmental process.


Assuntos
Embrião não Mamífero , Oryzias , Animais , Oryzias/embriologia , Genoma , Desenvolvimento Embrionário , Genômica/métodos
6.
Methods Mol Biol ; 2856: 157-176, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39283451

RESUMO

Hi-C and 3C-seq are powerful tools to study the 3D genomes of bacteria and archaea, whose small cell sizes and growth conditions are often intractable to detailed microscopic analysis. However, the circularity of prokaryotic genomes requires a number of tricks for Hi-C/3C-seq data analysis. Here, I provide a practical guide to use the HiC-Pro pipeline for Hi-C/3C-seq data obtained from prokaryotes.


Assuntos
Genoma Bacteriano , Software , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Células Procarióticas/metabolismo , Genoma Arqueal , Archaea/genética , Bactérias/genética , Biologia Computacional/métodos , Análise de Dados
7.
Methods Mol Biol ; 2856: 25-62, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39283445

RESUMO

Hi-C is a popular ligation-based technique to detect 3D physical chromosome structure within the nucleus using cross-linking and next-generation sequencing. As an unbiased genome-wide assay based on chromosome conformation capture, it provides rich insights into chromosome structure, dynamic chromosome folding and interactions, and the regulatory state of a cell. Bioinformatics analyses of Hi-C data require dedicated protocols as most genome alignment tools assume that both paired-end reads will map to the same chromosome, resulting in large two-dimensional matrices as processed data. Here, we outline the necessary steps to generate high-quality aligned Hi-C data by separately mapping each read while correcting for biases from restriction enzyme digests. We introduce our own custom open-source pipeline, which enables users to select an aligner of their choosing with high accuracy and performance. This enables users to generate high-resolution datasets with fast turnaround and fewer unmapped reads. Finally, we discuss recent innovations in experimental techniques, bioinformatics techniques, and their applications in clinical testing for diagnostics.


Assuntos
Mapeamento Cromossômico , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biologia Computacional/métodos , Humanos , Mapeamento Cromossômico/métodos , Cromossomos/genética , Genômica/métodos , Cromatina/genética , Cromatina/química
8.
Methods Mol Biol ; 2856: 179-196, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39283452

RESUMO

Hi-C and Micro-C are the three-dimensional (3D) genome assays that use high-throughput sequencing. In the analysis, the sequenced paired-end reads are mapped to a reference genome to generate a two-dimensional contact matrix for identifying topologically associating domains (TADs), chromatin loops, and chromosomal compartments. On the other hand, the distance distribution of the paired-end mapped reads also provides insight into the 3D genome structure by highlighting global contact frequency patterns at distances indicative of loops, TADs, and compartments. This chapter presents a basic workflow for visualizing and analyzing contact distance distributions from Hi-C data. The workflow can be run on Google Colaboratory, which provides a ready-to-use Python environment accessible through a web browser. The notebook that demonstrates the workflow is available in the GitHub repository at https://github.com/rnakato/Springer_contact_distance_plot.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biologia Computacional/métodos , Navegador , Fluxo de Trabalho , Humanos , Cromatina/genética , Genômica/métodos
9.
Methods Mol Biol ; 2856: 213-221, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39283454

RESUMO

The compartmentalization of chromatin reflects its underlying biological activities. Inferring chromatin sub-compartments using Hi-C data is challenged by data resolution constraints. Consequently, comprehensive characterizations of sub-compartments have been limited to a select number of Hi-C experiments, with systematic comparisons across a wide range of tissues and conditions still lacking. Our original Calder algorithm marked a significant advancement in this field, enabling the identification of multi-scale sub-compartments at various data resolutions and facilitating the inference and comparison of chromatin architecture in over 100 datasets. Building on this foundation, we introduce Calder2, an updated version of Calder that brings notable improvements. These include expanded support for a wider array of genomes and organisms, an optimized bin size selection approach for more accurate chromatin compartment detection, and extended support for input and output formats. Calder2 thus stands as a refined analysis tool, significantly advancing genome-wide studies of 3D chromatin architecture and its functional implications.


Assuntos
Algoritmos , Cromatina , Software , Cromatina/genética , Cromatina/metabolismo , Biologia Computacional/métodos , Humanos , Animais
10.
Methods Mol Biol ; 2856: 79-117, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39283448

RESUMO

Over a decade has passed since the development of the Hi-C method for genome-wide analysis of 3D genome organization. Hi-C utilizes next-generation sequencing (NGS) technology to generate large-scale chromatin interaction data, which has accumulated across a diverse range of species and cell types, particularly in eukaryotes. There is thus a growing need to streamline the process of Hi-C data analysis to utilize these data sets effectively. Hi-C generates data that are much larger compared to other NGS techniques such as chromatin immunoprecipitation sequencing (ChIP-seq) or RNA-seq, making the data reanalysis process computationally expensive. In an effort to bridge this resource gap, the 4D Nucleome (4DN) Data Portal has reanalyzed approximately 600 Hi-C data sets, allowing users to access and utilize the analyzed data. In this chapter, we provide detailed instructions for the implementation of the common workflow language (CWL)-based Hi-C analysis pipeline adopted by the 4DN Data Portal ecosystem. This reproducible and portable pipeline generates standard Hi-C contact matrices in formats such as .hic or .mcool from FASTQ files. It enables users to output their own Hi-C data in the same format as those registered in the 4DN Data portal, facilitating comparative analysis using data registered in the portal. Our custom-made scripts are available on GitHub at https://github.com/kuzobuta/4dn_cwl_pipeline .


Assuntos
Cromatina , Sequenciamento de Nucleotídeos em Larga Escala , Software , Fluxo de Trabalho , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Cromatina/genética , Cromatina/metabolismo , Humanos , Genômica/métodos , Biologia Computacional/métodos , Sequenciamento de Cromatina por Imunoprecipitação/métodos
11.
Methods Mol Biol ; 2856: 133-155, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39283450

RESUMO

The Hi-C method has emerged as an indispensable tool for analyzing the 3D organization of the genome, becoming increasingly accessible and frequently utilized in chromatin research. To effectively leverage 3D genomics data obtained through advanced technologies, it is crucial to understand what processes are undertaken and what aspects require special attention within the bioinformatics pipeline. This protocol aims to demystify the Hi-C data analysis process for field newcomers. In a step-by-step manner, we describe how to process Hi-C data, from the initial sequencing of the Hi-C library to the final visualization of Hi-C contact data as heatmaps. Each step of the analysis is clearly explained to ensure an understanding of the procedures and their objectives. By the end of this chapter, readers will be equipped with the knowledge to transform raw Hi-C reads into informative visual representations, facilitating a deeper comprehension of the spatial genomic structures critical to cellular functions.


Assuntos
Cromatina , Biologia Computacional , Genômica , Software , Cromatina/genética , Biologia Computacional/métodos , Genômica/métodos , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
12.
Methods Mol Biol ; 2856: 241-262, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39283456

RESUMO

Single-cell Hi-C (scHi-C) is a collection of protocols for studying genomic interactions within individual cells. Although data analysis for scHi-C resembles data analysis for bulk Hi-C, the unique challenges of scHi-C, such as high noise and protocol-specific biases, require specialized data processing strategies. In this tutorial chapter, we focus on using pairtools, a suite of tools optimized for scHi-C data, demonstrating its application on a Drosophila snHi-C dataset. While centered on pairtools for snHi-C data, the principles outlined are applicable across scHi-C variants with minor adjustments. This educational chapter aims to guide researchers in using open-source tools for scHi-C analysis, emphasizing critical steps of contact pair extraction, detection of ligation junctions, filtration, and deduplication.


Assuntos
Genômica , Análise de Célula Única , Software , Fluxo de Trabalho , Análise de Célula Única/métodos , Animais , Genômica/métodos , Drosophila/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biologia Computacional/métodos
13.
Methods Mol Biol ; 2856: 197-212, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39283453

RESUMO

Peakachu is a supervised-learning-based approach that identifies chromatin loops from chromatin contact data. Here, we present Peakachu version 2, an updated version that significantly improves extensibility, usability, and computational efficiency compared to its predecessor. It features pretrained models tailored for a wide range of experimental platforms, such as Hi-C, Micro-C, ChIA-PET, HiChIP, HiCAR, and TrAC-loop. This chapter offers a step-by-step tutorial guiding users through the process of training Peakachu models from scratch and utilizing pretrained models to predict chromatin loops across various platforms.


Assuntos
Cromatina , Biologia Computacional , Software , Cromatina/metabolismo , Cromatina/genética , Biologia Computacional/métodos , Humanos , Aprendizado de Máquina Supervisionado , Conformação de Ácido Nucleico
14.
Methods Mol Biol ; 2856: 263-268, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39283457

RESUMO

We describe an approach for reconstructing three-dimensional (3D) structures from single-cell Hi-C data. This approach has been inspired by a method of recurrence plots and visualization tools for nonlinear time series data. Some examples are also presented.


Assuntos
Análise de Célula Única , Análise de Célula Única/métodos , Imageamento Tridimensional/métodos , Humanos , Software , Cromossomos/genética , Algoritmos
15.
Methods Mol Biol ; 2856: 223-238, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39283455

RESUMO

Three-dimensional (3D) genome structure plays crucial roles in biological processes and disease pathogenesis. Hi-C and Micro-C, well-established methods for 3D genome analysis, can identify a variety of 3D genome structures. However, selecting appropriate pipelines and tools for the analysis and setting up the required computing environment can sometimes pose challenges. To address this, we have introduced CustardPy, a Docker-based pipeline specifically designed for 3D genome analysis. CustardPy is designed to compare and evaluate multiple samples and wraps several existing tools to cover the entire workflow from FASTQ mapping to visualization. In this chapter, we demonstrate how to analyze and visualize Hi-C data using CustardPy and introduce several 3D genome features observed in Hi-C data.


Assuntos
Software , Biologia Computacional/métodos , Genômica/métodos , Humanos , Genoma
16.
Methods Mol Biol ; 2856: 281-292, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39283459

RESUMO

Biomolecules contain various heterogeneities in their structures and local chemical properties, and their functions emerge through the dynamics encoded by these heterogeneities. Molecular dynamics model-based studies will greatly contribute to the elucidation of such chemical/mechanical structure-dynamics-function relationships and the mechanisms that generate them. Coarse-grained molecular dynamics models with appropriately designed nonuniform local interactions play an important role in considering the various phenomena caused by large molecular complexes consisting of various proteins and DNA such as nuclear chromosomes. Therefore, in this chapter, we will introduce a method for constructing a coarse-grained molecular dynamics model that simulates the global behavior of each chromosome in the nucleus of a mammalian cell containing many giant chromosomes.


Assuntos
Núcleo Celular , Simulação de Dinâmica Molecular , Núcleo Celular/metabolismo , Núcleo Celular/química , Animais , Humanos , Cromossomos/química , DNA/química , DNA/metabolismo , Mamíferos
17.
Methods Mol Biol ; 2856: 309-324, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39283461

RESUMO

Polymer modeling has been playing an increasingly important role in complementing 3D genome experiments, both to aid their interpretation and to reveal the underlying molecular mechanisms. This chapter illustrates an application of Hi-C metainference, a Bayesian approach to explore the 3D organization of a target genomic region by integrating experimental contact frequencies into a prior model of chromatin. The method reconstructs the conformational ensemble of the target locus by combining molecular dynamics simulation and Monte Carlo sampling from the posterior probability distribution given the data. Using prior chromatin models at both 1 kb and nucleosome resolution, we apply this approach to a 30 kb locus of mouse embryonic stem cells consisting of two well-defined domains linking several gene promoters together. Retaining the advantages of both physics-based and data-driven strategies, Hi-C metainference can provide an experimentally consistent representation of the system while at the same time retaining molecular details necessary to derive physical insights.


Assuntos
Teorema de Bayes , Cromatina , Simulação de Dinâmica Molecular , Animais , Camundongos , Cromatina/genética , Cromatina/química , Cromatina/metabolismo , Genoma , Genômica/métodos , Método de Monte Carlo , Células-Tronco Embrionárias Murinas/metabolismo
18.
Methods Mol Biol ; 2856: 271-279, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39283458

RESUMO

Hi-C methods reveal 3D genome features but lack correspondence to dynamic chromatin behavior. PHi-C2, Python software, addresses this gap by transforming Hi-C data into polymer models. After the optimization algorithm, it enables us to calculate 3D conformations and conduct dynamic simulations, providing insights into chromatin dynamics, including the mean-squared displacement and rheological properties. This chapter introduces PHi-C2 usage, offering a tutorial for comprehensive 4D genome analysis.


Assuntos
Algoritmos , Cromatina , Software , Cromatina/genética , Cromatina/química , Cromatina/metabolismo , Humanos , Genômica/métodos , Genoma , Biologia Computacional/métodos
19.
Methods Mol Biol ; 2856: 433-444, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39283467

RESUMO

Hi-C is a powerful method for obtaining genome-wide chromosomal structural information. The typical Hi-C analysis utilizes a two-dimensional (2D) contact matrix, which poses challenges for quantitative comparisons, visualizations, and integrations across multiple datasets. Here, we present a protocol for extracting one-dimensional (1D) features from chromosome structure data by HiC1Dmetrics. Leveraging these 1D features enables integrated analysis of Hi-C and epigenomic data.


Assuntos
Epigenômica , Epigenômica/métodos , Humanos , Cromossomos/genética , Software , Biologia Computacional/métodos
20.
J Environ Sci (China) ; 148: 437-450, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095178

RESUMO

For environmental applications, it is crucial to rationally design and synthesize photocatalysts with positive exciton splitting and interfacial charge transfer. Here, a novel Ag-bridged dual Z-scheme Ag/g-C3N4/CoNi-LDH plasmonic heterojunction was successfully synthesized using a simple method, with the goal of overcoming the common drawbacks of traditional photocatalysts such as weak photoresponsivity, rapid combination of photo-generated carriers, and unstable structure. These materials were characterized by XRD, FT-IR, SEM, TEM UV-Vis/DRS, and XPS to verify the structure and stability of the heterostructure. The pristine LDH, g-C3N4, and Ag/g-C3N4/CoNi-LDH composite were investigated as photocatalysts for water remediation, an environmentally motivated process. Specifically, the photocatalytic degradation of tetracycline was studied as a model reaction. The performance of the supports and composite catalyst were determined by evaluating both the degradation and adsorption phenomenon. The influence of several experimental parameters such as catalyst loading, pH, and tetracycline concentration were evaluated. The current study provides important data for water treatment and similar environmental protection applications.


Assuntos
Nanocompostos , Fotólise , Prata , Poluentes Químicos da Água , Purificação da Água , Nanocompostos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Prata/química , Catálise , Nitrilas/química , Compostos de Nitrogênio/química , Adsorção , Grafite
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA