Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 23(11): e202200152, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35481907

RESUMO

There is an ongoing effort to replace rare and expensive noble-element catalysts with more abundant and less expensive transition metal oxides. With this goal in mind, the intrinsic defects of a rhombohedral perovskite-like structure of LaMnO3 and their implications on CO catalytic properties were studied. Surface thermodynamic stability as a function of pressure (P) and temperature (T) were calculated to find the most stable surface under reaction conditions (P=0.2 atm, T=323 K to 673 K). Crystallographic planes (100), (111), (110), and (211) were evaluated and it was found that (110) with MnO2 termination was the most stable under reaction conditions. Adsorption energies of O2 and CO on (110) as well as the effect of intrinsic defects such as Mn and O vacancies were also calculated. It was found that O vacancies favor the interaction of CO on the surface, whereas Mn vacancies can favor the formation of carbonate species.

2.
Small ; 18(7): e2106583, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35018723

RESUMO

The interaction between metal and metal oxides at the nanoscale is of uttermost importance in several fields, thus its enhancement is highly desirable. In catalysis, the performance of the nanoparticles is dependent on a wide range of properties, including its shape that is commonly considered stable during the catalytic reaction. In this study, highly reducible CeO2-x nanoparticles are synthesized aiming to provide Cu/CeO2-x nanoparticles, which are classically active catalysts for the CO oxidation reaction. It is observed that the Cu nanoparticles shape changes during reduction treatment (prior to the CO oxidation reaction) from a nearly spherical 3D to a planar 2D shape, then enhances the Cu-CeO2-x interaction. The spread of the Cu nanoparticles over the CeO2-x surface during the reduction treatment occurs due to the minimization of the total system energy. The shape change is accompanied by migration of O atoms from CeO2 surface to the border of the Cu nanoparticles and the change from the Cu0 to Cu+1 state. The spreading of the Cu nanoparticles influences on the reactivity results toward the CO oxidation reaction since it changes the local atomic order around Cu atoms. The results show a timely contribution for enhancing the interaction between metal and metal oxide.


Assuntos
Cério , Nanopartículas , Catálise , Oxirredução , Óxidos
3.
Environ Sci Pollut Res Int ; 28(9): 10734-10748, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33099755

RESUMO

Low-temperature CO oxidation was carried out by using rhodium incorporated into titanate nanotubes (Rh/NTs) prepared by the sol-gel and hydrothermal methods; otherwise, gold nanoparticles were deposited homogeneously onto the Rh/NT surface through the deposition-precipitation with urea (DPU) method. The Au-Rh/NT sample exhibited high metal dispersion (55%), outstanding CO oxidation at low temperature, and better resistance to deactivation than the monometallic Rh/NT and Au/NT samples. The characterization of bimetallic samples, with particle sizes from 1 to 3 nm, revealed the remarkable presence of interacting Au and Rh species in metallic state. In this way, Au0 and Rh0 were answerable for the higher catalytic activity observed in the bimetallic samples. The interaction between Au and Rh in the nanoparticles of Au-Rh/NT promoted a synergistic effect on the CO oxidation reaction, explained by the creation of new CO adsorption sites.


Assuntos
Nanopartículas Metálicas , Nanotubos , Ródio , Catálise , Ouro , Propriedades de Superfície , Temperatura
4.
Nanomaterials (Basel) ; 10(1)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963530

RESUMO

The development of new catalytic nanomaterials following sustainability criteria both in their composition and in their synthesis process is a topic of great current interest. The purpose of this work was to investigate the preparation of nanocatalysts derived from the zirconium metal-organic framework UiO-66 obtained under friendly conditions and supporting dispersed species of non-noble transition elements such as Cu, Co, and Fe, incorporated through a simple incipient wetness impregnation technique. The physicochemical properties of the synthesized solids were studied through several characterization techniques and then they were investigated in reactions of relevance for environmental pollution control, such as the oxidation of carbon monoxide in air and in hydrogen-rich streams (COProx). By controlling the atmospheres and pretreatment temperatures, it was possible to obtain active catalysts for the reactions under study, consisting of Cu-based UiO-66-, bimetallic CuCo-UiO-66-, and CuFe-UiO-6-derived materials. These solids represent new alternatives of nanostructured catalysts based on highly dispersed non-noble active metals.

5.
Materials (Basel) ; 11(6)2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867061

RESUMO

In this work we report the effects of support structural properties and its modification with some metal oxides modifiers on the catalytic behavior of Au catalysts in the total CO oxidation at 20 °C. Au catalysts were supported on mesoporous silica materials (MSM) having different structural properties: Channel-like (SBA-15), cage-like (SBA-16), hexagonal (HMS), and disordered (DMS-1) structures. The effect of the modifier was evaluated by comparison of the catalytic response of the SBA-15-based catalysts modified with MgO, Fe2O3, TiO2, and CeO2. The chemical, structural, and electronic properties of the catalysts were investigated by a variety of techniques (metal content analysis by ICP-OES, N2 physisorption, XRD, UV-vis DRS, DRIFTS of adsorbed CO and OH regions, oxygen storage capacity (OSC), HR-TEM, and XPS). The activity of calcined catalysts in the CO oxidation reaction were evaluated at steady state conditions, at 20 °C, atmospheric pressure, and when using, as feed, a 1%CO/1%O2/98% gas mixture. The work clearly demonstrated that all Au catalysts supported on the mesoporous silicas modified with metal oxides were more active than the Au/SBA-15 and Au/MgO reference ones. The support structural properties and type of dopant were important factors influencing on the catalyst behavior. Concerning the support textural properties, it was found that the HMS substrate with the wormhole-structure offers better porosity and specific surface area than their silica counterparts having channel-like (SBA-15), cage-like (SBA-16), and disordered (DMS-1) mesoporous structures. Concerning the effect of modifier, the best catalytic response was achieved with the catalysts modified with MgO. After activation by calcination at 200 °C for 4 h, the Au/MgO/HMS catalyst exhibited the best catalytic performance, which was ascribed to the combined effects of the best structural properties, a large support oxygen storage capacity and homogeneous distribution of gold particles on the support (external and inner). Implications of the type of active sites (Au1+ or Au°), support structural properties and role of modifier on the catalytic activity are discussed.

6.
Molecules ; 21(4): 532, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27110757

RESUMO

The nature and size of the real active species of nanoparticulated metal supported catalysts is still an unresolved question. The technique of choice to measure particle sizes at the nanoscale, HRTEM, has a practical limit of 1 nm. This work is aimed to identify the catalytic role of subnanometer species and methods to detect and characterize them. In this frame, we investigated the sensitivity to redox pretreatments of Ag/Fe/TiO2, Ag/Mg/TiO2 and Ag/Ce/TiO2 catalysts in CO oxidation. The joint application of HRTEM, SR-XRD, DRS, XPS, EXAFS and XANES methods indicated that most of the silver in all samples is in the form of Ag species with size <1 nm. The differences in catalytic properties and sensitivity to pretreatments, observed for the studied Ag catalysts, could not be explained taking into account only the Ag particles whose size distribution is measured by HRTEM, but may be explained by the presence of the subnanometer Ag species, undetectable by HRTEM, and their interaction with supports. This result highlights their role as active species and the need to take them into account to understand integrally the catalysis by supported nanometals.


Assuntos
Monóxido de Carbono/química , Oxirredução , Prata/química , Catálise , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Propriedades de Superfície
7.
J Mol Model ; 21(11): 279, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26438446

RESUMO

CO is a pollutant that is removed by oxidation using Pd, Pt or Rh as catalysts in the exhaust pipes of vehicles. Here, a quantum chemistry study on the CO + O2 reaction catalyzed by small Pdn clusters (n ≤ 5) using the PBE/TZ2P/ZORA method is performed. The limiting step in this reaction at low temperature and coverage is the O2 dissociation. Pdn clusters catalyze the O=O bond breaking, reducing the energy barrier from 119 kcal mol(-1) without catalyst to ∼35 kcal mol(-1). The charge transfer from Pd to the O2,ad antibonding orbital weakens, and finally breaks the O─O bond. The CO oxidation takes place by the Eley-Rideal (ER) mechanism or the Langmuir-Hinshelwood (LH) mechanism. The ER mechanism presents an energy barrier of 4.10-7.05 kcal mol(-1) and the formed CO2 is released after the reaction. The LH mechanism also shows barrier energies to produce CO2 (7-15 kcal mol(-1)) but it remains adsorbed on Pd clusters. An additional energy (7-25 kcal mol(-1)) is necessary to desorb CO2 and release the metal site. The triplet multiplicity is the ground states of studied Pdn clusters, with the following order of stability: triplet > singlet > quintet state. Graphical Abstract CO oxidation mechanism on small Pd clusters.

8.
ACS Appl Mater Interfaces ; 7(15): 7987-94, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25816196

RESUMO

Copper catalysts are very promising, affordable alternatives for noble metals in CO oxidation; however, the nature of the active species remains unclear and differs throughout previous reports. Here, we report the preparation of 8 nm copper nanoparticles (Cu NPs), with high metallic content, directly deposited onto the surface of silica nanopowders by magnetron sputtering deposition. The as-prepared Cu/SiO2 contains 85% Cu0 and 15% Cu2+ and was enriched in the Cu0 phase by H2 soft pretreatment (96% Cu0 and 4% Cu2+) or further oxidized after treatment with O2 (33% Cu0 and 67% Cu2+). These catalysts were studied in the catalytic oxidation of CO under dry and humid conditions. Higher activity was observed for the sample previously reduced with H2, suggesting that the presence of Cu-metal species enhances CO oxidation performance. Inversely, a poorer performance was observed for the sample previously oxidized with O2. The presence of water vapor caused only a small increase in the temperature require for the reaction to reach 100% conversion. Under dry conditions, the Cu NP catalyst was able to maintain full conversion for up to 45 h at 350 °C, but it deactivated with time on stream in the presence of water vapor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA