Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Adv Sci (Weinh) ; : e2403158, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953329

RESUMO

In situ cancer vaccination is an attractive strategy that stimulates protective antitumor immunity. Cytotoxic T lymphocytes (CTLs) are major mediators of the adaptive immune defenses, with critical roles in antitumor immune response and establishing immune memory, and are consequently extremely important for in situ vaccines to generate systemic and lasting antitumor efficacy. However, the dense extracellular matrix and hypoxia in solid tumors severely impede the infiltration and function of CTLs, ultimately compromising the efficacy of in situ cancer vaccines. To address this issue, a robust in situ cancer vaccine, Au@MnO2 nanoparticles (AMOPs), based on a gold nanoparticle core coated with a manganese dioxide shell is developed. The AMOPs modulated the unfavorable tumor microenvironment (TME) to restore CTLs infiltration and function and efficiently induced immunogenic cell death. The Mn2+-mediated stimulator of the interferon genes pathway can be activated to further augment the therapeutic efficacy of the AMOPs. Thus, the AMOPs vaccine successfully elicited long-lasting antitumor immunity to considerably inhibit primary, recurrent, and metastatic tumors. This study not only highlights the importance of revitalizing CTLs efficacy against solid tumors but also makes progress toward overcoming TME barriers for sustained antitumor immunity.

2.
FASEB J ; 38(13): e23663, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38958986

RESUMO

This study delves into the unexplored realm of castration-resistant prostate cancer (CRPC) by investigating the role of TRIM28 and its intricate molecular mechanisms using high-throughput single-cell transcriptome sequencing and advanced bioinformatics analysis. Our comprehensive examination unveiled dynamic TRIM28 expression changes, particularly in immune cells such as macrophages and CD8+ T cells within CRPC. Correlation analyses with TCGA data highlighted the connection between TRIM28 and immune checkpoint expression and emphasized its pivotal influence on the quantity and functionality of immune cells. Using TRIM28 knockout mouse models, we identified differentially expressed genes and enriched pathways, unraveling the potential regulatory involvement of TRIM28 in the cGAS-STING pathway. In vitro, experiments further illuminated that TRIM28 knockout in prostate cancer cells induced a notable anti-tumor immune effect by inhibiting M2 macrophage polarization and enhancing CD8+ T cell activity. This impactful discovery was validated in an in situ transplant tumor model, where TRIM28 knockout exhibited a deceleration in tumor growth, reduced proportions of M2 macrophages, and enhanced infiltration of CD8+ T cells. In summary, this study elucidates the hitherto unknown anti-tumor immune role of TRIM28 in CRPC and unravels its potential regulatory mechanism via the cGAS-STING signaling pathway. These findings provide novel insights into the immune landscape of CRPC, offering promising directions for developing innovative therapeutic strategies.


Assuntos
Linfócitos T CD8-Positivos , Proteínas de Membrana , Camundongos Knockout , Neoplasias de Próstata Resistentes à Castração , Proteína 28 com Motivo Tripartido , Proteína 28 com Motivo Tripartido/metabolismo , Proteína 28 com Motivo Tripartido/genética , Animais , Camundongos , Humanos , Masculino , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/imunologia , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Transdução de Sinais
3.
Pathol Res Pract ; 260: 155432, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38944022

RESUMO

BACKGROUND: Usual Interstitial Pneumonia (UIP) a fibrosing pneumonia is associated with idiopathic pulmonary fibrosis, chronic autoimmune disease (AID), or hypersensitivity pneumonia. Oxygen radicals, due to tobacco smoke, can damage DNA and might upregulate PARP1. Cytosolic DNA from dying pneumocytes activate cytosolic GMP-AMP-synthase-stimulator of interferon genes (cGAS-STING) pathway and TREX1. Prolonged inflammation induces senescence, which might be inhibited by phagocytosis, eliminating nuclear debris. We aimed to evaluate activation of cGAS-STING-TREX1 pathway in UIP, and if phagocytosis and anti-phagocytosis might counteract inflammation. METHODS: 44 cases of UIP with IPF or AID were studied for the expression of cGAS, pSTING, TREX1 and PARP1. LAMP1 and Rab7 expression served as phagocytosis markers. CD47 protecting phagocytosis and p16 to identify senescent cells were also studied. RESULTS: Epithelial cells in remodeled areas and macrophages expressed cGAS-pSTING, TREX1; epithelia but not macrophages stained for PARP1. Myofibroblasts, endothelia, and bronchial/bronchiolar epithelial cells were all negative except early myofibroblastic foci expressing cGAS. Type II pneumocytes expressed cGAS and PARP1, but less pSTING. TREX1 although expressed was not activated. Macrophages and many regenerating epithelial cells expressed LAMP1 and Rab7. CD47, the 'don't-eat-me-signal', was expressed by macrophages and epithelial cells including senescence cells within the remodeled areas. CONCLUSIONS: The cGAS-STING pathway is activated in macrophages and epithelial cells within remodeled areas. LikelyTREX1 because not activated cannot sufficiently degrade DNA fragments. PARP1 activation points to smoking-induced oxygen radical release, prolonging inflammation and leading to fibrosis. By expressing CD47 epithelial cells within remodeled areas protect themselves from being eliminated by phagocytosis.

4.
Cell Commun Signal ; 22(1): 328, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872145

RESUMO

BACKGROUND: Kawasaki disease (KD) is an immune vasculitis of unknown origin, characterized by transient inflammation. The activation of the cGAS-STING pathway, triggered by mitochondrial DNA (mtDNA) release, has been implicated in the onset of KD. However, its specific role in the progression of inflammation during KD's acute phase remains unclear. METHODS: We measured mtDNA and 2'3'-cGAMP expression in KD patient serum using RT-qPCR and ELISA. A murine model of KD was induced by injecting Lactobacillus casei cell wall extract (LCWE), after which cGAS-STING pathway activation and inflammatory markers were assessed via immunohistochemistry, western blot, and RT-qPCR. Human umbilical vein endothelial cells (HUVECs) were treated with KD serum and modulators of the cGAS-STING pathway for comparative analysis. Mitochondrial function was evaluated using Mitosox staining, mPTP opening was quantified by fluorescence microscopy, and mitochondrial membrane potential (MMP) was determined with JC-1 staining. RESULTS: KD patient serum exhibited increased mtDNA and 2'3'-cGAMP expression, with elevated levels of pathway-related proteins and inflammatory markers observed in both in vivo and in vitro models. TEM confirmed mitochondrial damage, and further studies demonstrated that inhibition of mPTP opening reduced mtDNA release, abrogated cGAS-STING pathway activation, and mitigated inflammation. CONCLUSION: These findings indicate that mtDNA released through the mPTP is a critical activator of the cGAS-STING pathway, contributing significantly to KD-associated inflammation. Targeting mtDNA release or the cGAS-STING pathway may offer novel therapeutic approaches for KD management.


Assuntos
DNA Mitocondrial , Inflamação , Proteínas de Membrana , Poro de Transição de Permeabilidade Mitocondrial , Síndrome de Linfonodos Mucocutâneos , Nucleotidiltransferases , Transdução de Sinais , Síndrome de Linfonodos Mucocutâneos/metabolismo , Síndrome de Linfonodos Mucocutâneos/patologia , Síndrome de Linfonodos Mucocutâneos/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Inflamação/patologia , Inflamação/metabolismo , Inflamação/genética , Animais , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Masculino , Camundongos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Feminino , Doença Aguda , Camundongos Endogâmicos C57BL , Pré-Escolar
5.
Dev Cell ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38848717

RESUMO

The histone H3 lysine 9 methyltransferase SETDB1 controls transcriptional repression to direct stem cell fate. Here, we show that Setdb1 expression by adult muscle stem cells (MuSCs) is required for skeletal muscle regeneration. We find that SETDB1 represses the expression of endogenous retroviruses (ERVs) in MuSCs. ERV de-repression in Setdb1-null MuSCs prevents their amplification following exit from quiescence and promotes cell death. Multi-omics profiling shows that chromatin decompaction at ERV loci activates the DNA-sensing cGAS-STING pathway, entailing cytokine expression by Setdb1-null MuSCs. This is followed by aberrant infiltration of inflammatory cells, including pathological macrophages. The ensuing histiocytosis is accompanied by myofiber necrosis, which, in addition to progressive MuSCs depletion, completely abolishes tissue repair. In contrast, loss of Setdb1 in fibro-adipogenic progenitors (FAPs) does not impact immune cells. In conclusion, genome maintenance by SETDB1 in an adult somatic stem cell is necessary for both its regenerative potential and adequate reparative inflammation.

6.
Adv Sci (Weinh) ; : e2401634, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888507

RESUMO

Radiation enteritis is the most common complication of pelvic radiotherapy, but there is no effective prevention or treatment drug. Apoptotic T cells and their products play an important role in regulating inflammation and maintaining physiological immune homeostasis. Here it is shown that systemically infused T cell-derived apoptotic extracellular vesicles (ApoEVs) can target mice irradiated intestines and alleviate radiation enteritis. Mechanistically, radiation elevates the synthesis of intestinal 2'3' cyclic GMP-AMP (cGAMP) and activates cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) proinflammatory pathway. After systemic infusion of ApoEVs, the ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) enriches on the surface of ApoEVs hydrolyze extracellular cGAMP, resulting in inhibition of the cGAS-STING pathway activated by irradiation. Furthermore, after ApoEVs are phagocytosed by phagocytes, ENPP1 on ApoEVs hydrolyzed intracellular cGAMP, which serves as an intracellular cGAMP hydrolyzation mode, thereby alleviating radiation enteritis. The findings shed light on the intracellular and extracellular hydrolysis capacity of ApoEVs and their role in inflammation regulation.

7.
BMC Cancer ; 24(1): 732, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877472

RESUMO

BACKGROUND: Considering the age relevance of prostate cancer (PCa) and the involvement of the cGAS-STING pathway in aging and cancer, we aim to classify PCa into distinct molecular subtypes and identify key genes from the novel perspective of the cGAS-STING pathway. It is of significance to guide personalized intervention of cancer-targeting therapy based on genetic evidence. METHODS: The 430 patients with PCa from the TCGA database were included. We integrated 29 key genes involved in cGAS-STING pathway and analyzed differentially expressed genes and biochemical recurrence (BCR)-free survival-related genes. The assessments of tumor stemness and heterogeneity and tumor microenvironment (TME) were conducted to reveal potential mechanisms. RESULTS: PCa patients were classified into two distinct subtypes using AURKB, TREX1, and STAT6, and subtype 1 had a worse prognosis than subtype 2 (HR: 21.19, p < 0.001). The findings were validated in the MSKCC2010 cohort. Among subtype 1 and subtype 2, the top ten mutation genes were MUC5B, DNAH9, SLC5A10, ZNF462, USP31, SIPA1L3, PLEC, HRAS, MYOM1, and ITGB6. Gene set variation analysis revealed a high enrichment of the E2F target in subtype 1, and gene set enrichment analysis showed significant enrichment of base excision repair, cell cycle, and DNA replication in subtype 1. TME evaluation indicated that subtype 1 had a significantly higher level of T cells follicular helper and a lower level of plasma cells than subtype 2. CONCLUSIONS: The molecular subtypes mediated by the cGAS-STING pathway and the genetic risk score may aid in identifying potentially high-risk PCa patients who may benefit from pharmacologic therapies targeting the cGAS-STING pathway.


Assuntos
Proteínas de Membrana , Nucleotidiltransferases , Neoplasias da Próstata , Transdução de Sinais , Humanos , Masculino , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transdução de Sinais/genética , Prognóstico , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Mutação , Idoso , Perfilação da Expressão Gênica , Transcriptoma
8.
Biomaterials ; 311: 122672, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38897029

RESUMO

Gastric cancer constitutes a malignant neoplasm characterized by heightened invasiveness, posing significant global health threat. Inspired by the analysis that gastric cancer patients with Helicobacter pylori (H. pylori) infection have higher overall survival, whether H. pylori can be used as therapeutics agent and oral drug delivery system for gastric cancer. Hence, we constructed engineered H. pylori for gastric cancer treatment. A type Ⅱ H. pylori with low pathogenicity, were conjugated with photosensitizer to develop the engineered living bacteria NIR-triggered system (Hp-Ce6). Hp-Ce6 could maintain activity in stomach acid, quickly infiltrate through mucus layer and finally migrate to tumor region owing to the cell morphology and urease of H. pylori. H. pylori, accumulated in the tumor site, severed as vaccine to activate cGAS-STING pathway, and synergistically remodel the macrophages phenotype. Upon irradiation within stomach, Hp-Ce6 directly destroyed tumor cells via photodynamic effect inherited by Ce6, companied by inducing immunogenic tumor cell death. Additionally, Hp-Ce6 exhibited excellent biosafety with fecal elimination and minimal blood absorption. This work explores the feasibility and availability of H. pylori-based oral delivery platforms for gastric tumor and further provides enlightening strategy to utilize H. pylori invariably presented in the stomach as in-situ immunomodulator to enhance antitumor efficacy.

9.
J Nanobiotechnology ; 22(1): 310, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831378

RESUMO

Radiotherapy (RT), including external beam radiation therapy (EBRT) and radionuclide therapy (RNT), realizes physical killing of local tumors and activates systemic anti-tumor immunity. However, these effects need to be further strengthened and the difference between EBRT and RNT should be discovered. Herein, bacterial outer membrane (OM) was biomineralized with manganese oxide (MnO2) to obtain OM@MnO2-PEG nanoparticles for enhanced radio-immunotherapy via amplifying EBRT/RNT-induced immunogenic cell death (ICD) and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) activation. OM@MnO2-PEG can react with H2O2 and then gradually produce O2, Mn2+ and OM fragments in the tumor microenvironment. The relieved tumor hypoxia improves the radio-sensitivity of tumor cells, resulting in enhanced ICD and DNA damage. Mn2+ together with the DNA fragments in the cytoplasm activate the cGAS-STING pathway, further exhibiting a positive role in various aspects of innate immunity and adaptive immunity. Besides, OM fragments promote tumor antigen presentation and anti-tumor macrophages polarization. More importantly, our study reveals that OM@MnO2-PEG-mediated RNT triggers much stronger cGAS-STING pathway-involved immunotherapy than that of EBRT, owing to the duration difference of RT. Therefore, this study develops a powerful sensitizer of radio-immunotherapy and uncovers some differences between EBRT and RNT in the activation of cGAS-STING pathway-related anti-tumor immunity.


Assuntos
Membrana Externa Bacteriana , Imunoterapia , Compostos de Manganês , Proteínas de Membrana , Nucleotidiltransferases , Óxidos , Nucleotidiltransferases/metabolismo , Compostos de Manganês/química , Proteínas de Membrana/metabolismo , Camundongos , Imunoterapia/métodos , Óxidos/química , Animais , Membrana Externa Bacteriana/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral , Transdução de Sinais , Humanos , Radioterapia/métodos , Nanopartículas/química , Biomineralização , Morte Celular Imunogênica/efeitos dos fármacos , Neoplasias/terapia , Peróxido de Hidrogênio/metabolismo , Imunidade Inata
10.
Bioact Mater ; 39: 392-405, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38855060

RESUMO

Retinal neovascularization (RNV), a typical pathological manifestation involved in most neovascular diseases, causes retinal detachment, vision loss, and ultimately irreversible blindness. Repeated intravitreal injections of anti-VEGF drugs were developed against RNV, with limitations of incomplete responses and adverse effects. Therefore, a new treatment with a better curative effect and more prolonged dosage is demanding. Here, we induced macrophage polarization to anti-inflammatory M2 phenotype by inhibiting cGAS-STING signaling with an antagonist C176, appreciating the role of cGAS-STING signaling in the retina in pro-inflammatory M1 polarization. C176-loaded and phosphatidylserine-modified dendritic mesoporous silica nanoparticles were constructed and examined by a single intravitreal injection. The biosafe nanoparticles were phagocytosed by retinal macrophages through a phosphatidylserine-mediated "eat me" signal, which persistently release C176 to suppress STING signaling and thereby promote macrophage M2 polarization specifically. A single dosage can effectively alleviate pathological angiogenesis phenotypes in murine oxygen-induced retinopathy models. In conclusion, these C176-loaded nanoparticles with enhanced cell uptake and long-lasting STING inhibition effects might serve as a promising way for treating RNV.

11.
Cancer Immunol Immunother ; 73(8): 148, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832958

RESUMO

Immunotherapy is one of the most promising anti-cancer treatment. It involves activating the host's own immune system to eliminate cancer cells. Activation of cGAS-STING pathway is promising therapeutic approach for cancer immunotherapy. However, in human clinical trials, targeting cGAS-STING pathway results in insufficient or unsustainable anti-tumor response. To enhance its effectiveness, combination with other anti-cancer therapies seems essential to achieve synergistic systemic anti-tumor response.The aim of this study was to evaluate whether the combination of STING agonist-cGAMP with anti-vascular RGD-(KLAKLAK)2 peptide results in a better anti-tumor response in poorly immunogenic tumors with various STING protein and αvß3 integrin status.Combination therapy inhibited growth of murine breast carcinoma more effectively than melanoma. In melanoma, the administration of STING agonist alone was sufficient to obtain a satisfactory therapeutic effect. In both tumor models we have noted stimulation of innate immune response following cGAMP administration alone or in combination. The largest population of immune cells infiltrating the TME after therapy were activated NK cells. Increased infiltration of cytotoxic CD8+ T lymphocytes within the TME was only observed in melanoma tumors. However, they also expressed the "exhaustion" PD-1 receptor. In contrast, in breast carcinoma tumors each therapy caused the drop in the number of infiltrating CD8+ T cells.The obtained results indicate an additional therapeutic benefit from combining STING agonist with an anti-vascular agent. However, this effect depends on the type of tumor, the status of its microenvironment and the expression of specific proteins such as STING and αvß3 family integrin.


Assuntos
Proteínas de Membrana , Animais , Camundongos , Proteínas de Membrana/agonistas , Feminino , Humanos , Oligopeptídeos/farmacologia , Nucleotídeos Cíclicos/farmacologia , Nucleotídeos Cíclicos/administração & dosagem , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
12.
Front Pharmacol ; 15: 1374179, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904004

RESUMO

Ethnopharmacological relevance: G. uralensis Fisch. (Glycyrrhiza uralensis) is an ancient and widely used traditional Chinese medicine with good efficacy in clearing heat and detoxifying action. Studies suggest that Glycyrrhiza Uralensis Polysaccharides (GUP), one of the major components of G. uralensis, has anti-inflammatory, anti-cancer and hepatoprotective effects., but its exact molecular mechanism has not been explored in depth. Aim of the study: Objectives of our research are about exploring the anti-inflammatory role of GUP and the mechanisms of its action. Materials and methods: ELISA kits, Western blotting, immunofluorescence, quantitative real-time PCR, immunoprecipitation and DMXAA-mediated STING activation mice models were performed to investigate the role of GUP on the cGAS-STING pathway. To determine the anti-inflammatory effects of GUP, cecal ligation and puncture (CLP) sepsis models were employed. Results: GUP could effectively inhibit the activation of the cGAS-STING signaling pathway accompany by a decrease the expression of type I interferon-related genes and inflammatory factors in BMDMs, THP-1, and human PBMCs. Mechanistically, GUP does not affect the oligomerization of STING, but affects the interaction of STING with TBK1 and TBK1 with IRF3. Significantly, GUP had great therapeutic effects on DMXAA-induced agonist experiments in vivo as well as CLP sepsis in mice. Conclusion: Our studies suggest that GUP is an effective inhibitor of the cGAS-STING pathway, which may be a potential medicine for the treatment of inflammatory diseases mediated by the cGAS-STING pathway.

13.
Invest New Drugs ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941055

RESUMO

The present study aimed to clarify the hypothesis that auger emitter 125I particles in combination with PARP inhibitor Olaparib could inhibit pancreatic cancer progression by promoting antitumor immune response. Pancreatic cancer cell line (Panc02) and mice subcutaneously inoculated with Panc02 cells were employed for the in vitro and in vivo experiments, respectively, followed by 125I and Olaparib administrations. The apoptosis and CRT exposure of Panc02 cells were detected using flow cytometry assay. QRT-PCR, immunofluorescence, immunohistochemical analysis, and western blot were employed to examine mRNA and protein expression. Experimental results showed that 125I combined with Olaparib induced immunogenic cell death and affected antigen presentation in pancreatic cancer. 125I in combination with Olaparib influenced T cells and dendritic cells by up-regulating CD4, CD8, CD69, Caspase3, CD86, granzyme B, CD80, and type I interferon (IFN)-γ and down-regulating Ki67 in vivo. The combination also activated the cyclic GMP-AMP synthase stimulator of IFN genes (Sting) pathway in Panc02 cells. Moreover, Sting knockdown alleviated the effect of the combination of 125I and Olaparib on pancreatic cancer progression. In summary, 125I in combination with Olaparib inhibited pancreatic cancer progression through promoting antitumor immune responses, which may provide a potential treatment for pancreatic cancer.

14.
Microbiol Res ; 286: 127821, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38941923

RESUMO

Radiation injury to the intestine is one of the most common complications in patients undergoing abdominal or pelvic cavity radiotherapy. In this study, we investigated the potential protective effect of Lactobacillus rhamnosus GG (LGG) on radiation-induced intestinal injury and its underlying mechanisms. Mice were assigned to a control group, a 10 Gy total abdominal irradiation (TAI) group, or a group pretreated with 108 CFU LGG for three days before TAI. Small intestine and gut microbiota were analyzed 3.5 days post-exposure. LGG intervention improved intestinal structure, reduced jejunal DNA damage, and inhibited the inflammatory cGAS/STING pathway. Furthermore, LGG reduced M1 proinflammatory macrophage and CD8+ T cell infiltration, restoring the balance between Th17 and Treg cells in the inflamed jejunum. LGG also partially restored the gut microbiota. These findings suggest the possible therapeutic radioprotective effect of probiotics LGG in alleviating radiation-induced intestinal injury by maintaining immune homeostasis and reshaping gut microbiota.

15.
Adv Immunol ; 162: 1-21, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38866436

RESUMO

Double stranded DNA (dsDNA) in the cytoplasm triggers the cGAS-STING innate immune pathway to defend against pathogenic infections, tissue damage and malignant cells. Extensive structural and functional studies over the last couple of years have enabled the molecular understanding of dsDNA induced activation of the cGAS-STING signaling pathway. This review highlights recent advances in the structural characterization of key molecules in the cGAS-STING signaling axis by focusing on the mechanism of cGAS activation by dsDNA, the regulation of cGAS activity, the mechanism of STING activation by cGAMP, the molecular basis of TBK1 recruitment and activation by STING, the structural basis of IRF3 recruitment by STING, and the mechanism of IRF3 activation upon phosphorylation by TBK1. These comprehensive structural studies provide a detailed picture of the mechanism of the cGAS-STING signaling pathway, establishing a molecular framework for the development of novel therapeutic strategies targeting this pathway.


Assuntos
DNA , Imunidade Inata , Proteínas de Membrana , Nucleotidiltransferases , Transdução de Sinais , Humanos , Nucleotidiltransferases/metabolismo , DNA/metabolismo , DNA/imunologia , Proteínas de Membrana/metabolismo , Animais , Fator Regulador 3 de Interferon/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fosforilação
16.
J Control Release ; 371: 273-287, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789087

RESUMO

The stimulator of interferon genes (STING) connects the innate and adaptive immune system and plays a significant role in antitumor immunity. Over the past decades, endogenous and CDN-derived STING agonists have been a hot topic in the research of cancer immunotherapies. However, these STING agonists are either in infancy with limited biological effects or have failed in clinical trials. In 2020, a non-nucleotide STING agonist MSA-2 was identified, which exhibited satisfactory antitumor effects in animal studies and is amenable to oral administration. Due to its distinctive binding mode and enhanced bioavailability, there have been accumulating interests and an array of studies on MSA-2 and its derivatives, spanning its structure-activity relationship, delivery systems, applications in combination therapies, etc. Here, we provide a comprehensive review of MSA-2 and interventional strategies based on this family of STING agonists to help more researchers extend the investigation on MSA-2 in the future.


