Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 742
Filtrar
1.
Int Immunopharmacol ; 138: 112584, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38944948

RESUMO

Heat shock proteins are a widely distributed group of proteins. It is constitutively expressed in almost all organisms and shows little variation throughout evolution. Previously, HSPs, particularly Hsp70, were recognized as molecular chaperones that aid in the proper three-dimensional folding of newly synthesized polypeptides in cells. Recently, researchers have focused on the potential induction of immune cells, including macrophages, antigen-specific CD8+ cytotoxic T cells, and PBMCs. It induces the expression of CC chemokines such as MIP-1α and RANTES, which are responsible for the chemotactic movement and migration of immune cells at the site of infection to neutralize foreign particles in vivo and in vitro in several cell lines but their effect on tumor-associated macrophages is still not known. These cytokines are also known to influence the movement of several immune cells, including CD8+ cytotoxic T cells, toward inflammatory sites. Therefore, the effect of tumor-derived autologous Hsp70 on the expression of MIP-lα and RANTES in tumor-associated macrophages (TAMs) was investigated. Our results indicated that Hsp70 treatment-induced MIP-lα and RANTES expression was significantly greater in TAMs than in NMOs. According to the literature, the CC chemokine shares the same receptor, CCR5, as HIV does for their action, and therefore could provide better completion to the virus for ligand binding. Furthermore, Hsp70-preactivated TAMs induced increased IL-2 and IFN-γ expression in T cells during coculture for 48 h and upregulated the antitumor immune response of the host. Therefore, the outcome of our study could be useful for developing a better approach to restricting the growth and progression of tumors.

2.
Vet Res ; 55(1): 76, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867337

RESUMO

Bovine mastitis remains a major disease in cattle world-wide. In the mammary gland, mammary epithelial cells (MEC) are sentinels equipped with receptors allowing them to detect and respond to the invasion by bacterial pathogens, in particular Escherichia coli. Lipopolysaccharide (LPS) is the major E. coli motif recognized by MEC through its interaction with the TLR4 receptor and the CD14 co-receptor. Previous studies have highlighted the role of soluble CD14 (sCD14) in the efficient recognition of LPS molecules possessing a full-length O-antigen (LPSS). We demonstrate here that MEC are able to secrete CD14 and are likely to contribute to the presence of sCD14 in milk. We then investigated how sCD14 modulates and is required for the response of MEC to LPSS. This study highlights the key role of sCD14 for the full activation of the Myd88-independent pathway by LPSS. We also identified several lncRNA that are activated in MEC in response to LPS, including one lncRNA showing homologies with the mir-99a-let-7c gene (MIR99AHG). Altogether, our results show that a full response to LPS by mammary epithelial cells requires sCD14 and provide detailed information on how milk sCD14 can contribute to an efficient recognition of LPS from coliform pathogens.


Assuntos
Células Epiteliais , Receptores de Lipopolissacarídeos , Lipopolissacarídeos , Glândulas Mamárias Animais , Animais , Receptores de Lipopolissacarídeos/metabolismo , Receptores de Lipopolissacarídeos/genética , Bovinos , Células Epiteliais/metabolismo , Lipopolissacarídeos/farmacologia , Feminino , Glândulas Mamárias Animais/metabolismo , Mastite Bovina/microbiologia , Mastite Bovina/imunologia , Mastite Bovina/metabolismo , Leite
3.
Biomolecules ; 14(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38927036

RESUMO

Transient Receptor Potential Ankyrin 1 (TRPA1) is a non-selective cation channel involved in sensitivity to a plethora of irritating agents and endogenous mediators of oxidative stress. TRPA1 influences neuroinflammation and macrophage and lymphocyte functions, but its role is controversial in immune cells. We reported earlier a detectable, but orders-of-magnitude-lower level of Trpa1 mRNA in monocytes and lymphocytes than in sensory neurons by qRT-PCR analyses of cells from lymphoid organs of mice. Our present goals were to (a) further elucidate the expression of Trpa1 mRNA in immune cells by RNAscope in situ hybridization (ISH) and (b) test the role of TRPA1 in lymphocyte activation. RNAscope ISH confirmed that Trpa1 transcripts were detectable in CD14+ and CD4+ cells from the peritoneal cavity of mice. A selective TRPA1 agonist JT010 elevated Ca2+ levels in these cells only at high concentrations. However, a concentration-dependent inhibitory effect of JT010 was observed on T-cell receptor (TcR)-induced Ca2+ signals in CD4+ T lymphocytes, while JT010 neither modified B cell activation nor ionomycin-stimulated Ca2+ level. Based on our present and past findings, TRPA1 activation negatively modulates T lymphocyte activation, but it does not appear to be a key regulator of TcR-stimulated calcium signaling.


Assuntos
Ativação Linfocitária , Canal de Cátion TRPA1 , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/genética , Animais , Camundongos , Ativação Linfocitária/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Ligantes , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Acetanilidas/farmacologia , Camundongos Endogâmicos C57BL , Cálcio/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Masculino , Sinalização do Cálcio/efeitos dos fármacos
4.
Immunotherapy ; : 1-16, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940276

RESUMO

Aim: Cryptococcus gattii causes a severe fungal infection with high mortality rate among immunosuppressed and immunocompetent individuals. Due to limitation of current antifungal treatment, new immunotherapeutic approaches are explored. Methods: This study investigated an immunization strategy utilizing heat-inactivated C. gattii with ArtinM as an adjuvant. C57BL/6 mice were intranasally immunized with heat-killed C. gattii and ArtinM was administrated either before immunization or along with HK-C. gattii. Mice were infected with C. gattii and the efficacy of the immunization protocol was evaluated. Results: Mice that received ArtinM exhibited increased levels of IL-10 and relative expression of IL-23 in the lungs, reduced fungal burden and preserved tissue integrity post-infection. Conclusion: Adjuvant ArtinM improved immunization against C. gattii infection in C57BL/6 mice.


Cryptococcus gattii is a fungus that can make lungs sick. Right now, there are no good treatments for it, so scientists are trying to find new ways to fight it. In a recent study, they tested a type of immunotherapy called ArtinM to see if it could help. When they gave ArtinM to mice, the mice got healthier and had less fungus in their lungs. This means ArtinM might be able to help fight this fungus.

5.
bioRxiv ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38826239

RESUMO

Alveolar macrophages (AMs) are lower-airway resident myeloid cells and are among the first to respond to inhaled pathogens. Here, we interrogate AM innate sensing to Pathogen Associated Molecular Patterns (PAMPs) and determine AMs have decreased responses to low-dose LPS compared to other macrophages, as measured by TNF, IL-6, Ifnb, and Ifit3. We find the reduced response to low-dose LPS correlates with minimal TLR4 and CD14 surface expression, despite sufficient internal expression of TLR4. Additionally, we find that AMs do not produce IL-10 in response to a variety of PAMPs due to low expression of transcription factor c-Maf and that lack of IL-10 production contributes to an enhancement of pro-inflammatory responses by Type I IFN. Our findings demonstrate that AMs have cell-intrinsic dampened responses to LPS, which is enhanced by type I IFN exposure. These data implicate conditions where AMs may have reduced or enhanced sentinel responses to bacterial infections.

6.
Biology (Basel) ; 13(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38785798

RESUMO

Escherichia coli (E. coli) is a frequent gram-negative bacterium that causes nosocomial infections, affecting more than 100 million patients annually worldwide. Bacterial lipopolysaccharide (LPS) from E. coli binds to toll-like receptor 4 (TLR4) and its co-receptor's cluster of differentiation protein 14 (CD14) and myeloid differentiation factor 2 (MD2), collectively known as the LPS receptor complex. LPCAT2 participates in lipid-raft assembly by phospholipid remodelling. Previous research has proven that LPCAT2 co-localises in lipid rafts with TLR4 and regulates macrophage inflammatory response. However, no published evidence exists of the influence of LPCAT2 on the gene expression of the LPS receptor complex induced by smooth or rough bacterial serotypes. We used RAW264.7-a commonly used experimental murine macrophage model-to study the effects of LPCAT2 on the LPS receptor complex by transiently silencing the LPCAT2 gene, infecting the macrophages with either smooth or rough LPS, and quantifying gene expression. LPCAT2 only significantly affected the gene expression of the LPS receptor complex in macrophages infected with smooth LPS. This study provides novel evidence that the influence of LPCAT2 on macrophage inflammatory response to bacterial infection depends on the LPS serotype, and it supports previous evidence that LPCAT2 regulates inflammatory response by modulating protein translocation to lipid rafts.

7.
Biomedicines ; 12(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38790920

RESUMO

PD-(L)1 inhibitors are part of the treatment strategy for non-small cell lung cancer (NSCLC) although its efficacy is limited to certain patients. Our study aimed to identify patients who might benefit from anti-PD-(L)1 inhibitors by analyzing the PD-L1 expression on circulating leukocytes and its evolution during treatment. One hundred thirteen NSCLC patients, according to their radiological response after 10-12 weeks of treatment, were classified into responders, stable, and progressive disease. Percentages of circulating PD-L1+ leukocytes, PD-L1+ platelets (PLTs), and leukocyte-PLT complexes were assessed using flow cytometry, and plasma concentrations of soluble immunomodulatory factors were quantified by ELISA. Responders exhibited significantly higher pre-treatment percentages of PD-L1+ neutrophils, PD-L1+ CD14+ cells, and PD-L1+ PLTs than progressors. The percentages of these populations decreased in responders post-treatment, contrasting with stables and progressors. PLTs notably contributed to PD-L1 expression in CD14+ cells and neutrophils. Plasma cytokine analysis revealed baseline differences only in IL-17 concentration among groups, whereas network analyses highlighted distinct association patterns between plasma molecules and PD-L1+ leukocytes after 10-12 weeks of treatment. Our findings suggest that pre-treatment assessment of circulating PD-L1+ neutrophils, PD-L1+ CD14+ cells, and PD-L1+ PLTs may be helpful in identifying NSCLC patients who are potential candidates for anti-PD-(L)1 therapy.

8.
Chin J Integr Med ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38816635

RESUMO

OBJECTIVE: To explore the effect of bear bile powder (BBP) on acute lung injury (ALI) and the underlying mechanism. METHODS: The chemical constituents of BBP were analyzed by ultra-high-pressure liquid chromatography-mass spectrometry (UPLC-MS). After 7 days of adaptive feeding, 50 mice were randomly divided into 5 groups by a random number table (n=10): normal control (NC), lipopolysaccharide (LPS), dexamethasone (Dex), low-, and high-dose BBP groups. The dosing cycle was 9 days. On the 12th and 14th days, 20 µL of Staphylococcus aureus solution (bacterial concentration of 1 × 10-7 CFU/mL) was given by nasal drip after 1 h of intragastric administration, and the mice in the NC group was given the same dose of phosphated buffered saline (PBS) solution. On the 16th day, after 1 h intragastric administration, 100 µL of LPS solution (1 mg/mL) was given by tracheal intubation, and the same dose of PBS solution was given to the NC group. Lung tissue was obtained to measure the myeloperoxidase (MPO) activity, the lung wet/dry weight ratio and expressions of CD14 and other related proteins. The lower lobe of the right lung was obtained for pathological examination. The concentrations of inflammatory cytokines including interleukin (IL)-6, tumour necrosis factor α (TNF-α ) and IL-1ß in the bronchoalveolar lavage fluid (BALF) were detected by enzyme linked immunosorbent assay, and the number of neutrophils was counted. The colonic contents of the mice were analyzed by 16 sRNA technique and the contents of short-chain fatty acids (SCFAs) were measured by gas chromatograph-mass spectrometer (GC-MS). RESULTS: UPLC-MS revealed that the chemical components of BBP samples were mainly tauroursodeoxycholic acid and taurochenodeoxycholic acid sodium salt. BBP reduced the activity of MPO, concentrations of inflammatory cytokines, and inhibited the expression of CD14 protein, thus suppressing the activation of NF-κB pathway (P<0.05). The lung histopathological results indicated that BBP significantly reduced the degree of neutrophil infiltration, cell shedding, necrosis, and alveolar cavity depression. Moreover, BBP effectively regulated the composition of the intestinal microflora and increased the production of SCFAs, which contributed to its treatment effect (P<0.05). CONCLUSIONS: BBP alleviates lung injury in ALI mouse through inhibiting activation of NF-κB pathway and decreasing expression of CD14 protein. BBP may promote recovery of ALI by improving the structure of intestinal flora and enhancing metabolic function of intestinal flora.

9.
Indian J Hematol Blood Transfus ; 40(2): 340-345, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38708156

RESUMO

It is aimed to determine expression of programmed cell death-1 (PD-1), programmed cell death ligand-1 (PD-L1), CD163 and CD14 in diffuse large B-cell lymphomas (DLBCL), and whether these markers may predict prognosis in DLBCL cases. A total of 52 nodal DLBCL, NOS cases with no known extranodal involvement at the time of diagnosis were evaluated. PD-1, PD-L1, CD163, and CD14 were studied by immunohistochemistry. The relationships between the results and clinical and laboratory prognostic markers were investigated. It was observed that patients with PD-1 expression < 5 positive cells/HPF had worse overall survival. No significant relationship was found between survival and PD-L1, CD163 and CD14 expressions. In addition, cases that are > 60 years of age, that have Eastern Cooperative Oncology Group (ECOG) performance score ≥ 2, stage IV disease, high International Prognostic Index score score (≥ 3), elevation of LDH, low albumin level, low hemoglobin level, low peripheral blood lymphocyte count, high peripheral blood neutrophil/lymphocyte ratio, high peripheral blood platelet/lymphocyte ratio were found to have worse overall survival. It was concluded that in patients with low number of PD-1 positive tumor-infiltrating lymphocytes have low survival rates and therefore PD-1 expression may be useful in indicating prognosis.

10.
J Innate Immun ; 16(1): 324-336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768576

RESUMO

INTRODUCTION: We aimed to elucidate the inflammatory response of Aspergillus fumigatus conidia in a whole-blood model of innate immune activation and to compare it with the well-characterized inflammatory reaction to Escherichia coli. METHODS: Employing a human lepirudin whole-blood model, we analyzed complement and leukocyte activation by measuring the sC5b-9 complex and assessing CD11b expression. A 27-multiplex system was used for quantification of cytokines. Selective cell removal from whole blood and inhibition of C3, C5, and CD14 were also applied. RESULTS: Our findings demonstrated a marked elevation in sC5b-9 and CD11b post-A. fumigatus incubation. Thirteen cytokines (TNF, IL-1ß, IL-1ra, IL-4, IL-6, IL-8, IL-17, IFNγ, MCP-1, MIP-1α, MIP-1ß, FGF-basic, and G-CSF) showed increased levels. A generally lower level of cytokine release and CD11b expression was observed with A. fumigatus conidia than with E. coli. Notably, monocytes were instrumental in releasing all cytokines except MCP-1. IL-1ra was found to be both monocyte and granulocyte-dependent. Pre-inhibiting with C3 and CD14 inhibitors resulted in decreased release patterns for six cytokines (TNF, IL-1ß, IL-6, IL-8, MIP-1α, and MIP-1ß), with minimal effects by C5-inhibition. CONCLUSION: A. fumigatus conidia induced complement activation comparable to E. coli, whereas CD11b expression and cytokine release were lower, underscoring distinct inflammatory responses between these pathogens. Complement C3 inhibition attenuated cytokine release indicating a C3-level role of complement in A. fumigatus immunity.


Assuntos
Aspergilose , Aspergillus fumigatus , Ativação do Complemento , Citocinas , Escherichia coli , Esporos Fúngicos , Aspergillus fumigatus/imunologia , Humanos , Ativação do Complemento/imunologia , Citocinas/metabolismo , Esporos Fúngicos/imunologia , Aspergilose/imunologia , Escherichia coli/imunologia , Antígeno CD11b/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Imunidade Inata , Inflamação/imunologia , Complemento C3/imunologia , Complemento C3/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Células Cultivadas , Monócitos/imunologia
11.
Virol J ; 21(1): 96, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671532

RESUMO

BACKGROUND: There is still limited research on the prognostic value of Presepsin as a biomarker for predicting the outcome of COVID-19 patients. Additionally, research on the combined predictive value of Presepsin with clinical scoring systems and inflammation markers for disease prognosis is lacking. METHODS: A total of 226 COVID-19 patients admitted to Beijing Youan Hospital's emergency department from May to November 2022 were screened. Demographic information, laboratory measurements, and blood samples for Presepsin levels were collected upon admission. The predictive value of Presepsin, clinical scoring systems, and inflammation markers for 28-day mortality was analyzed. RESULTS: A total of 190 patients were analyzed, 83 (43.7%) were mild, 61 (32.1%) were moderate, and 46 (24.2%) were severe/critically ill. 23 (12.1%) patients died within 28 days. The Presepsin levels in severe/critical patients were significantly higher compared to moderate and mild patients (p < 0.001). Presepsin showed significant predictive value for 28-day mortality in COVID-19 patients, with an area under the ROC curve of 0.828 (95% CI: 0.737-0.920). Clinical scoring systems and inflammation markers also played a significant role in predicting 28-day outcomes. After Cox regression adjustment, Presepsin, qSOFA, NEWS2, PSI, CURB-65, CRP, NLR, CAR, and LCR were identified as independent predictors of 28-day mortality in COVID-19 patients (all p-values < 0.05). Combining Presepsin with clinical scoring systems and inflammation markers further enhanced the predictive value for patient prognosis. CONCLUSION: Presepsin is a favorable indicator for the prognosis of COVID-19 patients, and its combination with clinical scoring systems and inflammation markers improved prognostic assessment.


Assuntos
Biomarcadores , COVID-19 , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores/sangue , COVID-19/mortalidade , COVID-19/sangue , COVID-19/diagnóstico , Inflamação/sangue , Receptores de Lipopolissacarídeos/sangue , Fragmentos de Peptídeos/sangue , Valor Preditivo dos Testes , Prognóstico , Curva ROC , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença
12.
JHEP Rep ; 6(5): 101018, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38601478

RESUMO

Background & Aims: A high human cytomegalovirus (HCMV) infection rate accompanied by an increased level of bile duct damage is observed in the perinatal period. The possible mechanism was investigated. Methods: A total of 1,120 HCMV-positive and 9,297 HCMV-negative children were recruited, and depending on age, their liver biochemistry profile was compared. Fetal and infant biliary epithelial cells (F-BECs and I-BECs, respectively) were infected with HCMV, and the differences in cells were revealed by proteomic analysis. Protein-protein interactions were examined by coimmunoprecipitation and mass spectrometry analyses. A murine cytomegalovirus (MCMV) infection model was established to assess treatment effects. Results: Perinatal HCMV infection significantly increased the level of bile duct damage. Neonatal BALB/c mice inoculated with MCMV showed obvious inflammation in the portal area with an abnormal bile duct structure. Proteomics analysis showed higher CD14 expression in F-BECs than in I-BECs. CD14 siRNA administration hindered HCMV infection, and CD14-knockout mice showed lower MCMV-induced bile duct damage. HCMV infection upregulated CD55 and poly ADP-ribose polymerase-1 (PARP-1) expression in F-BECs. Coimmunoprecipitation and mass spectrometry analyses revealed formation of the CD14-CD55 complex. siRNA-mediated inhibition of CD55 expression reduced sCD14-promoted HCMV replication in F-BECs. In MCMV-infected mice, anti-mouse CD14 antibody and PARP-1 inhibitor treatment diminished cell death, ameliorated bile duct damage, and reduced mortality. Conclusions: CD14 facilitates perinatal HCMV infection in BECs via CD55, and PARP-1-mediated cell death was detected in perinatal cytomegalovirus-infected BECs. These results provide new insight into the treatment of perinatal HCMV infection with bile duct damage. Impact and implications: Perinatal human cytomegalovirus (HCMV) infection is associated with bile duct damage, but the underlying mechanism is still unknown. We discovered that CD14 expression is increased in biliary epithelial cells during perinatal HCMV infection and facilitates viral entry through CD55. We also detected PARP-1-mediated cell death in perinatal HCMV-infected biliary epithelial cells. We showed that blocking CD14 or inhibiting PARP-1 reduced bile duct damage and mortality in a mouse model of murine cytomegalovirus infection. Our findings provide a new insight into therapeutic strategies for perinatal HCMV infection.

13.
Front Mol Biosci ; 11: 1362955, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572445

RESUMO

Introduction: Mitochondrial dysfunction may be one of the causes of inflammatory activation of monocytes and macrophages, which leads to excessive secretion of inflammatory mediators and the development of chronic inflammation. Aims: The study was aimed to evaluate the secretion of inflammatory cytokine tumor necrosis factor-α (TNF-α) in the primary culture of monocytes, and to analyze its relationship with the number of mitochondrial DNA (mtDNA) copies in the blood of patients with coronary heart disease (CHD) and obesity. Materials and methods: 108 patients with obesity and concomitant CHD and a control group of 25 participants were included in the study. CD14+ monocytes were isolated by a standard method in a ficoll-urographin gradient, followed by separation using magnetic particles. The number of mtDNA copies was estimated using qPCR. Results: It was demonstrated that the number of mtDNA copies was significantly increased in groups of patients with CHD and obesity + CHD in comparison with control group. mtDNA copy number positively correlated with basal and LPS-stimulated TNF-α secretion, the most significant correlation was found in the group of patients with CHD and obesity. Conclusion: Thus, the change in mtDNA copy number in CD14+ monocytes which indicates the presence of mitochondrial dysfunction, confirm the direct involvement of mitochondria in the violation of the inflammatory response of monocytes revealed in this study as an increased secretion of inflammatory cytokine TNF-α.

14.
Biomedicines ; 12(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38672131

RESUMO

Psoriatic arthritis (PsA) is a chronic inflammatory arthritis primarily affecting peripheral and axial joints. The osteolytic effect in the damaged joint is mediated by osteoclast activation. We aimed to investigate differential gene expression in peripheral CD14+ monocytes between patients with psoriatic arthritis (n = 15) and healthy controls (HCs; n = 15). Circulating CD14+ monocytes were isolated from peripheral blood mononuclear cells using CD14+ magnetic beads. Cell apoptosis was measured via Annexin V using flow cytometry. The gene expression profiling was analyzed via microarray (available in the NCBI GEO database; accession number GSE261765), and the candidate genes were validated using PCR. The results showed a higher number of peripheral CD14+ monocytes in patients with PsA than in the HCs. By analyzing the microarray data, identifying the differentially expressed genes, and conducting pathway enrichment analysis, we found that the apoptosis signaling pathway in CD14+ cells was significantly impaired in patients with PsA compared to the HCs. Among the candidate genes in the apoptotic signaling pathway, the relative expression level of cathepsin L was confirmed to be significantly lower in the PsAs than in the HCs. We concluded that the numbers of peripheral CD14+ monocytes increased, and their apoptosis activity was impaired in patients with PsA, which could lead to enhanced macrophage maturation and osteoclast activation. The resistance of apoptotic death in peripheral CD14+ monocytes may contribute to active joint inflammation in PsA.

15.
J Clin Med ; 13(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673584

RESUMO

Background/Objectives: Diabetic foot ulcers are one of the complications in patients with diabetes, which can be caused by infection, neuropathy, and blood vessel disorder. Among them, infection is the most common cause, and if it becomes worse, amputation may be necessary. So, it is important to detect and treat infections early, and determining indicators that can confirm infection is also important. Known infection markers include white blood cells (WBCs), the erythrocyte sediment rate (ESR), C-reactive protein (CRP), and procalcitonin, but they are not specific to diabetic foot ulcers. Presepsin, also known as soluble CD14, is known to be an early indicator of sepsis. Recent studies have reported that presepsin can be used as an early indicator of infection. This study investigated whether presepsin could be used as an early marker of severe infection in patients with diabetic foot ulcers. Methods: We retrospectively studied 73 patients who were treated for diabetic foot ulcerations from January 2021 to June 2023 at Yeungnam University Hospital. Results: Out of a total of 73 patients, 46 patients underwent amputations with severe infections, and the WBC level, ESR, and CRP, procalcitonin, and presepsin levels were significantly higher in the group of patients who underwent amputations. The cutoff of presepsin, which can predict serious infections that need amputation, was 675 ng/mL. A regression analysis confirmed that presepsin, HbA1c, and osteomyelitis significantly increased the risk of severe infections requiring amputation. Conclusions: Presepsin will be available as an early predictor of patients with severe infections requiring amputations for diabetic foot ulcerations.

16.
Immun Inflamm Dis ; 12(4): e1230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629742

RESUMO

OBJECTIVE: The goal of the study was to examine the genetic correlation of cluster of differentiation 14 (CD14) gene polymorphisms with peri-implantitis (PI) predisposition in a Chinese Han population. METHODS: In the case-control study, blood samples were collected from PI patients and healthy individuals (n = 120/group), who were admitted to the Affiliated Hospital of Yangzhou University from 2021 to 2023. One-way analysis of variance (ANOVA) was applied to compare differences of continuous variables among different groups. Genotype and allele distributions of CD14 gene rs2569190 and rs2915863 polymorphisms were analyzed between groups via χ2 test. RESULTS: A high percentage of rs2569190 GG genotype or G allele carriers were identified in PI group compared with control group (p < .01). Rs2569190 GG genotype carriers had high risk to develop PI (odds ratio: 2.545, 95% confidence interval: 1.257-5.156, p = .009). The rs2569190 AA genotype carriers had the lowest values of gingival index, plaque index, calculus index, peri-implant pocket depth, and clinical attachment level, which were the highest in cases with GG genotype. CONCLUSION: Rs2569190 polymorphism of CD14 gene was significantly associated with PI predisposition in the Chinese Han population, and the GG genotype and G allele were risk factors for the development of PI.


Assuntos
Predisposição Genética para Doença , Peri-Implantite , Humanos , Estudos de Casos e Controles , China/epidemiologia , Peri-Implantite/genética , Polimorfismo Genético
17.
J Virol ; 98(5): e0036324, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38661384

RESUMO

HIV-1 has a broad range of nuanced interactions with the immune system, and the incorporation of cellular proteins by nascent virions continues to redefine our understanding of the virus-host relationship. Proteins located at the sites of viral egress can be selectively incorporated into the HIV-1 envelope, imparting new functions and phenotypes onto virions, and impacting viral spread and disease. Using virion capture assays and western blot, we show that HIV-1 can incorporate the myeloid antigen CD14 into its viral envelope. Virion-incorporated CD14 remained biologically active and able to bind its natural ligand, bacterial lipopolysaccharide (LPS), as demonstrated by flow virometry and immunoprecipitation assays. Using a Toll-like receptor 4 (TLR4) reporter cell line, we also demonstrated that virions with bound LPS can trigger TLR4 signaling to activate transcription factors that regulate inflammatory gene expression. Complementary assays with THP-1 monocytes demonstrated enhanced secretion of inflammatory cytokines like tumor necrosis factor alpha (TNF-α) and the C-C chemokine ligand 5 (CCL5), when exposed to LPS-loaded virus. These data highlight a new type of interplay between HIV-1 and the myeloid cell compartment, a previously well-established cellular contributor to HIV-1 pathogenesis and inflammation. Persistent gut inflammation is a hallmark of chronic HIV-1 infection, and contributing to this effect is the translocation of microbes across the gut epithelium. Our data herein provide proof of principle that virion-incorporated CD14 could be a novel mechanism through which HIV-1 can drive chronic inflammation, facilitated by HIV-1 particles binding bacterial LPS and initiating inflammatory signaling in TLR4-expressing cells.IMPORTANCEHIV-1 establishes a lifelong infection accompanied by numerous immunological changes. Inflammation of the gut epithelia, exacerbated by the loss of mucosal T cells and cytokine dysregulation, persists during HIV-1 infection. Feeding back into this loop of inflammation is the translocation of intestinal microbes across the gut epithelia, resulting in the systemic dissemination of bacterial antigens, like lipopolysaccharide (LPS). Our group previously demonstrated that the LPS receptor, CD14, can be readily incorporated by HIV-1 particles, supporting previous clinical observations of viruses derived from patient plasma. We now show that CD14 can be incorporated by several primary HIV-1 isolates and that this virion-incorporated CD14 can remain functional, enabling HIV-1 to bind to LPS. This subsequently allowed CD14+ virions to transfer LPS to monocytic cells, eliciting pro-inflammatory signaling and cytokine secretion. We posit here that virion-incorporated CD14 is a potential contributor to the dysregulated immune responses present in the setting of HIV-1 infection.


Assuntos
Infecções por HIV , HIV-1 , Receptores de Lipopolissacarídeos , Lipopolissacarídeos , Vírion , Humanos , Quimiocina CCL5/metabolismo , Infecções por HIV/virologia , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , HIV-1/imunologia , HIV-1/fisiologia , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/metabolismo , Monócitos/metabolismo , Monócitos/imunologia , Monócitos/virologia , Transdução de Sinais , Células THP-1 , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vírion/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-38459706

RESUMO

Hepatitis B virus (HBV), a vaccine-avoidable infection, is a health concern worldwide, leading to liver disorders such as acute self-constraint and chronic hepatitis, liver failure, hepatic cirrhosis, and even hepatocellular carcinoma if untreated. 'Immunogeneticprofiling', genetic variations of the pro- and anti-inflammatory cytokines responsible for regulating the immune responses, cause person-to-person differences and impact the clinical manifestation of the disease. The current experimental-bioinformatics research was conducted to examine whether promoteric IL-18-rs187238 C > G and -rs1946518 T > G and intronic CD14-rs2569190 A > G variations are associated with chronic HBV. A total of 400 individuals (200 in each case and control group) participated in the study and were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. The data was also assessed bioinformatics-wise for conservation, genomic transcription and splicing, and protein interactions. Findings proposed that unlike the IL-18-rs1946518 T > G and CD14-rs2569190 A > G, the IL-18-rs187238 C > G is a protector against chronic HBV (odds ratio [OR] = 0.62, 95% confidence intervals [CI]: 0.46-0.83, and p = 0.002). The TG/CC/AA, TG/CC/AG, TT/CC/AG, and GG/CC/AA combined genotypes significantly increased chronic HBV risk (p < 0.05), while the IL-18 G/T and G/G haplotypes lessened it (p < 0.05). Moreover, IL-18-rs1946518 T > G is in the protected genomic regions across mammalian species. In contrast to the IL-18-rs1946518 T > G, IL-18-rs187238 C > G is likely to create novel binding sites for transcription factors, and the CD14-rs2569190 A > G presumably changed the ribonucleic acid splicing pattern. More research on larger populations and other ethnicities is required to authenticate these results.

