Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(4): 159468, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38408538

RESUMO

Radiotherapy is one of the most commonly used cancer therapies with many benefits including low toxicity to healthy tissues. However, a major problem in radiotherapy is cancer radioresistance. To enhance the effect of this kind of therapy several approaches have been proposed such as the use of radiosensitizers. A combined treatment of radiotherapy and radiosensitizing drugs leads to a greater effect on cancer cells than anticipated from the addition of both responses (synergism). In this study, high-definition FT-IR imaging was applied to follow lipid accumulation in prostate cancer cells as a response to X-ray irradiation, radiosensitizing drugs, and a combined treatment of X-rays and the drugs. Lipid accumulation induced in the cells by an increasing X-ray dose and the presence of the drugs was analyzed using Principal Component Analysis and lipid staining. Finally, the synergistic effect of the combined therapy (X-rays and radiosensitizers) was confirmed by calculations of the integral intensity of the 2850 cm-1 band.


Assuntos
Neoplasias da Próstata , Radiossensibilizantes , Masculino , Humanos , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Lipídeos/uso terapêutico
2.
Front Biosci (Landmark Ed) ; 28(10): 251, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37919066

RESUMO

BACKGROUND: Inhibition of fatty acid synthase (FAS) plays a crucial protective role in pulmonary hypertension (PH). Our aim was to identify novel metabolites in mice with hypoxia-induced PH after treatment with C75 (FAS inhibitor) and to confirm the presence of these metabolites in paediatric patients with PH. METHODS: The PH mouse model was built by chronic hypoxia and ovalbumin (OVA) assistance. Untargeted metabolomics was used to analyse mouse serum. Six children with PH and six relative controls (patients without lung and heart disease) were selected in Shanghai Children's Hospital and they all performed blood tandem mass spectrometry during hospitalization. RESULTS: First, a total of 29 differential metabolites, including lipid metabolites, polyamine, and glutamine were identified as differential metabolites in the hypoxia group compared with the control group. After C75 treatment, symptoms were partially relieved in the PH mouse, and 15 differential metabolites, including lipid metabolites, polyamine, and glutamine were identified in the hypoxia + C75 group compared with the hypoxia group. These differential metabolites were enriched in arginine and glycerolipid metabolism through metabolite set enrichment analyses and were involved in excessive cell proliferation, which was a characteristic of PH. Second, glutamine and caproyl carnitine levels were increased in paediatric patients with PH. CONCLUSIONS: FAS may be a potential PH therapeutic target. Lipid metabolites, polyamine, and glutamine, are closely related to PH. Putrescine and glutamine might be biomarkers for PH.


Assuntos
Hipertensão Pulmonar , Humanos , Camundongos , Animais , Criança , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Glutamina , China , Hipóxia/complicações , Poliaminas , Lipídeos
3.
Acta Pharm Sin B ; 13(11): 4535-4552, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37969743

RESUMO

Osteoporosis (OP) is a systemic skeletal disease that primarily affects the elderly population, which greatly increases the risk of fractures. Here we report that Kindlin-2 expression in adipose tissue increases during aging and high-fat diet fed and is accompanied by decreased bone mass. Kindlin-2 specific deletion (K2KO) controlled by Adipoq-Cre mice or adipose tissue-targeting AAV (AAV-Rec2-CasRx-sgK2) significantly increases bone mass. Mechanistically, Kindlin-2 promotes peroxisome proliferator-activated receptor gamma (PPARγ) activation and downstream fatty acid binding protein 4 (FABP4) expression through stabilizing fatty acid synthase (FAS), and increased FABP4 inhibits insulin expression and decreases bone mass. Kindlin-2 inhibition results in accelerated FAS degradation, decreased PPARγ activation and FABP4 expression, and therefore increased insulin expression and bone mass. Interestingly, we find that FABP4 is increased while insulin is decreased in serum of OP patients. Increased FABP4 expression through PPARγ activation by rosiglitazone reverses the high bone mass phenotype of K2KO mice. Inhibition of FAS by C75 phenocopies the high bone mass phenotype of K2KO mice. Collectively, our study establishes a novel Kindlin-2/FAS/PPARγ/FABP4/insulin axis in adipose tissue modulating bone mass and strongly indicates that FAS and Kindlin-2 are new potential targets and C75 or AAV-Rec2-CasRx-sgK2 treatment are potential strategies for OP treatment.

4.
BMC Pulm Med ; 23(1): 46, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36717804

RESUMO

OBJECTIVES: To investigate mRNA and long non-coding RNA (lncRNA) expression profiles in monocrotaline (MCT)- mice. MATERIALS AND METHODS: Lung tissues (Control-Vehicle, MCT-Vehicle, and MCT-C75) were examined by high-throughput sequencing (HTS). Aberrantly expressed mRNAs and lncRNAs were analyzed by bioinformatics. Cell proliferation and cell cycle analysis were performed to detect the potential protective effects of C75, an inhibitor of fatty acid synthase. The signaling pathways associated with inflammatory responses were verified by real time-PCR. RESULTS: RNA sequencing data reveals 285 differentially expressed genes (DEGs) and 147 lncRNAs in the MCT-Vehicle group compared to the control. After five-week of C75 treatment, 514 DEGs and 84 lncRNAs are aberrant compared to the MCT-Vehicle group. Analysis of DEGs and lncRNA target genes reveals that they were enriched in pathways related to cell cycle, cell division, and vascular smooth muscle contraction that contributes to the PAH pathological process. Subsequently, the expression of eight DEGs and three lncRNAs is verified using RT-PCR. Differentially expressed lncRNAs (ENSMUSG00000110393.2, Gm38850, ENSMUSG00000100465.1, ENSMUSG00000110399.1) may associate in PAH pathogenesis as suggested by co-expression network analysis. C75 can protect against MCT-induced PAH through its anti-inflammatory and anti-proliferation. CONCLUSIONS: These DEGs and lncRNAs can be considered as novel candidate regulators of PAH pathogenesis. We propose that C75 treatment can partially reverse PAH pathogenesis through modulating cell cycle, cell proliferation, and anti-inflammatory.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , RNA Longo não Codificante , Animais , Camundongos , Anti-Inflamatórios/uso terapêutico , Hipertensão Pulmonar Primária Familiar , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética
5.
Int J Dyn Control ; 11(1): 411-427, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35761828

RESUMO

The study of COVID-19 pandemic which paralyzed global economy of countries is a crucial research area for effective future planning against other epidemics. Unfortunately, we now have variants of the disease resulting to what is now known as waves of the pandemic. Several mathematical models have been developed to study this disease. While recent models incorporated control measures, others are without optimal control measures or demographic parameters. In this study, we propose a deterministic compartmental epidemiological model to study the transmission dynamic of the spread of the third wave of the pandemic in Nigeria, and we incorporated optimal control measures as strategies to reduce the burden of the deadly disease. Specifically, we investigated the transmission dynamics of COVID-19 model without demographic features. We then conducted theoretical analysis of the model with and without optimal control strategy. In the model without optimal control, we computed the reproduction number, an epidemiological threshold useful for bringing the third wave of the pandemic under check in Nigeria, and we proofed the disease stability and conducted sensitivity analysis in order to identify parameters that can impact the reproduction number tremendously. In a similar reasoning, for the model with control strategy, we check the necessary condition for the model. To validate our theoretical analyses, we illustrated the applications of the proposed model using COVID-19 data for Nigeria for a period when the country was under the yoke of the third wave of the disease. The data were then fitted to the model, and we derived a predictive tool toward making a forecast for the cumulative number of cases of infection, cumulative number of active cases and the peak of the third wave of the pandemic. From the simulations, it was observed that the presence of optimal control parameters leads to significant impact on the reduction of the spread of the disease. However, it was discovered that the success of the control of the disease relies on the proper and effective implementation of the optimal control strategies efficiently and adequately.

6.
Acta Pharmaceutica Sinica B ; (6): 4535-4552, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1011196

RESUMO

Osteoporosis (OP) is a systemic skeletal disease that primarily affects the elderly population, which greatly increases the risk of fractures. Here we report that Kindlin-2 expression in adipose tissue increases during aging and high-fat diet fed and is accompanied by decreased bone mass. Kindlin-2 specific deletion (K2KO) controlled by Adipoq-Cre mice or adipose tissue-targeting AAV (AAV-Rec2-CasRx-sgK2) significantly increases bone mass. Mechanistically, Kindlin-2 promotes peroxisome proliferator-activated receptor gamma (PPARγ) activation and downstream fatty acid binding protein 4 (FABP4) expression through stabilizing fatty acid synthase (FAS), and increased FABP4 inhibits insulin expression and decreases bone mass. Kindlin-2 inhibition results in accelerated FAS degradation, decreased PPARγ activation and FABP4 expression, and therefore increased insulin expression and bone mass. Interestingly, we find that FABP4 is increased while insulin is decreased in serum of OP patients. Increased FABP4 expression through PPARγ activation by rosiglitazone reverses the high bone mass phenotype of K2KO mice. Inhibition of FAS by C75 phenocopies the high bone mass phenotype of K2KO mice. Collectively, our study establishes a novel Kindlin-2/FAS/PPARγ/FABP4/insulin axis in adipose tissue modulating bone mass and strongly indicates that FAS and Kindlin-2 are new potential targets and C75 or AAV-Rec2-CasRx-sgK2 treatment are potential strategies for OP treatment.

7.
Acta Pharm Sin B ; 12(4): 1624-1635, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35251918

RESUMO

SARS-CoV-2 is an emerging viral pathogen and a major global public health challenge since December of 2019, with limited effective treatments throughout the pandemic. As part of the innate immune response to viral infection, type I interferons (IFN-I) trigger a signaling cascade that culminates in the activation of hundreds of genes, known as interferon stimulated genes (ISGs), that collectively foster an antiviral state. We report here the identification of a group of type I interferon suppressed genes, including fatty acid synthase (FASN), which are involved in lipid metabolism. Overexpression of FASN or the addition of its downstream product, palmitate, increased viral infection while knockout or knockdown of FASN reduced infection. More importantly, pharmacological inhibitors of FASN effectively blocked infections with a broad range of viruses, including SARS-CoV-2 and its variants of concern. Thus, our studies not only suggest that downregulation of metabolic genes may present an antiviral strategy by type I interferon, but they also introduce the potential for FASN inhibitors to have a therapeutic application in combating emerging infectious diseases such as COVID-19.

8.
Acta Pharmaceutica Sinica B ; (6): 1624-1635, 2022.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-929308

RESUMO

SARS-CoV-2 is an emerging viral pathogen and a major global public health challenge since December of 2019, with limited effective treatments throughout the pandemic. As part of the innate immune response to viral infection, type I interferons (IFN-I) trigger a signaling cascade that culminates in the activation of hundreds of genes, known as interferon stimulated genes (ISGs), that collectively foster an antiviral state. We report here the identification of a group of type I interferon suppressed genes, including fatty acid synthase (FASN), which are involved in lipid metabolism. Overexpression of FASN or the addition of its downstream product, palmitate, increased viral infection while knockout or knockdown of FASN reduced infection. More importantly, pharmacological inhibitors of FASN effectively blocked infections with a broad range of viruses, including SARS-CoV-2 and its variants of concern. Thus, our studies not only suggest that downregulation of metabolic genes may present an antiviral strategy by type I interferon, but they also introduce the potential for FASN inhibitors to have a therapeutic application in combating emerging infectious diseases such as COVID-19.

9.
J Biol Dyn ; 13(1): 639-674, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31686617

RESUMO

This paper studies the global stability of discrete-time viral infection models with humoural immunity. We consider both latently and actively infected cells. We study also a model with general production and clearance rates of all compartments as well as general incidence rate of infection. We use nonstandard finite difference method to discretize the continuous-time models. The positivity and boundedness of solutions of the discrete models are established. We establish by using Lyapunov method, the global stability of equilibria in terms of the basic reproduction number [Formula: see text] and the humoural immune response activation number [Formula: see text]. The results signify that the infection dies out if [Formula: see text]. Moreover, the infection persists with inactive immune response if [Formula: see text] and with active immune response if [Formula: see text]. We illustrate our theoretical results by using numerical simulations.


Assuntos
Imunidade Humoral , Modelos Biológicos , Viroses/epidemiologia , Viroses/imunologia , Latência Viral/fisiologia , Número Básico de Reprodução , Simulação por Computador , Humanos , Análise Numérica Assistida por Computador , Fatores de Tempo
10.
Exp Eye Res ; 186: 107745, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31351057

RESUMO

Mice are routinely used to study aqueous humour dynamics. However, physical factors such as temperature and hydration affect outflow facility in enucleated eyes. This retrospective study examined whether differences in temperature and relative humidity experienced by living mice within their housing environment in vivo coincide with differences in outflow facility measured ex vivo. Facility data and environmental records were collected for one enucleated eye from 116 mice (C57BL/6J males, 9-15 weeks old) at two institutions. Outflow facility was reduced when relative humidity was below the lower limit of 45% recommended by the UK Code of Practice, but there was no detectable effect of temperature on outflow facility. Even when accounting for effects of humidity, there were differences in outflow facility measured between institutions and between individual researchers at the same institution. These data indicate that humidity, as well as additional environmental factors experienced by living mice within their housing environment, may significantly affect outflow facility measured ex vivo.


Assuntos
Humor Aquoso/fisiologia , Umidade , Pressão Intraocular/fisiologia , Malha Trabecular/metabolismo , Animais , Saúde Ambiental , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estudos Retrospectivos , Temperatura
11.
Virus Res ; 252: 41-47, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29746884

RESUMO

Fatty acid synthase (FASN) catalyzes the synthesis of palmitate, which is required for formation of complex fatty acids and phospholipids that are involved in energy production, membrane remodeling and modification of host and viral proteins. Presently, the roles of cellular fatty acid synthesis pathway in Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection is not clear. In this study, we found that the transcripts level of fasn was significantly up-regulated at the early stage of AcMNPV infection. Treatment of AcMNPV-infected Spodoptera frugiperda Sf9 cells with C75, a specific inhibitor of FASN, did not affect the internalization of budded virions into cells, but dramatically reduced the infectious AcMNPV production. Further analysis revealed that the presence of C75 significantly decreased the expression level for two reporter genes, beta-galactosidase and beta-glucuronidase, that were separately directed by the early and late promoter of AcMNPV. Similarly, Western blot analysis showed that, in C75-treated cells, the expression of viral gp64 was delayed and decreased. Additionally, treatment with C75 also resulted in a significant reduction in the accumulation of viral genomic DNA. Together, these results demonstrate that the fatty acid synthesis pathway is required for efficient replication of AcMNPV, but it might not be necessary for AcMNPV entry into insect cells.


Assuntos
Ácido Graxo Sintases/antagonistas & inibidores , Nucleopoliedrovírus/fisiologia , Vírion/fisiologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , Animais , Linhagem Celular , Replicação do DNA , Ácido Graxo Sintases/genética , Células Sf9 , Proteínas Virais/genética , Vírion/genética , Replicação Viral
12.
J Biol Dyn ; 12(1): 39-50, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29157143

RESUMO

Motivated by questions in biology, we investigate the stability of equilibria of the dynamical system [Formula: see text] which arise as critical points of f, under the assumption that [Formula: see text] is positive semi-definite. It is shown that the condition [Formula: see text], where [Formula: see text] is the smallest eigenvalue of [Formula: see text], plays a key role in guaranteeing uniform asymptotic stability and in providing information on the basis of attraction of those equilibria.


Assuntos
Modelos Genéticos , Fenótipo
13.
SIAM J Control Optim ; 56(4): 2463-2484, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31772419

RESUMO

The convergence properties of adaptive systems in terms of excitation conditions on the regressor vector are well known. With persistent excitation of the regressor vector in model reference adaptive control the state error and the adaptation error are globally exponentially stable or, equivalently, exponentially stable in the large. When the excitation condition, however, is imposed on the reference input or the reference model state, it is often incorrectly concluded that the persistent excitation in those signals also implies exponential stability in the large. The definition of persistent excitation is revisited so as to address some possible confusion in the adaptive control literature. It is then shown that persistent excitation of the reference model only implies local persistent excitation (weak persistent excitation). Weak persistent excitation of the regressor is still sufficient for uniform asymptotic stability in the large, but not exponential stability in the large. We show that there exists an infinite region in the state-space of adaptive systems where the state rate is bounded. This infinite region with finite rate of convergence is shown to exist not only in classic open-loop reference model adaptive systems but also in a new class of closed-loop reference model adaptive systems.

14.
J Leukoc Biol ; 102(5): 1229-1235, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28848043

RESUMO

T cell activation and effector function is characterized by changes in metabolism. Altered metabolism is common to almost all types of activated T cells, but fatty acid synthesis seems to especially drive the formation of Th17 cells. Indeed, research has demonstrated that inhibition of early fatty acid synthesis through targeting of acetyl-CoA carboxylase (ACC1) can inhibit Th17 cell formation and instead promote the generation of regulatory T cells. Fatty acid synthase (FASN) is downstream of ACC, and previous studies have shown that FASN activity influences both cancer and inflammation. However, it remains to be determined whether FASN is a viable target for inhibiting Th17 cell function. Here, we demonstrate that FASN is a critical metabolic control for the generation of inflammatory subsets of Th17 cells. Conversely, inhibiting FASN function promotes IFN-γ production by Th1 and Th1-like Th17 cells. In vivo, inhibition of FASN, specifically in Th17 cells, leads to reduction of experimental autoimmune encephalomyelitis disease. These studies demonstrate the necessity of FASN in the autoimmune inflammatory function of Th17 cells.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Ácido Graxo Sintase Tipo I/imunologia , Interferon gama/imunologia , Interleucina-17/imunologia , Células Th17/imunologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , Animais , Diferenciação Celular , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/genética , Inibidores Enzimáticos/farmacologia , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Ácido Graxo Sintase Tipo I/genética , Regulação da Expressão Gênica , Humanos , Interferon gama/genética , Interleucina-17/genética , Interleucina-23/genética , Interleucina-23/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos , Cultura Primária de Células , Transdução de Sinais , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/patologia , Células Th17/efeitos dos fármacos , Células Th17/patologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia
15.
Eur J Med Chem ; 131: 207-221, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28324785

RESUMO

C75 is a synthetic anticancer drug that inhibits fatty acid synthase (FAS) and shows a potent anorexigenic side effect. In order to find new cytotoxic compounds that do not impact food intake, we synthesized a new family of C75 derivatives. The most promising anticancer compound among them was UB006 ((4SR,5SR)-4-(hydroxymethyl)-3-methylene-5-octyldihydrofuran-2(3H)-one). The effects of this compound on cytotoxicity, food intake and body weight were studied in UB006 racemic mixture and in both its enantiomers separately. The results showed that both enantiomers inhibit FAS activity and have potent cytotoxic effects in several tumour cell lines, such as the ovarian cell cancer line OVCAR-3. The (-)-UB006 enantiomer's cytotoxic effect on OVCAR-3 was 40-fold higher than that of racemic C75, and 2- and 38-fold higher than that of the racemic mixture and its opposite enantiomer, respectively. This cytotoxic effect on the OVCAR-3 cell line involves mechanisms that reduce mitochondrial respiratory capacity and ATP production, DDIT4/REDD1 upregulation, mTOR activity inhibition, and caspase-3 activation, resulting in apoptosis. In addition, central and peripheral administration of (+)-UB006 or (-)-UB006 into rats and mice did not affect food intake or body weight. Altogether, our data support the discovery of a new potential anticancer compound (-)-UB006 that has no anorexigenic side effects.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Ácido Graxo Sintases/antagonistas & inibidores , Furanos/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ingestão de Alimentos/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Ácido Graxo Sintases/metabolismo , Furanos/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
16.
Chirality ; 29(1): 10-13, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27901292

RESUMO

The elevated activity of fatty acid synthase has been reported in a number of cancer types. Inhibition of this enzyme has been demonstrated to induce cancer cell death and reduce tumor growth. In addition, the fatty acid synthase inhibitor drug C75 has been reported to synergistically enhance the cancer-killing ability of ionizing radiation. However, clinical use of C75 has been limited due to its producing weight loss, believed to be caused by alterations in the activity of carnitine palmitoyltransferase-1. C75 is administered in the form of a racemic mixture of (-) and (+) enantiomers that may differ in their regulation of fatty acid synthase and carnitine palmitoyltransferase-1. Therefore, we assessed the relative cancer-killing potency of different enantiomeric forms of C75 in prostate cancer cells. These results suggest that (-)-C75 is the more cytotoxic enantiomer and has greater radiosensitizing capacity than (+)-C75. These observations will stimulate the development of fatty acid synthase inhibitors that are selective for cancer cells and enhance the tumor-killing activity of ionizing radiation, while minimizing weight loss in cancer patients.


Assuntos
Carnitina O-Palmitoiltransferase/química , Ácido Graxo Sintases/química , Carnitina O-Palmitoiltransferase/metabolismo , Linhagem Celular Tumoral , Ácido Graxo Sintases/metabolismo , Humanos , Masculino , Estereoisomerismo
17.
J Math Biol ; 72(6): 1607-32, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26304616

RESUMO

Scalability is a property describing the change of the trajectory of a dynamical system under a scaling of the input stimulus and of the initial conditions. Particular cases of scalability include the scale invariance and fold change detection (when the scaling of the input does not influence the system output). In the present paper it is shown that homogeneous systems have this scalability property while locally homogeneous systems approximately possess this property. These facts are used for detecting scale invariance or approximate scalability (far from a steady state) in several biological systems. The results are illustrated by various regulatory networks.


Assuntos
Redes Reguladoras de Genes , Modelos Genéticos , Conceitos Matemáticos , Modelos Biológicos , Biologia de Sistemas
18.
J Surg Res ; 200(1): 242-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26216747

RESUMO

BACKGROUND: Sepsis is a life-threatening acute inflammatory condition associated with metabolic complications. Accumulation of free fatty acids (FFAs) induces inflammation and causes lipotoxic effects in the liver. Because fatty acid metabolism plays a role in the inflammatory response, we hypothesized that the administration of C75, a fatty acid synthase inhibitor, could alleviate the injury caused by sepsis. METHODS: Male mice were subjected to sepsis by cecal ligation and puncture (CLP). At 4 h after CLP, different doses of C75 (1- or 5-mg/kg body weight) or vehicle (20% dimethyl sulfoxide in saline) were injected intraperitoneally. Blood and liver tissues were collected at 24 h after CLP. RESULTS: C75 treatment with 1- and 5-mg/kg body weight significantly lowered FFA levels in the liver after CLP by 28% and 53%, respectively. Administration of C75 dose dependently reduced serum indexes of organ injury (aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase) and serum levels of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). In the liver, C75 treatment reduced inflammation (TNF-α and IL-6) and oxidative stress (inducible nitric oxide synthase and cyclooxygenase 2) in a dose-dependent manner. The 5-mg dose improved the 10-d survival rate to 85% from that of 55% in the vehicle. In the presence of C75, TNF-α release in RAW 246.7 cells with 4-h lipopolysaccharide stimulation was also significantly reduced. CONCLUSIONS: C75 effectively lowered FFA accumulation in the liver, which was associated with inhibition of inflammation and organ injury as well as improvement in survival rate after CLP. Thus, inhibition of FFA by C75 could ameliorate the hepatic dysfunction seen in sepsis.


Assuntos
4-Butirolactona/análogos & derivados , Inibidores Enzimáticos/uso terapêutico , Insuficiência Hepática/prevenção & controle , Inflamação/prevenção & controle , Lipogênese/efeitos dos fármacos , Sepse/tratamento farmacológico , 4-Butirolactona/farmacologia , 4-Butirolactona/uso terapêutico , Animais , Biomarcadores/metabolismo , Inibidores Enzimáticos/farmacologia , Insuficiência Hepática/etiologia , Insuficiência Hepática/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sepse/complicações , Sepse/metabolismo , Resultado do Tratamento
19.
Phytother Res ; 30(1): 97-104, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26549524

RESUMO

We have tested the effect of protolichesterinic acid (PA) on the activity of the volume-sensitive release pathway for the organic osmolyte taurine (VSOAC) and the expression of the leucine-rich-repeat-channel 8A (LRRC8A) protein, which constitutes an essential VSOAC component. Exposing human lung cancer cells (A549) to PA (20 µg/mL, 24 h) reduces LRRC8A protein expression by 25% and taurine release following osmotic cell swelling (320 → 200 mOsm) by 60%. C75 (20 µg/mL, 24 h), a γ-lactone with a C8 carbon fatty acid chain, reduces VSOAC activity by 30%, i.e. less than PA. Stearic acid (20 µg/mL, 24 h) has no effect on VSOAC. Hence, length of PA's fatty acid chain adds to γ-lactone's inhibitory action. 5-Lipoxygenase (5-LO) activity is essential for swelling-induced activation of VSOAC. PA has no effect on cellular concentration of leukotrienes (5-HETE/LTB4 ) under hypotonic conditions, excluding that PA mediated inhibition of VSOAC involves 5-LO inhibition. A549 cells exposed to the chemotherapeutic drug cisplatin (10 µM, 24 h) reveal signs of apoptosis, i.e. 25% reduction in cell viability as well as 1.3-, 1.5- and 3.3-fold increase in the expression of LRRC8A, Bax (regulator of apoptosis) and p21 (regulator of cell cycle progression), respectively. PA reduces cell viability by 30% but has no effect on p21/Bax expression. This excludes PA as a pro-apoptotic drug in A549 cells.


Assuntos
4-Butirolactona/análogos & derivados , Líquens/química , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/metabolismo , Parmeliaceae/química , Taurina/metabolismo , 4-Butirolactona/farmacologia , Apoptose/efeitos dos fármacos , Araquidonato 5-Lipoxigenase/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , Ácidos Hidroxieicosatetraenoicos/metabolismo , Neoplasias Pulmonares/patologia , Proteína X Associada a bcl-2/metabolismo
20.
Neuro Oncol ; 17(12): 1599-608, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26116612

RESUMO

BACKGROUND: Malignant peripheral nerve sheath tumors (MPNSTs) are soft tissue sarcomas with minimal therapeutic opportunities. We observed that lipid droplets (LDs) accumulate in human MPNST cell lines and in primary human tumor samples. The goal of this study was to investigate the relevance of lipid metabolism to MPNST survival and as a possible therapeutic target. METHODS: Based on preliminary findings that MPNSTs accumulate LDs, we hypothesized that a deregulated lipid metabolism supports MPNST cell survival/proliferation rate. To test this, we examined respiration, role of fatty acid oxidation (FAO), and the enzyme fatty acid synthase involved in de novo fatty acid synthesis in MPNSTs using both genetic and pharmacological tools. RESULTS: We demonstrate that LDs accumulate in MPNST cell lines, primary human and mouse MPNST tumors, and neural crest cells. LDs from MPNST cells disappear on lipid deprivation, indicating that LDs can be oxidized as a source of energy. Inhibition of FAO decreased oxygen consumption and reduced MPNST survival, indicating that MPNST cells likely metabolize LDs through active FAO. FAO inhibition reduced oxygen consumption and survival even in the absence of exogenous lipids, indicating that lipids synthesized de novo can also be oxidized. Consequently, inhibition of de novo fatty acid synthesis, which is overexpressed in human MPNST cell lines, effectively reduced MPNST survival and delayed induction of tumor growth in vivo. CONCLUSION: Our results show that MPNSTs depend on lipid metabolic pathways and suggest that disrupting lipid metabolism could be a potential new strategy for the development of MPNST therapeutics.


Assuntos
Ácido Graxo Sintases/metabolismo , Gotículas Lipídicas/metabolismo , Neurilemoma/metabolismo , Células de Schwann/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular/efeitos dos fármacos , Ácido Graxo Sintases/antagonistas & inibidores , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Crista Neural/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...