Assuntos
Proteínas de Membrana , Humanos , Proteínas de Membrana/agonistas , Animais , Neoplasias/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/química , Antineoplásicos/uso terapêutico
17.
Life Sci ; 348: 122687, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38718856

RESUMO

AIMS: Checkpoint blockade immunotherapy is a promising therapeutic modality that has revolutionized cancer treatment; however, the therapy is only effective on a fraction of patients due to the tumor environment. In tumor immunotherapy, the cGAS-STING pathway is a crucial intracellular immune response pathway. Therefore, this study aimed to develop an immunotherapy strategy based on the cGAS-STING pathway. MATERIALS AND METHODS: The physicochemical properties of the nanoparticles EM@REV@DOX were characterized by TEM, DLS, and WB. Subcutaneous LLC xenograft tumors were used to determine the biodistribution, antitumor efficacy, and immune response. Blood samples and tissues of interest were harvested for hematological analysis and H&E staining. SIGNIFICANCE: Overall, our designed nanovesicles provide a new perspective on tumor immunotherapy by ICD and cGAS-STING pathway, promoting DCs maturation, macrophage polarization, and activating T cells, offering a meaningful strategy for accelerating the clinical development of immunotherapy. KEY FINDINGS: EM@REV@DOX accumulated in the tumor site through EPR and homing targeting effect to release REV and DOX, resulting in DNA damage and finally activating the cGAS-STING pathway, thereby promoting DCs maturation, macrophage polarization, and activating T cells. Additionally, EM@REV@DOX increased the production of pro-inflammatory cytokines (e.g., TNF-α and IFN-ß). As a result, EM@REV@DOX was effective in treating tumor-bearing mice and prolonged their lifespans. When combined with αPD-L1, EM@REV@DOX significantly inhibited distant tumor growth, extended the survival of mice, and prevented long-term postoperative tumor metastasis, exhibiting great potential in antitumor immunotherapy.


Assuntos
Imunoterapia , Proteínas de Membrana , Nanopartículas , Nucleotidiltransferases , Animais , Nucleotidiltransferases/metabolismo , Camundongos , Proteínas de Membrana/metabolismo , Imunoterapia/métodos , Nanopartículas/química , Humanos , Transdução de Sinais , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Morte Celular Imunogênica/efeitos dos fármacos
18.
Immunobiology ; 229(3): 152810, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38772101

RESUMO

BACKGROUND AND AIMS: Activation of the cGAS-STING pathway induces the production of type I interferons, initiating the antiviral immune response, which contributes to the clearance of pathogens. Previous studies have shown that STING agonists promote hepatitis B virus (HBV) clearance; however, few studies have investigated the effect of activating the cGAS-STING pathway in macrophages on HBV. METHODS: The polarization status of HBV particle-stimulated RAW264.7 macrophages was analyzed. After stimulation with HBV particles, the analysis focused on determining whether the DNA sensors in RAW264.7 macrophages recognized the viral double-stranded DNA (dsDNA) and evaluating the activation of the cGAS-STING pathway. Coculture of mouse macrophages and hepatocytes harboring HBV was used to study the antiviral activity of HBV-stimulated RAW264.7 macrophages. RESULTS: After stimulation with HBV particles, HBV relaxed circular DNA (rcDNA) was detected in RAW264.7 macrophages, and the protein expression of phospho-STING, phospho-TBK1, and phospho-IRF3 in the STING pathway was increased, as shown by Western blot analysis, which revealed that M1 polarization of macrophages was caused by increased expression of CD86. RT-PCR analyses revealed elevated expression of M1 macrophage polarization-associated cytokines such as TNFα, IL-1ß, iNOS, and IFNα/ß. In the coculture experiment, both HBsAg and HBeAg expression levels were significantly decreased in AML12-HBV1.3 cells cocultured with the supernatants of HBV-stimulated RAW264.7 macrophages. CONCLUSION: The results suggest that macrophages can endocytose HBV particles. Additionally, viral dsDNA can be recognized by DNA pattern recognition receptors, which in turn activate the cGAS-STING pathway, promoting the M1 polarization of macrophages, while no significant M2 polarization is observed. Macrophages stimulated with HBV particles exhibit enhanced antiviral activity against HBV.


Assuntos
DNA Viral , Vírus da Hepatite B , Macrófagos , Proteínas de Membrana , Nucleotidiltransferases , Transdução de Sinais , Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/imunologia , Animais , Nucleotidiltransferases/metabolismo , Camundongos , Macrófagos/imunologia , Macrófagos/virologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Células RAW 264.7 , Hepatite B/imunologia , Hepatite B/virologia , Humanos , Ativação de Macrófagos/imunologia , Hepatócitos/virologia , Hepatócitos/imunologia , Hepatócitos/metabolismo , Fator Regulador 3 de Interferon/metabolismo
19.
Acta Biomater ; 181: 402-414, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38734282

RESUMO

Tumor hypoxia, high oxidative stress, and low immunogenic create a deep-rooted immunosuppressive microenvironment, posing a major challenge to the therapeutic efficiency of cancer immunotherapy for solid tumor. Herein, an intelligent nanoplatform responsive to the tumor microenvironment (TME) capable of hypoxia relief and immune stimulation has been engineered for efficient solid tumor immunotherapy. The MnO2@OxA@OMV nanoreactor, enclosing bacterial-derived outer membrane vesicles (OMVs)-wrapped MnO2 nanoenzyme and the immunogenic cell death inducer oxaliplatin (OxA), demonstrated intrinsic catalase-like activity within the TME, which effectively catalyzed the endogenous H2O2 into O2 to enable a prolonged oxygen supply, thereby alleviating the tumor's oxidative stress and hypoxic TME, and expediting OxA release. The combinational action of OxA-caused ICD effect and Mn2+ from nanoreactor enabled the motivation of the cGAS-STING pathway to significantly improve the activation of STING and dendritic cells (DCs) maturation, resulting in metalloimmunotherapy. Furthermore, the immunostimulant OMVs played a crucial role in promoting the infiltration of activated CD8+T cells into the solid tumor. Overall, the nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy. STATEMENT OF SIGNIFICANCE: A tailor-made nanoreactor was fabricated by enclosing bacterial-derived outer membrane vesicles (OMVs) onto MnO2 nanoenzyme and loading with immunogenic cell death inducer oxaliplatin (OxA) for tumor metalloimmunotherapy. The nanoreactor possesses intrinsic catalase-like activity within the tumor microenvironment, which effectively enabled a prolonged oxygen supply by catalyzing the conversion of endogenous H2O2 into O2, thereby alleviating tumor hypoxia and expediting OxA release. Furthermore, the TME-responsive release of nutritional Mn2+ sensitized the cGAS-STING pathway and collaborated with OxA-induced immunogenic cell death (ICD). Combing with immunostimulatory OMVs enhances the uptake of nanoreactors by DCs and promotes the infiltration of activated CD8+T cells. This nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy.


Assuntos
Imunoterapia , Microambiente Tumoral , Animais , Imunoterapia/métodos , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Hipóxia Tumoral/efeitos dos fármacos , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Oxaliplatina/farmacologia , Oxaliplatina/química , Óxidos/química , Óxidos/farmacologia , Manganês/química , Manganês/farmacologia , Humanos , Feminino , Neoplasias/terapia , Neoplasias/patologia , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Camundongos Endogâmicos C57BL
20.
ACS Nano ; 18(22): 14469-14486, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38770948

RESUMO

Glioblastoma (GBM) is a lethal brain tumor with high levels of malignancy. Most chemotherapy agents show serious systemic cytotoxicity and restricted delivery effectiveness due to the impediments of the blood-brain barrier (BBB). Immunotherapy has developed great potential for aggressive tumor treatments. Disappointingly, its efficacy against GBM is hindered by the immunosuppressive tumor microenvironment (TME) and BBB. Herein, a multiple synergistic immunotherapeutic strategy against GBM was developed based on the nanomaterial-biology interaction. We have demonstrated that this BM@MnP-BSA-aPD-1 can transverse the BBB and target the TME, resulting in amplified synergetic effects of metalloimmunotherapy and photothermal immunotherapy (PTT). The journey of this nanoformulation within the TME contributed to the activation of the stimulator of the interferon gene pathway, the initiation of the immunogenic cell death effect, and the inhibition of the programmed cell death-1/programmed cell death ligand 1 (PD-1/PD-L1) signaling axis. This nanomedicine revitalizes the immunosuppressive TME and evokes the cascade effect of antitumor immunity. Therefore, the combination of BM@MnP-BSA-aPD-1 and PTT without chemotherapeutics presents favorable benefits in anti-GBM immunotherapy and exhibits immense potential for clinical translational applications.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imunoterapia , Microglia , Microambiente Tumoral , Glioblastoma/terapia , Glioblastoma/patologia , Glioblastoma/imunologia , Glioblastoma/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Humanos , Animais , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Terapia Fototérmica , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...