19.
J Exp Clin Cancer Res ; 43(1): 72, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38454445

RESUMO

BACKGROUND: The paucity of reliable biomarkers for predicting immunotherapy efficacy in patients with advanced hepatocellular carcinoma (HCC) has emerged as a burgeoning concern with the expanding use of immunotherapy. This study endeavors to delve into the potential peripheral biomarkers capable of prognosticating efficacy in HCC patients who are poised to receive anti-PD-1 monotherapy within the phase III clinical trial, KEYNOTE394. Additionally, we sought to elucidate the underlying molecular mechanisms for resistance to immune checkpoint blockade (ICB) and propose innovative combination immunotherapy strategies for future clinical application. METHODS: Patient blood samples were collected for single-cell RNA sequencing to evaluate the immune cell signature before receiving ICB therapy. Subsequently, in vitro assays and in vivo murine model experiments were conducted to validate the mechanism that S100A9+CD14+ monocytes play a role in ICB resistance. RESULTS: Our study demonstrates a notable enrichment of S100A9+CD14+ monocytes in the peripheral blood of patients exhibiting suboptimal responses to anti-PD-1 therapy. Moreover, we identified the Mono_S100A9 signature as a predictive biomarker, indicative of reduced efficacy in immunotherapy and decreased survival benefits across various tumor types. Mechanistically, S100A9 activates PD-L1 transcription by directly binding to the CD274 (PD-L1) gene promoter, thereby suppressing T-cell proliferation and cytotoxicity via the PD-1/PD-L1 axis, consequently diminishing the therapeutic effectiveness of subsequent anti-PD-1 treatments. Furthermore, our in vivo studies revealed that inhibiting S100A9 can synergistically enhance the efficacy of anti-PD-1 drugs in the eradication of hepatocellular carcinoma. CONCLUSIONS: Our study underscores the significance of S100A9+CD14+ monocytes in predicting inadequate response to ICB treatment and provides insights into the monocyte cell-intrinsic mechanisms of resistance to ICB therapy. We also propose a combined therapeutic approach to enhance ICB efficacy by targeting S100A9.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Monócitos/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Antígeno B7-H1/metabolismo , Linfócitos T/metabolismo , Imunoterapia , Microambiente Tumoral , Calgranulina B/metabolismo
20.
Eur J Immunol ; 54(6): e2350891, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38509863

RESUMO

Metastatic colorectal cancer (CRC) is highly resistant to therapy and prone to recur. The tumor-induced local and systemic immunosuppression allows cancer cells to evade immunosurveillance, facilitating their proliferation and dissemination. Dendritic cells (DCs) are required for the detection, processing, and presentation of tumor antigens, and subsequently for the activation of antigen-specific T cells to orchestrate an effective antitumor response. Notably, successful tumors have evolved mechanisms to disrupt and impair DC functions, underlining the key role of tumor-induced DC dysfunction in promoting tumor growth, metastasis initiation, and treatment resistance. Conventional DC type 2 (cDC2) are highly prevalent in tumors and have been shown to present high phenotypic and functional plasticity in response to tumor-released environmental cues. This plasticity reverberates on both the development of antitumor responses and on the efficacy of immunotherapies in cancer patients. Uncovering the processes, mechanisms, and mediators by which CRC shapes and disrupts cDC2 functions is crucial to restoring their full antitumor potential. In this study, we use our recently developed 3D DC-tumor co-culture system to investigate how patient-derived primary and metastatic CRC organoids modulate cDC2 phenotype and function. We first demonstrate that our collagen-based system displays extensive interaction between cDC2 and tumor organoids. Interestingly, we show that tumor-corrupted cDC2 shift toward a CD14+ population with defective expression of maturation markers, an intermediate phenotype positioned between cDC2 and monocytes, and impaired T-cell activating abilities. This phenotype aligns with the newly defined DC3 (CD14+ CD1c+ CD163+) subset. Remarkably, a comparable population was found to be present in tumor lesions and enriched in the peripheral blood of metastatic CRC patients. Moreover, using EP2 and EP4 receptor antagonists and an anti-IL-6 neutralizing antibody, we determined that the observed phenotype shift is partially mediated by PGE2 and IL-6. Importantly, our system holds promise as a platform for testing therapies aimed at preventing or mitigating tumor-induced DC dysfunction. Overall, our study offers novel and relevant insights into cDC2 (dys)function in CRC that hold relevance for the design of therapeutic approaches.


Assuntos
Neoplasias Colorretais , Células Dendríticas , Dinoprostona , Interleucina-6 , Organoides , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Organoides/imunologia , Organoides/metabolismo , Dinoprostona/metabolismo , Interleucina-6/metabolismo , Interleucina-6/imunologia , Técnicas de Cocultura , Fenótipo , Plasticidade Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...