Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 9: 587096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33575260

RESUMO

Programmed cell senescence is a cellular process that seems to contribute to embryo development, in addition to cell proliferation, migration, differentiation and programmed cell death, and has been observed in evolutionary distant organisms such as mammals, amphibians, birds and fish. Programmed cell senescence is a phenotype similar to stress-induced cellular senescence, characterized by the expression of the cell cycle inhibitors p21CIP1/WAF and p16INK4A, increased activity of a lysosomal enzyme with beta-galactosidase activity (coined senescence-associated beta-galactosidase) and secretion of growth factors, interleukins, chemokines, metalloproteases, etc., collectively known as a senescent-associated secretory phenotype that instructs surrounding tissue. How wide is the distribution of programmed cell senescence during mouse development and its specific mechanisms to shape the embryo are still poorly understood. Here, we investigated whether markers of programmed cell senescence are found in the developing mouse spinal cord and notochord. We found discrete areas and developmental windows with high senescence-associated beta galactosidase in both spinal cord and notochord, which was reduced in mice embryos developed ex-utero in the presence of the senolytic ABT-263. Expression of p21CIP1/WAF was documented in epithelial cells of the spinal cord and the notochord, while p16INK4A was observed in motoneurons. Treatment with the senolytic ABT-263 decreased the number of motoneurons, supporting their senescent phenotype. Our data suggest that a subpopulation of motoneurons in the developing spinal cord, as well as some notochord cells undergo programmed cell senescence.

2.
Autophagy ; 11(7): 1099-113, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25701485

RESUMO

Autophagy and senescence have been described as central features of cell biology, but the interplay between these mechanisms remains obscure. Using a therapeutically relevant model of DNA damage-induced senescence in human glioma cells, we demonstrated that acute treatment with temozolomide induces DNA damage, a transitory activation of PRKAA/AMPK-ULK1 and MAPK14/p38 and the sustained inhibition of AKT-MTOR. This produced a transient induction of autophagy, which was followed by senescence. However, at the single cell level, this coordinated transition was not observed, and autophagy and senescence were triggered in a very heterogeneous manner. Indeed, at a population level, autophagy was highly negatively correlated with senescence markers, while in single cells this correlation did not exist. The inhibition of autophagy triggered apoptosis and decreased senescence, while its activation increased temozolomide-induced senescence, showing that DNA damage-induced autophagy acts by suppressing apoptosis.


Assuntos
Autofagia , Senescência Celular , Dano ao DNA , Análise de Célula Única/métodos , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Glioma/enzimologia , Glioma/patologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Biológicos , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Temozolomida , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA