Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(7): 114405, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923463

RESUMO

The RNA cap methyltransferase CMTR1 methylates the first transcribed nucleotide of RNA polymerase II transcripts, impacting gene expression mechanisms, including during innate immune responses. Using mass spectrometry, we identify a multiply phosphorylated region of CMTR1 (phospho-patch [P-Patch]), which is a substrate for the kinase CK2 (casein kinase II). CMTR1 phosphorylation alters intramolecular interactions, increases recruitment to RNA polymerase II, and promotes RNA cap methylation. P-Patch phosphorylation occurs during the G1 phase of the cell cycle, recruiting CMTR1 to RNA polymerase II during a period of rapid transcription and RNA cap formation. CMTR1 phosphorylation is required for the expression of specific RNAs, including ribosomal protein gene transcripts, and promotes cell proliferation. CMTR1 phosphorylation is also required for interferon-stimulated gene expression. The cap-snatching virus, influenza A, utilizes host CMTR1 phosphorylation to produce the caps required for virus production and infection. We present an RNA cap methylation control mechanism whereby CK2 controls CMTR1, enhancing co-transcriptional capping.


Assuntos
Caseína Quinase II , Metiltransferases , Capuzes de RNA , Animais , Humanos , Caseína Quinase II/metabolismo , Caseína Quinase II/genética , Células HEK293 , Vírus da Influenza A , Influenza Humana/virologia , Influenza Humana/metabolismo , Influenza Humana/genética , Metilação , Metiltransferases/metabolismo , Fosforilação , Capuzes de RNA/metabolismo , RNA Polimerase II/metabolismo
2.
Curr Biol ; 34(12): 2728-2738.e6, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38810637

RESUMO

The mitochondrial proteome is comprised of approximately 1,100 proteins,1 all but 12 of which are encoded by the nuclear genome in C. elegans. The expression of nuclear-encoded mitochondrial proteins varies widely across cell lineages and metabolic states,2,3,4 but the factors that specify these programs are not known. Here, we identify mutations in two nuclear-localized mRNA processing proteins, CMTR1/CMTR-1 and SRRT/ARS2/SRRT-1, which we show act via the same mechanism to rescue the mitochondrial complex I mutant NDUFS2/gas-1(fc21). CMTR-1 is an FtsJ-family RNA methyltransferase that, in mammals, 2'-O-methylates the first nucleotide 3' to the mRNA CAP to promote RNA stability and translation5,6,7,8. The mutations isolated in cmtr-1 are dominant and lie exclusively in the regulatory G-patch domain. SRRT-1 is an RNA binding partner of the nuclear cap-binding complex and determines mRNA transcript fate.9 We show that cmtr-1 and srrt-1 mutations activate embryonic expression of NDUFS2/nduf-2.2, a paralog of NDUFS2/gas-1 normally expressed only in dopaminergic neurons, and that nduf-2.2 is necessary for the complex I rescue by the cmtr-1 G-patch mutant. Additionally, we find that loss of the cmtr-1 G-patch domain cause ectopic localization of CMTR-1 protein to processing bodies (P bodies), phase-separated organelles involved in mRNA storage and decay.10 P-body localization of the G-patch mutant CMTR-1 contributes to the rescue of the hyperoxia sensitivity of the NDUFS2/gas-1 mutant. This study suggests that mRNA methylation at P bodies may control nduf-2.2 gene expression, with broader implications for how the mitochondrial proteome is translationally remodeled in the face of tissue-specific metabolic requirements and stress.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Neurônios Dopaminérgicos , Complexo I de Transporte de Elétrons , Metiltransferases , Mutação , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Neurônios Dopaminérgicos/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , NADH Desidrogenase/metabolismo , NADH Desidrogenase/genética
3.
RNA ; 30(4): 327-336, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38325897

RESUMO

RNA caps are deposited at the 5' end of RNA polymerase II transcripts. This modification regulates several steps of gene expression, in addition to marking transcripts as self to enable the innate immune system to distinguish them from uncapped foreign RNAs, including those derived from viruses. Specialized immune sensors, such as RIG-I and IFITs, trigger antiviral responses upon recognition of uncapped cytoplasmic transcripts. Interestingly, uncapped transcripts can also be produced by mammalian hosts. For instance, 5'-triphosphate RNAs are generated by RNA polymerase III transcription, including tRNAs, Alu RNAs, or vault RNAs. These RNAs have emerged as key players of innate immunity, as they can be recognized by the antiviral sensors. Mechanisms that regulate the presence of 5'-triphosphates, such as 5'-end dephosphorylation or RNA editing, prevent immune recognition of endogenous RNAs and excessive inflammation. Here, we provide a comprehensive overview of the complexity of RNA cap structures and 5'-triphosphate RNAs, highlighting their roles in transcript identity, immune surveillance, and disease.


Assuntos
Imunidade Inata , Polifosfatos , Animais , Imunidade Inata/genética , Capuzes de RNA , Antivirais , RNA Viral/química , Mamíferos/genética
4.
Cell Rep ; 42(7): 112786, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37436893

RESUMO

Eukaryotic RNA pol II transcripts are capped at the 5' end by the methylated guanosine (m7G) moiety. In higher eukaryotes, CMTR1 and CMTR2 catalyze cap-proximal ribose methylations on the first (cap1) and second (cap2) nucleotides, respectively. These modifications mark RNAs as "self," blocking the activation of the innate immune response pathway. Here, we show that loss of mouse Cmtr1 or Cmtr2 leads to embryonic lethality, with non-overlapping sets of transcripts being misregulated, but without activation of the interferon pathway. In contrast, Cmtr1 mutant adult mouse livers exhibit chronic activation of the interferon pathway, with multiple interferon-stimulated genes being expressed. Conditional deletion of Cmtr1 in the germline leads to infertility, while global translation is unaffected in the Cmtr1 mutant mouse liver and human cells. Thus, mammalian cap1 and cap2 modifications have essential roles in gene regulation beyond their role in helping cellular transcripts to evade the innate immune system.


Assuntos
Capuzes de RNA , Ribose , Humanos , Animais , Camundongos , Metilação , Capuzes de RNA/metabolismo , Metiltransferases/metabolismo , Interferons/metabolismo , Fertilidade , Mamíferos/metabolismo
5.
Mol Cell ; 83(14): 2464-2477.e5, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37369200

RESUMO

Co-transcriptional capping of the nascent pre-mRNA 5' end prevents degradation of RNA polymerase (Pol) II transcripts and suppresses the innate immune response. Here, we provide mechanistic insights into the three major steps of human co-transcriptional pre-mRNA capping based on six different cryoelectron microscopy (cryo-EM) structures. The human mRNA capping enzyme, RNGTT, first docks to the Pol II stalk to position its triphosphatase domain near the RNA exit site. The capping enzyme then moves onto the Pol II surface, and its guanylyltransferase receives the pre-mRNA 5'-diphosphate end. Addition of a GMP moiety can occur when the RNA is ∼22 nt long, sufficient to reach the active site of the guanylyltransferase. For subsequent cap(1) methylation, the methyltransferase CMTR1 binds the Pol II stalk and can receive RNA after it is grown to ∼29 nt in length. The observed rearrangements of capping factors on the Pol II surface may be triggered by the completion of catalytic reaction steps and are accommodated by domain movements in the elongation factor DRB sensitivity-inducing factor (DSIF).


Assuntos
Processamento Pós-Transcricional do RNA , RNA Mensageiro , Humanos , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Mensageiro/ultraestrutura , Microscopia Crioeletrônica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , Transcrição Gênica , Metiltransferases/química , Metiltransferases/metabolismo , Metiltransferases/ultraestrutura , Modelos Químicos
6.
Biochem Soc Trans ; 51(3): 1131-1141, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37145036

RESUMO

Regulation of RNA cap formation has potent impacts on gene regulation, controlling which transcripts are expressed, processed and translated into protein. Recently, the RNA cap methyltransferases RNA guanine-7 methyltransferase (RNMT) and cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1 (CMTR1) have been found to be independently regulated during embryonic stem (ES) cell differentiation controlling the expression of overlapping and distinct protein families. During neural differentiation, RNMT is repressed and CMTR1 is up-regulated. RNMT promotes expression of the pluripotency-associated gene products; repression of the RNMT complex (RNMT-RAM) is required for repression of these RNAs and proteins during differentiation. The predominant RNA targets of CMTR1 encode the histones and ribosomal proteins (RPs). CMTR1 up-regulation is required to maintain the expression of histones and RPs during differentiation and to maintain DNA replication, RNA translation and cell proliferation. Thus the co-ordinate regulation of RNMT and CMTR1 is required for different aspects of ES cell differentiation. In this review, we discuss the mechanisms by which RNMT and CMTR1 are independently regulated during ES cell differentiation and explore how this influences the co-ordinated gene regulation required of emerging cell lineages.


Assuntos
Metiltransferases , Capuzes de RNA , Diferenciação Celular , Histonas/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Transcrição Gênica , Humanos , Animais
7.
Insect Biochem Mol Biol ; 123: 103415, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32504809

RESUMO

Cap1 2'-O-ribose methyltransferase (CMTR1) modifies RNA transcripts containing the 7-methylguanosine cap via 2'-O-ribose methylation of the first transcribed nucleotide, yielding cap1 structures. However, the role of CMTR1 in small RNA-mediated gene silencing remains unknown. Here, we identified and characterized a Drosophila CMTR1 gene (dCMTR1) mutation. We found that the catalytic activity of dCMTR1 was involved in the biogenesis of small interfering RNAs (siRNAs) but not microRNAs. Additionally, dCMTR1 interacted with R2D2, a key component for the assembly of the RNA-induced silencing complex (RISC) containing Argonaute 2 (Ago2). Consistent with this finding, loss of dCMTR1 function impaired RISC assembly by inhibiting the unwinding of Ago2-bound siRNA duplexes, thus preventing the retention of the guide strand. Moreover, dCMTR1 is unlikely to modify siRNAs during RISC assembly. Collectively, our data indicate that dCMTR1 is a positive regulator of the small RNA pathway associated with Ago2 with roles in both siRNA biogenesis and RISC assembly.


Assuntos
Drosophila/metabolismo , Metiltransferases , RNA Interferente Pequeno , Complexo de Inativação Induzido por RNA , Animais , Proteínas Argonautas/metabolismo , Drosophila/genética , Proteínas de Drosophila/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , MicroRNAs/metabolismo , Mutação , Interferência de RNA , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/química , Complexo de Inativação Induzido por RNA/biossíntese , Complexo de Inativação Induzido por RNA/química , Complexo de Inativação Induzido por RNA/metabolismo
8.
J Cell Biochem ; 120(4): 5597-5611, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30320910

RESUMO

In a previous study, we have shown that the gene promoter of a protein termed KIAA0082 is regulated by interferon and that this protein interacts with the RNA polymerase II. It has been subsequently shown that KIAA0082 is the human cap-specific messenger RNA (mRNA) (nucleoside-2'-O-)-methyltransferase 1 (hMTr1), which catalyzes methylation of the 2'-O -ribose of the first nucleotide of capped mRNAs. Pre-mRNAs are cotranscriptionally processed, requiring coordinate interactions or dissociations of hundreds of proteins. hMTr1 potentially binds to the 5'-end of the whole cellular pre-mRNA pool. Besides, it contains a WW protein interaction domain and thus is expected to be associated with several proteins. In this current study, we determined the composition of complexes isolated by hMTr1 immunoprecipitation from HEK293 cellular extracts. Consistently, a large set of proteins that function in pre-mRNA maturation was identified, including splicing factors, spliceosome-associated proteins, RNA helicases, heterogeneous nuclear ribonucleoproteins (HNRNPs), RNA-binding proteins and proteins involved in mRNA 5'- and 3'-end processing, forming an extensive interaction network. In total, 137 proteins were identified in two independent experiments, and some of them were validated by immunoblotting and immunofluorescence. Besides, we further characterized the nature of several hMTr1 interactions, showing that some are RNA dependent, including PARP1, ILF2, XRCC6, eIF2α, and NCL, and others are RNA independent, including FXR1, NPM1, PPM1B, and PRMT5. The data presented here are consistent with the important role played by hMTr1 in pre-mRNA synthesis.


Assuntos
Metiltransferases/metabolismo , Mapas de Interação de Proteínas , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células HEK293 , Humanos , Nucleofosmina
9.
Artigo em Inglês | MEDLINE | ID: mdl-30397098

RESUMO

The 5'-cap structure, characteristic for RNA polymerase II-transcribed RNAs, plays important roles in RNA metabolism. In humans, RNA cap formation includes post-transcriptional modification of the first transcribed nucleotide by RNA cap1 methyltransferase (CMTr1). Here, we report that CMTr1 activity is hindered towards RNA substrates with highly structured 5' termini. We found that CMTr1 binds ATP-dependent RNA DHX15 helicase and that this interaction, mediated by the G-patch domain of CMTr1, has an advantageous effect on CMTr1 activity towards highly structured RNA substrates. The effect of DHX15 helicase activity is consistent with the strength of the secondary structure that has to be removed for CMTr1 to access the 5'-terminal residues in a single-stranded conformation. This is, to our knowledge, the first demonstration of the involvement of DHX15 in post-transcriptional RNA modification, and the first example of a molecular process in which DHX15 directly affects the activity of another enzyme. Our findings suggest a new mechanism underlying the regulatory role of DHX15 in the RNA capping process. RNAs with highly structured 5' termini constitute a significant fraction of the human transcriptome. Hence, CMTr1-DHX15 cooperation is likely to be important for the metabolism of RNA polymerase II-transcribed RNAs.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.


Assuntos
Metiltransferases/metabolismo , RNA Helicases/metabolismo , Humanos , Metilação , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA