Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57.070
Filtrar
1.
J Environ Sci (China) ; 147: 230-243, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003043

RESUMO

Enhancing soil organic matter characteristics, ameliorating physical structure, mitigating heavy metal toxicity, and hastening mineral weathering processes are crucial approaches to accomplish the transition of tailings substrate to a soil-like substrate. The incorporation of biomass co-pyrolysis and plant colonization has been established to be a significant factor in soil substrate formation and soil pollutant remediation. Despite this, there is presently an absence of research efforts aimed at synergistically utilizing these two technologies to expedite the process of mining tailings soil substrate formation. The current study aimed to investigate the underlying mechanism of geochemical changes and rapid mineral weathering during the process of transforming tailings substrate into a soil-like substrate, under the combined effects of biomass co-smoldering pyrolysis and plant colonization. The findings of this study suggest that the incorporation of smoldering pyrolysis and plant colonization induces a high-temperature effect and biological effects, which enhance the physical and chemical properties of tailings, while simultaneously accelerating the rate of mineral weathering. Notable improvements include the amelioration of extreme pH levels, nutrient enrichment, the formation of aggregates, and an increase in enzyme activity, all of which collectively demonstrate the successful attainment of tailings substrate reconstruction. Evidence of the accelerated weathering was verified by phase and surface morphology analysis using X-ray diffraction and scanning electron microscopy. Discovered corrosion and fragmentation on the surface of minerals. The weathering resulted in corrosion and fragmentation of the surface of the treated mineral. This study confirms that co-smoldering pyrolysis of biomass, combined with plant colonization, can effectively promote the transformation of tailings into soil-like substrates. This method has can effectively address the key challenges that have previously hindered sustainable development of the mining industry and provides a novel approach for ecological restoration of tailings deposits.


Assuntos
Biomassa , Mineração , Poluentes do Solo , Solo , Solo/química , Pirólise , Plantas , Biodegradação Ambiental
2.
J Environ Sci (China) ; 147: 131-152, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003035

RESUMO

Biomineralization has garnered significant attention in the field of wastewater treatment due to its notable cost reduction compared to conventional methods. The reinjection water from oilfields containing an exceedingly high concentration of calcium and ferric ions will pose a major hazard in production. However, the utilization of biomineralization for precipitating these ions has been scarcely investigated due to limited tolerance among halophiles towards such extreme conditions. In this study, free and immobilized halophiles Virgibacillus dokdonensis were used to precipitate these ions and the effects were compared, at the same time, biomineralization mechanisms and mineral characteristics were further explored. The results show that bacterial concentration and carbonic anhydrase activity were higher when additionally adding ferric ion based on calcium ion; the content of protein, polysaccharides, deoxyribonucleic acid and humic substances in the extracellular polymers also increased compared to control. Calcium ions were biomineralized into calcite and vaterite with multiple morphology. Due to iron doping, the crystallinity and thermal stability of calcium carbonate decreased, the content of OC = O, NC = O and CO-PO3 increased, the stable carbon isotope values became much more negative, and ß-sheet in minerals disappeared. Higher calcium concentrations facilitated ferric ion precipitation, while ferric ions hindered calcium precipitation. The immobilized bacteria performed better in ferric ion removal, with a precipitation ratio exceeding 90%. Free bacteria performed better in calcium removal, and the precipitation ratio reached a maximum of 56%. This research maybe provides some reference for the co-removal of calcium and ferric ions from the oilfield wastewater.


Assuntos
Cálcio , Ferro , Virgibacillus , Cálcio/química , Ferro/química , Virgibacillus/metabolismo , Eliminação de Resíduos Líquidos/métodos , Precipitação Química , Águas Residuárias/química , Biomineralização , Carbonato de Cálcio/química
3.
J Environ Sci (China) ; 147: 498-511, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003065

RESUMO

The land application of livestock manure has been widely acknowledged as a beneficial approach for nutrient recycling and environmental protection. However, the impact of residual antibiotics, a common contaminant of manure, on the degradation of organic compounds and nutrient release in Eutric Regosol is not well understood. Here, we studied, how oxytetracycline (OTC) and ciprofloxacin (CIP) affect the decomposition, microbial community structure, extracellular enzyme activities and nutrient release from cattle and pig manure using litterbag incubation experiments. Results showed that OTC and CIP greatly inhibited livestock manure decomposition, causing a decreased rate of carbon (28%-87%), nitrogen (15%-44%) and phosphorus (26%-43%) release. The relative abundance of gram-negative (G-) bacteria was reduced by 4.0%-13% while fungi increased by 7.0%-71% during a 28-day incubation period. Co-occurrence network analysis showed that antibiotic exposure disrupted microbial interactions, particularly among G- bacteria, G+ bacteria, and actinomycetes. These changes in microbial community structure and function resulted in decreased activity of urease, ß-1,4-N-acetyl-glucosaminidase, alkaline protease, chitinase, and catalase, causing reduced decomposition and nutrient release in cattle and pig manures. These findings advance our understanding of decomposition and nutrient recycling from manure-contaminated antibiotics, which will help facilitate sustainable agricultural production and soil carbon sequestration.


Assuntos
Antibacterianos , Gado , Esterco , Microbiologia do Solo , Animais , Solo/química , Sequestro de Carbono , Carbono/metabolismo , Fósforo , Reciclagem , Poluentes do Solo/metabolismo , Bovinos , Suínos , Nitrogênio/análise , Oxitetraciclina
4.
J Environ Sci (China) ; 147: 630-641, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003078

RESUMO

Cadmium (Cd) and arsenic (As) co-contamination has threatened rice production and food safety. It is challenging to mitigate Cd and As contamination in rice simultaneously due to their opposite geochemical behaviors. Mg-loaded biochar with outstanding adsorption capacity for As and Cd was used for the first time to remediate Cd/As contaminated paddy soils. In addition, the effect of zero-valent iron (ZVI) on grain As speciation accumulation in alkaline paddy soils was first investigated. The effect of rice straw biochar (SC), magnesium-loaded rice straw biochar (Mg/SC), and ZVI on concentrations of Cd and As speciation in soil porewater and their accumulation in rice tissues was investigated in a pot experiment. Addition of SC, Mg/SC and ZVI to soil reduced Cd concentrations in rice grain by 46.1%, 90.3% and 100%, and inorganic As (iAs) by 35.4%, 33.1% and 29.1%, respectively, and reduced Cd concentrations in porewater by 74.3%, 96.5% and 96.2%, respectively. Reductions of 51.6% and 87.7% in porewater iAs concentrations were observed with Mg/SC and ZVI amendments, but not with SC. Dimethylarsinic acid (DMA) concentrations in porewater and grain increased by a factor of 4.9 and 3.3, respectively, with ZVI amendment. The three amendments affected grain concentrations of iAs, DMA and Cd mainly by modulating their translocation within plant and the levels of As(III), silicon, dissolved organic carbon, iron or Cd in porewater. All three amendments (SC, Mg/SC and ZVI) have the potential to simultaneously mitigate Cd and iAs accumulation in rice grain, although the pathways are different.


Assuntos
Arsênio , Cádmio , Carvão Vegetal , Magnésio , Oryza , Poluentes do Solo , Solo , Oryza/química , Cádmio/análise , Cádmio/química , Carvão Vegetal/química , Poluentes do Solo/análise , Arsênio/análise , Solo/química , Magnésio/química , Ferro/química , Recuperação e Remediação Ambiental/métodos
5.
J Environ Sci (China) ; 148: 174-187, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095155

RESUMO

Cost-effective CO2 adsorbents are gaining increasing attention as viable solutions for mitigating climate change. In this study, composites were synthesized by electrochemically combining the post-gasification residue of Macadamia nut shell with copper benzene-1,3,5-tricarboxylate (CuBTC). Among the different composites synthesized, the ratio of 1:1 between biochar and CuBTC (B 1:1) demonstrated the highest CO2 adsorption capacity. Under controlled laboratory conditions (0°C, 1 bar, without the influence of ambient moisture or CO2 diffusion limitations), B 1:1 achieved a CO2 adsorption capacity of 9.8 mmol/g, while under industrial-like conditions (25°C, 1 bar, taking into account the impact of ambient moisture and CO2 diffusion limitations within a bed of adsorbent), it reached 6.2 mmol/g. These values surpassed those reported for various advanced CO2 adsorbents investigated in previous studies. The superior performance of the B 1:1 composite can be attributed to the optimization of the number of active sites, porosity, and the preservation of the full physical and chemical surface properties of both parent materials. Furthermore, the composite exhibited a notable CO2/N2 selectivity and improved stability under moisture conditions. These favorable characteristics make B 1:1 a promising candidate for industrial applications.


Assuntos
Dióxido de Carbono , Estruturas Metalorgânicas , Dióxido de Carbono/química , Adsorção , Estruturas Metalorgânicas/química , Poluentes Atmosféricos/química , Carvão Vegetal/química
6.
J Environ Sci (China) ; 148: 529-540, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095186

RESUMO

Monolithic catalysts with excellent O3 catalytic decomposition performance were prepared by in situ loading of Co-doped KMn8O16 on the surface of nickel foam. The triple-layer structure with Co-doped KMn8O16/Ni6MnO8/Ni foam was grown spontaneously on the surface of nickel foam by tuning the molar ratio of KMnO4 to Co(NO3)2·6H2O precursors. Importantly, the formed Ni6MnO8 structure between KMn8O16 and nickel foam during in situ synthesis process effectively protected nickel foam from further etching, which significantly enhanced the reaction stability of catalyst. The optimum amount of Co doping in KMn8O16 was available when the molar ratio of Mn to Co species in the precursor solution was 2:1. And the Mn2Co1 catalyst had abundant oxygen vacancies and excellent hydrophobicity, thus creating outstanding O3 decomposition activity. The O3 conversion under dry conditions and relative humidity of 65%, 90% over a period of 5 hr was 100%, 94% and 80% with the space velocity of 28,000 hr-1, respectively. The in situ constructed Co-doped KMn8O16/Ni foam catalyst showed the advantages of low price and gradual applicability of the preparation process, which provided an opportunity for the design of monolithic catalyst for O3 catalytic decomposition.


Assuntos
Compostos de Manganês , Níquel , Óxidos , Ozônio , Óxidos/química , Níquel/química , Compostos de Manganês/química , Ozônio/química , Catálise , Umidade , Cobalto/química , Modelos Químicos , Poluentes Atmosféricos/química
7.
J Environ Sci (China) ; 148: 57-68, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095190

RESUMO

The expandable graphite (EG) modified TiO2 nanocomposites were prepared by the high shear method using the TiO2 nanoparticles (NPs) and EG as precursors, in which the amount of EG doped in TiO2 was 10 wt.%. Followed by the impregnation method, adjusting the pH of the solution to 10, and using the electrostatic adsorption to achieve spatial confinement, the Pt elements were mainly distributed on the exposed TiO2, thus generating the Pt/10EG-TiO2-10 catalyst. The best CO oxidation activity with the excellent resistance to H2O and SO2 was obtained over the Pt/10EG-TiO2-10 catalyst: CO conversion after 36 hr of the reaction was ca. 85% under the harsh condition of 10 vol.% H2O and 100 ppm SO2 at a high gaseous hourly space velocity (GHSV) of 400,000 hr-1. Physicochemical properties of the catalysts were characterized by various techniques. The results showed that the electrostatic adsorption, which riveted the Pt elements mainly on the exposed TiO2 of the support surface, reduced the dispersion of Pt NPs on EG and achieved the effective dispersion of Pt NPs, hence significantly improving CO oxidation activity over the Pt/10EG-TiO2-10 catalyst. The 10 wt.% EG doped in TiO2 caused the TiO2 support to form a more hydrophobic surface, which reduced the adsorption of H2O and SO2 on the catalyst, greatly inhibited deposition of the TiOSO4 and formation of the PtSO4 species as well as suppressed the oxidation of SO2, thus resulting in an improvement in the resistance to H2O and SO2 of the Pt/10EG-TiO2-10 catalyst.


Assuntos
Grafite , Oxirredução , Platina , Dióxido de Enxofre , Titânio , Titânio/química , Grafite/química , Dióxido de Enxofre/química , Platina/química , Catálise , Monóxido de Carbono/química , Água/química , Poluentes Atmosféricos/química , Modelos Químicos
8.
J Environ Sci (China) ; 148: 650-664, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095197

RESUMO

China is the most important steel producer in the world, and its steel industry is one of the most carbon-intensive industries in China. Consequently, research on carbon emissions from the steel industry is crucial for China to achieve carbon neutrality and meet its sustainable global development goals. We constructed a carbon dioxide (CO2) emission model for China's iron and steel industry from a life cycle perspective, conducted an empirical analysis based on data from 2019, and calculated the CO2 emissions of the industry throughout its life cycle. Key emission reduction factors were identified using sensitivity analysis. The results demonstrated that the CO2 emission intensity of the steel industry was 2.33 ton CO2/ton, and the production and manufacturing stages were the main sources of CO2 emissions, accounting for 89.84% of the total steel life-cycle emissions. Notably, fossil fuel combustion had the highest sensitivity to steel CO2 emissions, with a sensitivity coefficient of 0.68, reducing the amount of fossil fuel combustion by 20% and carbon emissions by 13.60%. The sensitivities of power structure optimization and scrap consumption were similar, while that of the transportation structure adjustment was the lowest, with a sensitivity coefficient of less than 0.1. Given the current strategic goals of peak carbon and carbon neutrality, it is in the best interest of the Chinese government to actively promote energy-saving and low-carbon technologies, increase the ratio of scrap steel to steelmaking, and build a new power system.


Assuntos
Dióxido de Carbono , Pegada de Carbono , Aço , China , Dióxido de Carbono/análise , Poluentes Atmosféricos/análise , Metalurgia , Monitoramento Ambiental , Indústrias , Poluição do Ar/estatística & dados numéricos , Poluição do Ar/prevenção & controle
9.
Iran J Public Health ; 53(7): 1629-1639, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39086410

RESUMO

Background: The research combined different bibliometric techniques to analyze systematically recurrent pregnancy loss (RPL) documents from 1970 to 2023. Methods: Overall, 1287 documents from the Web of Science database associated with recurrent pregnancy loss between 1970 and 2023 were identified for more than 300 journals. The data were analyzed with VOSviewer software. Results: The trend of paying attention to the topic of RPL can be divided into three periods. The number of publications on RPL increased significantly after 2010. Most of the papers were published in Obstetrics and Gynecology and Reproductive Biology areas. Utilizing co-occurrence and co-citation analysis, our study found that the most influential documents mapped the knowledge structure, and projected future research directions. The co-occurrence analysis showed five clusters even though the co-citation analysis designates four. Conclusion: RPL has increased in recent years exponentially and some areas were explained carefully, therefore these results could be used as a research agenda for the future direction by a range of interested beneficiaries.

10.
Front Microbiol ; 15: 1439373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086650

RESUMO

Introduction: Acinetobacter baumannii contributes significantly to the global issue of multidrug-resistant (MDR) nosocomial infections. Often, these strains demonstrate resistance to carbapenems (MDR-CRAB), the first-line treatment for infections instigated by MDR A. baumannii. Our study focused on the antimicrobial susceptibility and genomic sequences related to plasmids from 12 clinical isolates of A. baumannii that carry both the blaOXA-58 and bla NDM-1 carbapenemase genes. Methods: Whole-genome sequencing with long-read technology was employed for the characterization of an A. baumannii plasmid that harbors the bla OXA-58 and blaNDM-1 genes. The location of the bla OXA-58 and bla NDM-1 genes was confirmed through Southern blot hybridization assays. Antimicrobial susceptibility tests were conducted, and molecular characterization was performed using PCR and PFGE. Results: Multilocus Sequence Typing analysis revealed considerable genetic diversity among bla OXA-58 and bla NDM-1 positive strains in Brazil. It was confirmed that these genes were located on a plasmid larger than 300 kb in isolates from the same hospital, which also carry other antimicrobial resistance genes. Different genetic contexts were observed for the co-occurrence of these carbapenemase-encoding genes in Brazilian strains. Discussion: The propagation of bla OXA-58 and bla NDM-1 genes on the same plasmid, which also carries other resistance determinants, could potentially lead to the emergence of bacterial strains resistant to multiple classes of antimicrobials. Therefore, the characterization of these strains is of paramount importance for monitoring resistance evolution, curbing their rapid global dissemination, averting outbreaks, and optimizing therapy.

11.
Front Physiol ; 15: 1415037, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086932

RESUMO

Background: Carbon dioxide (CO2), traditionally viewed as a mere byproduct of cellular respiration, plays a multifaceted role in human physiology beyond simple elimination through respiration. CO2 may regulate the tumor microenvironment by significantly affecting the release of oxygen (O2) to tissues through the Bohr effect and by modulating blood pH and vasodilation. Previous studies suggest hypercapnia (elevated CO2 levels) might trigger optimized cellular mechanisms with potential therapeutic benefits. The role of CO2 in cellular stress conditions within tumor environments and its impact on O2 utilization offers a new investigative area in oncology. Objectives: This study aims to explore CO2's role in the tumor environment, particularly how its physiological properties and adaptive responses can influence therapeutic strategies. Methods: By applying a structured translational approach using the Work Breakdown Structure method, the study divided the analysis into six interconnected work packages to comprehensively analyze the interactions between carbon dioxide and the tumor microenvironment. Methods included systematic literature reviews, data analyses, data integration for identifying critical success factors and exploring extracellular environment modulation. The research used SMART criteria for assessing innovation and the applicability of results. Results: The research revealed that the human body's adaptability to hypercapnic conditions could potentially inform innovative strategies for manipulating the tumor microenvironment. This could enhance O2 utilization efficiency and manage adaptive responses to cellular stress. The study proposed that carbon dioxide's hormetic potential could induce beneficial responses in the tumor microenvironment, prompting clinical protocols for experimental validation. The research underscored the importance of pH regulation, emphasizing CO2 and carbonic acid's role in modulating metabolic and signaling pathways related to cancer. Conclusion: The study underscores CO2 as vital to our physiology and suggests potential therapeutic uses within the tumor microenvironment. pH modulation and cellular oxygenation optimization via CO2 manipulation could offer innovative strategies to enhance existing cancer therapies. These findings encourage further exploration of CO2's therapeutic potential. Future research should focus on experimental validation and exploration of clinical applications, emphasizing the need for interdisciplinary and collaborative approaches to tackle current challenges in cancer treatment.

12.
Sociol Health Illn ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088382

RESUMO

In this article we use an existential media framework to explore the asynchronous, written and digital form of GP-patient communication that takes place through e-consultations in a Danish general practice context. This approach acknowledges e-consultation as more than a tool for information delivery and frames GP and patient not as skilful media users but as dependent co-existers: Both thrown into and trying to navigate the digital healthcare ecology. Through a thematic analysis of 38 semi-structured qualitative interviews with patients and GPs we carve out three themes unpacking the existential dimensions of e-consultation: 1. Patient and GP are placed in a Culture of non-stop connectivity and we show the ambivalences arising herein fostering both relief, reassurance and new insecurities. 2. Ethical challenges of responsible co-existence points to dilemmas of boundary setting and caring for self and co-exister in the digital encounter. 3. We-experiences illustrates the potential of e-consultation to signal GP presence, even when the GP is silent. We also discuss the existential ethics of care emerging from the contemporary digital healthcare ecology and call for empirically grounded studies of the existential dimensions tied to encounters in contemporary digital care infrastructures.

13.
Artigo em Inglês | MEDLINE | ID: mdl-39088819

RESUMO

The electrochemical CO2 reduction reaction (ECO2RR) is a promising strategy for converting CO2 into high-value chemical products. However, the synthesis of effective and stable electrocatalysts capable of transforming CO2 into a specified product remains a huge challenge. Herein, we report a template-regulated strategy for the preparation of a Bi2O3-derived nanosheet catalyst with abundant porosity to achieve the expectantly efficient CO2-to-formate conversion. The resultant porous bismuth nanosheet (p-Bi) not only exhibited marked Faradaic efficiency of formate (FEformate), beyond 91% in a broad potential range from -0.75 to -1.1 V in the H-type cell, but also demonstrated an appreciable FEformate of 94% at a high current density of 262 mA cm-2 in the commercially important gas diffusion cell. State-of-the-art X-ray absorption near edge structure spectroscopy (XANES) and theoretical calculation unraveled the distinct formate production performance of the p-Bi catalyst, which was cocontributed by its smaller size, plentiful porous structure, and stronger Bi-O bond, thus accelerating the absorption of CO2 and promoting the subsequent formation of intermediates. This work provides an avenue to fabricate bismuth-based catalysts with high planar and porous morphologies for a broad portfolio of applications.

14.
Food Chem ; 460(Pt 2): 140608, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39089031

RESUMO

This study explored the mechanism of interaction of pH-shifting combined ultrasonication and its effect on soybean lipophilic proteins (SLP) and the potential of modified SLP as the carrier for vitamin E (VE) and quercetin (QU). The spectroscopy results revealed that both VE and QU changed the SLP conformation and exposed hydrophobic groups. The loading rates of VE and QU by SLP with alkaline pH-shifting combined with ultrasonication (300 w,20 min) were 86.91% and 75.99%, respectively. According to the antioxidant analysis, with an increase in the ultrasonication power, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging capacity of the samples increased, where the DPPH and ABTS radical scavenging capacity of sample SQV-6 were 70.90% and 63.43%, respectively. The physicochemical properties, microstructure, and stability of the SLP-VE-QU complex improved significantly. Overall, the present findings broadened the application of simple structural carriers for co-encapsulating functional factors.

15.
Health Policy ; 147: 105136, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39089167

RESUMO

Progress towards universal health coverage is monitored by the incidence of catastrophic spending. Two catastrophic spending indicators are commonly used in Europe: Sustainable Development Goal (SDG) indicator 3.8.2 and the WHO Regional Office for Europe (WHO/Europe) indicator. The use of different indicators can cause confusion, especially if they produce contradictory results and policy implications. We use harmonised household budget survey data from 27 European Union countries covering 505,217 households and estimate the risk of catastrophic spending, conditional on household characteristics and the design of medicines co-payments. We calculate the predicted probability of catastrophic spending for particular households, which we call LISAs, under combinations of medicines co-payment policies and compare predictions across the two indicators. Using the WHO/Europe indicator, any combination of two or more protective policies (i.e. low fixed co-payments instead of percentage co-payments, exemptions for low-income households and income-related caps on co-payments) is associated with a statistically significant lower risk of catastrophic spending. Using the SDG indicator, confidence intervals for every combination of protective policies overlap with those for no protective policies. Although out-of-pocket medicines spending is a strong predictor of catastrophic spending using both indicators, the WHO/Europe indicator is more sensitive to medicines co-payment policies than the SDG indicator, making it a better indicator to monitor health system equity and progress towards UHC in Europe.

16.
Photodiagnosis Photodyn Ther ; : 104298, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089477

RESUMO

OBJECTIVE: To evaluate the efficacy of CO2 fractional laser and microneedling pretreatment combined with ALA-PDT for moderate-to-severe acne, aiming to optimize clinical treatment. METHODS: Patients were randomly divided into three groups: Group A (CO2 fractional laser + ALA-PDT), Group B (microneedling + ALA-PDT), and Group C (ALA-PDT). Each group underwent photodynamic therapy once a week for 3 weeks. Efficacy was assessed at the end of the 4th week, and recurrence was assessed at the end of the 12th week. RESULTS: A total of 150 patients with moderate to severe acne were included in this study, with 50 patients in each group. Four weeks after the end of treatment, the effective rates were 88% for Group A, 62% for Group B, and 36% for Group C. Statistically significant differences were found between the groups (P < 0.05), with Group A showing superior efficacy compared to Group B (P < 0.05). No serious systemic or local adverse reactions were observed in any group. No recurrence was seen in any group 12 weeks after the end of treatment, and some patients continued to show improvement in skin lesions over time. CONCLUSION: Both the CO2 fractional laser group and the microneedling group improved the efficacy of photodynamic therapy for moderate to severe acne compared to the control group, with the CO2 fractional laser group demonstrating better efficacy and fewer adverse effects.

17.
Transplant Cell Ther ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089527

RESUMO

BACKGROUND: Diffuse alveolar hemorrhage (DAH) is a life-threatening pulmonary toxicity that can arise after hematopoietic cell transplantation (HCT). Risk-factors and outcomes are not well-understood due to a sparsity of cases spread across multiple centers. OBJECTIVES: The objectives of this epidemiologic study were to characterize the incidence, outcomes, transplant-related risk factors and co-morbid critical care diagnoses associated with post-HCT DAH. STUDY DESIGN: Retrospective analysis was performed on a multi-center cohort of 6,995 patients ≤21 years old who underwent allogeneic HCT between 2008-2014 identified through the Center for International Blood and Marrow Transplant Research registry and cross-matched with the Virtual Pediatric Systems database to obtain critical care characteristics. A multivariable Cox-proportional hazard model was used to determine risk factors for DAH. Logistic regression models were used to determine critical care diagnoses associated with DAH. Survival outcomes were analyzed using both a landmark approach and Cox-regression with DAH as a time-varying covariate. RESULTS: DAH occurred in 81 patients at a median 54 days post-HCT (IQR 23-160 days), with a 1-year post-transplant cumulative incidence probability of 1.0% (95% CI 0.81-1.3%) and was noted in 7.6% of all PICU patients. Risk factors included transplant for non-malignant hematologic disease (Referent: malignant hematologic disease, HR=1.98, 95% CI 1.22-3.22, p=0.006), use of calcineurin inhibitor plus mycophenolate mofetil (CNI + MMF) as GvHD prophylaxis, (Referent: calcineurin inhibitor plus methotrexate, HR=1.89, 95% CI 1.07-3.34, p=0.029), and grade III-IV acute GvHD (HR=2.67, 95% CI 1.53-4.66, p<0.001). Critical care admitted patients with DAH had significantly higher rates of systemic hypertension, pulmonary hypertension, pericardial disease, renal failure, and bacterial/viral/fungal infections (p<0.05) than those without DAH. From the time of DAH, median survival was 2.2 months and one-year overall survival was 26% (95% CI 17-36%). Among all HCT patients, the development of DAH when considered was associated with a seven-fold increase in unadjusted all-cause post-HCT mortality (HR 6.96, 95% CI 5.42-8.94, p<0.001). In a landmark analysis of patients alive 2 months post-HCT, patients who developed DAH had a one-year overall survival of 33% (95% CI 18-49%) versus 82% (95% CI 81-83%) for patients without DAH (p<0.001). CONCLUSION: Although DAH is rare, it is associated with high mortality in the post-HCT setting. Our data suggest that clinicians should have a heightened index of suspicion of DAH in patients with pulmonary symptoms in the context of non-malignant hematologic transplant indication, use of CNI + MMF as GvHD prophylaxis and severe acute GvHD. Further investigations and validation of modifiable risk factors are warranted given poor outcomes.

18.
Artigo em Inglês | MEDLINE | ID: mdl-39086023

RESUMO

Photocatalytic conversion of CO2 with H2O is an attractive application that has the potential to mitigate environmental and energy challenges through the conversion of CO2 to hydrocarbon products such as methane. However, the underlying reaction mechanisms remain poorly understood, limiting real progress in this field. In this work, a mechanistic investigation of the CO2 photocatalytic reduction on Pt/TiO2 is carried out using an operando FTIR approach, combined with chemometric data processing and isotope exchange of (12CO2 + H2O) toward (13CO2 + H2O). Multivariate curve resolution analysis applied to operando spectra across numerous cycles of photoactivation and the CO2 reaction facilitates the identification of principal chemical species involved in the reaction pathways. Moreover, specific probe-molecule-assisted reactions, including CO and CH3COOH, elucidate the capacity of selected molecules to undergo methane production under irradiation conditions. Finally, isotopic exchange reveals conclusive evidence regarding the nature of the identified species during CO2 conversion and points to the significant role of acetates resulting from the C-C coupling reaction as key intermediates in methane production from the CO2 photocatalytic reduction reaction.

19.
Artigo em Inglês | MEDLINE | ID: mdl-39086140

RESUMO

The emissions of sulfur dioxide (SO2) from combustion exhaust gases pose significant risks to public health and the environment due to their harmful effects. Therefore, the development of highly efficient adsorbent polymers capable of capturing SO2 with high capacity and selectivity has emerged as a critical challenge in recent years. However, existing polymers often exhibit poor SO2/CO2 and SO2/N2 selectivity. Herein, we report two triazine-functionalized triphenylamine-based nanoporous organic polymers (ANOP-6 and ANOP-7) that demonstrate both good SO2 uptake and high SO2/CO2 and SO2/N2 selectivity. These polymers were synthesized through cost-effective Friedel-Crafts reactions using cyanuric chloride, 3,6-diphenylaminecarbazole, and 2,2',7,7'-tetrakis(diphenylamino)-9,9'-spirobifluorene. The resultant ANOPs are composed of triazine and triphenylamine units and feature an ultramicroporous structure. Remarkably, ANOPs exhibit impressive adsorption capacities for SO2, with uptakes of approximately 3.31-3.72 mmol·g-1 at 0.1 bar, increasing to 9.52-9.94 mmol·g-1 at 1 bar. The static adsorption isotherms effectively illustrate the ability of ANOPs to separate SO2 from SO2/CO2 and SO2/N2 mixtures. At 298 K and 1 bar, ANOP-6 shows outstanding selectivity toward SO2/CO2 (248) and SO2/N2 (13146), surpassing all previously reported triazine-based nanoporous organic polymers. Additionally, dynamic breakthrough tests demonstrate the superior separation properties of ANOPs for SO2 from an SO2/CO2/N2 mixture. ANOPs exhibit a breakthrough time of 73.1 min·g-1 and a saturated SO2 capacity of 0.53 mmol·g-1. These results highlight the exceptional adsorption properties of ANOPs for SO2, indicating their promising potential for the highly efficient capture of SO2 from flue gas.

20.
Front Med (Lausanne) ; 11: 1383975, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091291

RESUMO

Background: Medical curricula must provide students with basic and clinical competencies for critical reasoning and diagnosing. These competencies are better acquired when basic and clinical science are taught in an integrated and collaborative manner. In this study, we investigate whether supportive co-teaching (SCT) is an effective approach to promote integrated and reasoned learning as well as to help medical students applying theoretical concepts to clinical scenarios taught in a team-based learning (TBL) framework. Methods: We conducted a concurrent mixed methods study. For the qualitative part, we performed a focus group and semi-structured interviews to clinical and basic science teachers and medical students. Using conventional content analysis, themes were identified deductively. For the quantitative part, an analytical and descriptive observational study of the 2019-2020 cohort of first-year undergraduate medical students was conducted (107 students out of 220 completed the survey). For the descriptive study, questions were grouped into 5 categories. Results: Deductive themes from the analysis include relationship between clinical and basic science teachers, knowledge integration, methodology, teamwork and integrated Medicine and curricular design. Basic science and clinical teachers highlighted their relationship as critical to increase their mutual knowledge. This was supported by the student's opinion who very much valued their joint feedback. Regarding knowledge integration, both teachers and students found that horizontal and vertical integration enhanced applicability of basic knowledge to future clinical practice. The TBL methodology was very well perceived by both students and teachers and was highly motivating for students even though the need for commitment. Students considered that this program presented a great opportunity and expressed their interest in maintaining it in the future. These results were supported by the quantitative data. Conclusion: Our work supports the value of co-teaching in basic and clinical sciences within a TBL framework set in real clinical case scenarios. By employing this approach, students can actively apply their theoretical knowledge to clinical practice, enhancing their critical thinking, problem-solving, and clinical reasoning skills. Our findings can inform curriculum design and improved educational practice, leading to enhanced learning experiences for healthcare students and ultimately better patient care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...