Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Electron. j. biotechnol ; 52: 67-75, July. 2021. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1283594

RESUMO

BACKGROUND: Adipogenesis and fibrogenesis can be considered as a competitive process in muscle, which may affect the intramuscular fat deposition. The CCAAT/enhancer-binding protein beta (C/EBPb) plays an important role in adipogenesis, which is well-characterized in mice, but little known in bovine so far. RESULTS: In this study, real-time qPCR revealed that the level of C/EBPb was increased during the developmental stages of bovine and adipogenesis process of preadipocytes. Overexpression of C/EBPb promoted bovine fibroblast proliferation through mitotic clonal expansion (MCE), a necessary process for initiating adipogenesis, by significantly downregulating levels of p21 and p27 (p < 0.01). Also, the PPARc expression was inhibited during the MCE stage (p < 0.01). 31.28% of transfected fibroblasts adopted lipid-laden adipocyte morphology after 8 d. Real-time qPCR showed that C/EBPb activated the transcription of early stage adipogenesis markers C/EBPa and PPARc. Expression of ACCa, FASN, FABP4 and LPL was also significantly upregulated, while the expression of LEPR was weakened. CONCLUSIONS: It was concluded C/EBPb can convert bovine fibroblasts into adipocytes without hormone induction by initiating the MCE process and promoting adipogenic genes expression, which may provide new insights into the potential functions of C/EBPb in regulating intramuscular fat deposition in beef cattle.


Assuntos
Bovinos/metabolismo , Adipócitos/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Fibroblastos/metabolismo , Tecido Adiposo/metabolismo , Células Clonais , Proliferação de Células , Adipogenia , Reação em Cadeia da Polimerase em Tempo Real , Mitose , Músculos
2.
Adv Exp Med Biol ; 1000: 247-259, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29098625

RESUMO

C/EBPB is a crucial transcription factor, participating in a variety of biological processes including cell proliferation, differentiation and development. In the cardiovascular system, C/EBPB-CITED4 signaling is known as a signaling pathway mediating exercise-induced cardiac growth. After its exact role in exercised heart firstly reported in 2010, more and more evidence confirmed that. MicroRNA (e.g. miR-222) and many molecules (e.g. Alpha-lipoic acid) can regulate this pathway and then involve in the cardiac protection effect induced by endurance exercise training. In addition, in cardiac growth during pregnancy, C/EBPB is also a required regulator. This chapter will give an introduction of the C/EBPB-CITED4 signaling and the regulatory network based on this signaling pathway in exercised heart.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Exercício Físico/fisiologia , Coração/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proliferação de Células/genética , Proliferação de Células/fisiologia , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Transdução de Sinais/genética , Fatores de Transcrição/genética
3.
Biochim Biophys Acta Gen Subj ; 1861(2): 467-476, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27746211

RESUMO

BACKGROUND: C/EBPa and C/EBPb are transcription factors with tissue specific expression regulating several important cellular processes. They work by recruiting protein complexes to a common DNA recognition motif and both are able to compensate each other's absence in many cell types, thus showing functional redundancy. They also play distinct roles in specific cellular pathways and their abnormal functioning gives raise to different human pathologies. METHODS: To investigate the molecular basis of C/EBPa and C/EBPb specificity and redundancy we characterized their in vivo protein-protein interaction networks by Tandem Affinity Purification (TAP) and Mass Spectrometry (MS). To unravel the functional features of C/EBPa and C/EBPb proteomes we studied the statistical enrichment of binding partners related to Gene Ontology (GO) terms and KEGG pathways. RESULTS: Our data confirmed that the C/EBPa and C/EBPb regulate biological processes like cell proliferation, apoptosis and transformation. We found that both C/EBPa and C/EBPb are involved in other cellular pathways such as RNA maturation, RNA splicing and DNA repair. Specific interactions of C/EBPa with MRE11, RUVBL1 and RUVBL2 components of DNA repair system were confirmed by co-immunoprecipitation assays. CONCLUSIONS: Our comparative analysis of the C/EBPa and C/EBPb proteomes provides an insight for understanding both their redundant and specific roles in cells indicating their involvement in new pathways. Such novel predicted functions are relevant to normal cellular processes and disease phenotypes controlled by these transcription factors. GENERAL SIGNIFICANCE: Functional characterization of C/EBPa and C/EBPb proteomes suggests they can regulate novel pathways and indicate potential molecular targets for therapeutic intervention.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Mapas de Interação de Proteínas/genética , Fatores de Transcrição/genética , Animais , Apoptose/genética , Proliferação de Células/genética , Reparo do DNA/genética , Camundongos , Células NIH 3T3 , Proteoma/genética , Splicing de RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...