Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.300
Filtrar
1.
Sci Rep ; 14(1): 15221, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956104

RESUMO

Municipal wastewater treatment systems use the chemical oxygen demand test (COD) to identify organic contaminants in industrial effluents that impede treatment due to their high concentration. This study reduced the COD levels in tannery wastewater using a multistage treatment process that included Fenton oxidation, chemical coagulation, and nanotechnology based on a synthetic soluble COD standard solution. At an acidic pH of 5, Fenton oxidation reduces the COD concentration by approximately 79%. It achieves this by combining 10 mL/L of H2O2 and 0.1 g/L of FeCl2. Furthermore, the author selected the FeCl3 coagulant for the coagulation process based on the best results of comparisons between different coagulants. At pH 8.5, the coagulation dose of 0.15 g/L achieved the maximum COD removal efficiency of approximately 56.7%. Finally, nano bimetallic Fe/Cu was used to complete the degradation and adsorption of the remaining organic pollutants. The XRD, SEM, and EDX analyses proved the formation of Fe/Cu nanoparticles. A dose of 0.09 g/L Fe/Cu NPs, 30 min of contact time, and a stirring rate of 200 rpm achieve a maximum removal efficiency of about 93% of COD at pH 7.5. The kinetics studies were analyzed using pseudo-first-order P.F.O., pseudo-second-order P.S.O., and intraparticle diffusion models. The P.S.O. showed the best fit among the kinetic models, with an R2 of 0.998. Finally, the authors recommended that technique for highly contaminated industrial effluents treatment for agriculture or industrial purposes.

2.
BMC Genomics ; 25(1): 663, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961347

RESUMO

BACKGROUND: The Atlantic cod is a prolific species in the Atlantic, despite its inconsistent specific antibody response. It presents a peculiar case within vertebrate immunology due to its distinct immune system, characterized by the absence of MHCII antigen presentation pathway, required for T cell-dependent antibody responses. Thorough characterisation of immunoglobulin loci and analysis of the antibody repertoire is necessary to further our understanding of the Atlantic cod's immune response on a molecular level. RESULTS: A comprehensive search of the cod genome (gadmor3.0) identified the complete set of IgH genes organized into three sequential translocons on chromosome 2, while IgL genes were located on chromosomes 2 and 5. The Atlantic cod displayed a moderate germline V gene diversity, comprising four V gene families for both IgH and IgL, each with distinct chromosomal locations and organizational structures. 5'RACE sequencing revealed a diverse range of heavy chain CDR3 sequences and relatively limited CDR3 diversity in light chains. The analysis highlighted a differential impact of V-gene germline CDR3 length on receptor CDR3 length between heavy and light chains, underlining different recombination processes. CONCLUSIONS: This study reveals that the Atlantic cod, despite its inconsistent antibody response, maintains a level of immunoglobulin diversity comparable to other fish species. The findings suggest that the extensive recent duplications of kappa light chain genes do not result in increased repertoire diversity. This research provides a comprehensive view of the Atlantic cod's immunoglobulin gene organization and repertoire, necessary for future studies of antibody responses at the molecular level.


Assuntos
Gadus morhua , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Gadus morhua/genética , Cadeias Pesadas de Imunoglobulinas/genética , Imunoglobulinas/genética , Loci Gênicos , Genes de Imunoglobulinas , Região Variável de Imunoglobulina/genética
3.
J Fish Biol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965826

RESUMO

Basking sharks (Cetorhinus maximus) seasonally aggregate in coastal surface waters of the North Atlantic, providing opportunities for visual observation. While putative courtship displays have been observed, actual copulation has not been documented. Here we examine video collected by an unmanned aerial vehicle ("drone") of novel behavioral interactions between basking sharks in Cape Cod Bay, Massachusetts in May 2021. The behaviors, including close following and tight concentric circling, are consistent with pre-copulatory behavior observed in other shark species. These observations provide new insights into the pre-copulatory behavior of basking sharks.

4.
J Nucl Med ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991753

RESUMO

Brain PET imaging often faces challenges from head motion (HM), which can introduce artifacts and reduce image resolution, crucial in clinical settings for accurate treatment planning, diagnosis, and monitoring. United Imaging Healthcare has developed NeuroFocus, an HM correction (HMC) algorithm for the uMI Panorama PET/CT system, using a data-driven, statistics-based approach. The HMC algorithm automatically detects HM using a centroid-of-distribution technique, requiring no parameter adjustments. This study aimed to validate NeuroFocus and assess the prevalence of HM in clinical short-duration 18F-FDG scans. Methods: The study involved 317 patients undergoing brain PET scans, divided into 2 groups: 15 for HMC validation and 302 for evaluation. Validation involved patients undergoing 2 consecutive 3-min single-bed-position brain 18F-FDG scans-one with instructions to remain still and another with instructions to move substantially. The evaluation examined 302 clinical single-bed-position brain scans for patients with various neurologic diagnoses. Motion was categorized as small or large on the basis of a 5% SUV change in the frontal lobe after HMC. Percentage differences in SUVmean were reported across 11 brain regions. Results: The validation group displayed a large negative difference (-10.1%), with variation of 5.2% between no-HM and HM scans. After HMC, this difference decreased dramatically (-0.8%), with less variation (3.2%), indicating effective HMC application. In the evaluation group, 38 of 302 patients experienced large HM, showing a 10.9% ± 8.9% SUV increase after HMC, whereas most exhibited minimal uptake changes (0.1% ± 1.3%). The HMC algorithm not only enhanced the image resolution and contrast but also aided in disease identification and reduced the need for repeat scans, potentially optimizing clinical workflows. Conclusion: The study confirmed the effectiveness of NeuroFocus in managing HM in short clinical 18F-FDG studies on the uMI Panorama PET/CT system. It found that approximately 12% of scans required HMC, establishing HMC as a reliable tool for clinical brain 18F-FDG studies.

5.
Ital J Food Saf ; 13(2): 12333, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38887589

RESUMO

The aim of this work is the description and characterization of a severe microsporidian infection in a batch of salted and dried cod. Particularly, the case involves a batch of approximately 800 kg obtained from Gadus macrocephalus (Food and Agriculture Organization Zone 61 - Northwest Pacific Ocean), which, after rehydration and sectioning operations, underwent routine company checks before packaging. In about 20% of the samples, the presence of whitish nodules with a diameter ranging from 1 to 2 mm was observed on the surface of the fillets and in cross-section. The lesions ranged from a few units to 10 per cm2. Some samples were subjected to fresh microscopic observation with the stereomicroscope, confirming the nodular nature of the lesions, which were often confluent, alternating with empty spaces, giving the tissue a honeycombing aspect. The histological examination at low magnification allowed us to observe the heavy vacuolization of nodular lesions irregularly surrounded by a spongy-like wall. The observation at higher magnification of other sections allowed us to identify intra-myofibrillar cists containing presumptive microsporidian elements. The tissue damage derived from the technological processes and gravity of lesions did not allow a morphological characterization of presumptive protozoans. The molecular examination of the nodular lesions and the analysis of the sequence of an 897 bp fragment of the small subunit 16S rRNA revealed 100% identity with Microsporidium theragrae (GenBank accession number MT928885-89) first isolated from the skeletal muscles of Gadus chalcogrammus specimens from the Sea of Okhotsk. This finding confirms the importance of selecting suppliers and raw materials in the seafood industry, as well as the usefulness of an effective traceability system.

6.
Water Environ Res ; 96(6): e11060, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847129

RESUMO

This study aims to improve COD, NH3-N, and turbidity removal from Bingöl's leachate using a single-reactor integrated electrocoagulation (EC)-coal-based powdered activated carbon (CBPAC) process under various experimental conditions. In the EC-CBPAC process, three stainless-steel cathodes and three aluminum electrodes were connected to the negative and positive terminals of the power supply, respectively. The initial concentrations in the leachate were 1044 mg O2/L for COD, 204 mg/L for NH3-N, and 57 NTU (or 71.25-mg (NH2)2H2SO4/L) for turbidity, respectively. After a 40-min EC-CBPAC process, with a CBPAC dosage of 5 g/L and pH of 5 for COD and turbidity, and 9.5 for NH3-N, the optimum removal efficiencies for COD, NH3-N, and turbidity were achieved at 92%, 40%, and 91%, respectively. When the EC process was applied without CBPAC under the same experimental conditions, the removal efficiencies of COD, NH3-N, and turbidity were 87%, 28%, and 54%, respectively. Before and after the EC-CBPAC process, the Brunauer-Emmett-Teller (BET) surface area, pore volume, and mean pore diameter of the CBPAC were found to be (888 m2/g, 0.498 cm3/g, and 22.28 Å) and (173 m2/g, 0.18 cm3/g, and 42.8 Å), respectively. The optimum pseudo-first-order (PFO) rate constants for COD, turbidity, and NH3-N were determined to be 3.15 × 10-2, 4.77 × 10-2, and 8.8 × 10-3 min-1, respectively. With the current density increasing from 15 to 25 mA/cm2, energy consumption, unit energy consumption, and total cost increased from 68.7 to 122.4 kWh/m3, 6.948 to 15.226 kWh/kg COD, and 0.85 to 1.838 $/kg COD, respectively. PRACTITIONER POINTS: EC-CBPAC process has greater COD, NH3-N, and turbidity removal efficiency than EC process. COD and turbidity achieved their optimum disposal efficiencies at 92% and 91%, respectively, at pH 5 The most efficient disposal efficiency for NH3-N was observed to be 40% at pH 9.5. EC-CBPAC process increased removal efficiencies for COD, NH3-N, and turbidity by 20%, 19%, and 38%, respectively, compared with EC alone. The turbidity, NH3-N, and COD disposal fitted PSO model due to high correlation values (R2 0.94-0.99).


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Carvão Vegetal/química , Poluentes Químicos da Água/química , Cinética , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodos
7.
Bioresour Technol ; 406: 131026, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38917910

RESUMO

A bioelectrochemical upflow anaerobic sludge blanket (BE-UASB) was constructed and compared with the traditional UASB to investigate the role of bioelectrocatalysis in modulating methanogenesis and sulfidogensis involved within anaerobic treatment of high-sulfate methanolic wastewater (COD/SO42- ratio ≤ 2). Methane production rate for BE-UASB was 1.4 times higher than that of the single UASB, while SO42- removal stabilized at 16.7%. Bioelectrocatalysis selectively enriched key functional anaerobes and stimulated the secretion of extracellular polymeric substances, especially humic acids favoring electron transfer, thereby accelerating the electroactive biofilms development of electrodes. Methanomethylovorans was the dominant genus (35%) to directly convert methanol to CH4. Methanobacterium as CO2 electroreduction methane-producing archaea appeared only on electrodes. Acetobacterium exhibited anode-dependence, which provided acetate for sulfate-reducing bacteria (norank Syntrophobacteraceae and Desulfomicrobium) through synergistic coexistence. This study confirmed that BE-UASB regulated the microbial ecology to achieve efficient removal and energy recovery of high-sulfate methanolic wastewater.

8.
Environ Monit Assess ; 196(7): 663, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922358

RESUMO

The presence of a large amount of organic and inorganic pollutants in dairy effluent is a substantial environmental issue. This study investigated electrocoagulation (EC) as a potential treatment method for dairy wastewater under different operating conditions, such as applied voltage (5-25 V), electrolysis time (30-90 min), and inter-electrode distance (1-2 cm) by using aluminum electrodes. This study focuses on achieving the maximum removal of BOD, COD, and nitrate in dairy effluents with the aforementioned operating conditions. The process was optimized using the response surface methodology (RSM) and Taguchi method. RSM method optimized the electrocoagulation operating conditions such as the voltage at 23.75 V, time of 90 min, and inter-electrode distance at 1.07 cm. This optimization achieved the maximum removal percentage of BOD, COD, and nitrate at 79.06%, 84.35%, and 79.64%, respectively, in dairy effluent. Taguchi method optimized the electrocoagulation parameters such as the voltage at 25 V, time duration of 90 min, and inter-electrode distance of 1.00 cm, showcasing improved removal percentages of BOD, COD, and nitrate as 90.54%, 89.28%, and 82.74% respectively. The current study attempts to understand the optimization efficiencies between Taguchi method and response surface method for diary wastewater treatment.


Assuntos
Indústria de Laticínios , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Indústria de Laticínios/métodos , Poluentes Químicos da Água/análise , Eletrocoagulação/métodos , Nitratos/análise , Análise da Demanda Biológica de Oxigênio
9.
Artigo em Inglês | MEDLINE | ID: mdl-38903027

RESUMO

The present work deals with the optimization of basic fuchsin dye removal from an aqueous solution using the ultraviolet UV/H2O2 process. Response Surface Modeling (RSM) based on Box-Behnken experimental design (BBD) was applied as a tool for the optimization of operating conditions such as initial dye concentration (10-50 ppm), hydrogen peroxide dosage (H2O2) (10-20 mM/L) and irradiation time (60-180 min), at pH = 7.4 under ultra-violet irradiation (254 nm and 25 W intensity). Chemical oxygen demand (COD abatement) was used as a response variable. The Box-Behnken Design can be employed to develop a mathematical model for predicting UV/H2O2 performance for COD abatement. COD abatement is sensitive to the concentration of hydrogen peroxide and irradiation time. Statistical analyses indicate a high correlation between observed and predicted values (R2 > 0.98). In the BBD predictions, the optimal conditions in the UV/H2O2 process for removing 99.3% of COD were found to be low levels of pollutant concentration (10 ppm), a high concentration of hydrogen peroxide dosage (20 mM/L), and an irradiation time of 80 min.


Assuntos
Peróxido de Hidrogênio , Raios Ultravioleta , Poluentes Químicos da Água , Peróxido de Hidrogênio/química , Poluentes Químicos da Água/química , Análise da Demanda Biológica de Oxigênio , Corantes/química , Modelos Químicos , Eliminação de Resíduos Líquidos/métodos , Modelos Teóricos
10.
J Environ Manage ; 365: 121606, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38941846

RESUMO

Oil refineries produce annually large quantities of oily sludge and non-biodegradable wastewater during petroleum refining that require adequate management to minimize its environmental impact. The fraction solid of the oily sludge accounts for 25 wt% and without treatment for their valorization. This work is focused on the valorization of these solid particles through their transformation into porous materials with enhanced properties and with potential application in the catalytic wet air oxidation (CWAO) of a non-biodegradable spent caustic refinery wastewater. Hence, dealing with the valorization and treatment of both refinery wastes in a circular approach aligned with the petrol refinery transformations by 2050. The obtained oily sludge carbonaceous materials showed improved surface area (260-762 m2/g) and a high Fe content. The good catalytic performance of these materials in CWAO processes has been attributed to the simultaneous presence of surface basic sites and iron species. Those materials with higher content of Fe and basic sites yielded the highest degradation of organic compounds present in the spent caustic refinery wastewater. In particular, the best-performing material ACT-NP 1.1 (non-preoxidated and thermically treated with 1:1 mass ratio KOH:solid) showed a chemical oxygen demand (COD) removal of 60 % after 3 h of reaction and with a higher degradation rate than that achieved with thermal oxidation without catalyst (WAO) and that using an iron-free commercial activated carbon. Moreover, the biodegradability of the treated wastewater increased up to 80% (from ca. 31% initially of the untreated effluent). Finally, this material was reused up to three catalytic cycles without losing metal species and keeping the catalytic performance.

11.
Environ Pollut ; : 124435, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925215

RESUMO

Recent escalating concerns surrounding textile wastewater pollution and the urgent need for sustainable treatment solutions to mitigate its environmental impact. This study investigates the multifaceted effects of Spirulina platensis (SP) cultivation in textile wastewater from two different sources (TWW1 and TWW2), focusing on growth kinetics, Chemical Oxygen Demand (COD), and nutrient removal percentage, and seed germination enhancement. Results showed that SP exhibited comparable growth performance in TWW1 and TWW2 to the control, indicating its potential for sustainable wastewater treatment. Moreover, maximum COD removal percentages were achieved, reaching 62.59±1.88 % for TWW1 and 46.68±1.40 % for TWW2 on day 5. The COD removal process aligns best with the first-order kinetic model. Nutrient removal rates showed decreasing trends over time, with maximum phosphate removal percentages of 36.42±0.73 % for TWW1 and 62.18±1.24 % for TWW2, and maximum ammonia removal percentages of 59.34±1.18 % for TWW1 and 69.31±1.39 % for TWW2. FTIR analysis confirmed pollutant removal-induced changes in algal biomass functional groups. Seed germination studies indicated enhanced shoot and root development of vigna radiatas using treated TWW1 and TWW2 compared to the control, suggesting potential applications for irrigation. An increase in the lipid & carbohydrate content post-treatment was observed and it would be suitable for biofuel production. This comprehensive assessment demonstrates the synergistic benefits of phycoremediation in simultaneously removing pollutants, promoting plant growth, and enhancing wastewater treatment efficiency, underscoring its potential for sustainable water management practices.

12.
J Fish Biol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38922867

RESUMO

Polar cod (Boreogadus saida) is an endemic key species of the Arctic Ocean ecosystem. The ecology of this forage fish is well studied in Arctic shelf habitats where a large part of its population lives. However, knowledge about its ecology in the central Arctic Ocean (CAO), including its use of the sea-ice habitat, is hitherto very limited. To increase this knowledge, samples were collected at the under-ice surface during several expeditions to the CAO between 2012 and 2020, including the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The diet of immature B. saida and the taxonomic composition of their potential prey were analysed, showing that both sympagic and pelagic species were important prey items. Stomach contents included expected prey such as copepods and amphipods. Surprisingly, more rarely observed prey such as appendicularians, chaetognaths, and euphausiids were also found to be important. Comparisons of the fish stomach contents with prey distribution data suggests opportunistic feeding. However, relative prey density and catchability are important factors that determine which type of prey is ingested. Prey that ensures limited energy expenditure on hunting and feeding is often found in the stomach contents even though it is not the dominant species present in the environment. To investigate the importance of prey quality and quantity for the growth of B. saida in this area, we measured energy content of dominant prey species and used a bioenergetic model to quantify the effect of variations in diet on growth rate potential. The modeling results suggest that diet variability was largely explained by stomach fullness and, to a lesser degree, the energetic content of the prey. Our results suggest that under climate change, immature B. saida may be at least equally sensitive to a loss in the number of efficiently hunted prey than to a reduction in the prey's energy content. Consequences for the growth and survival of B. saida will not depend on prey presence alone, but also on prey catchability, digestibility, and energy content.

13.
Food Res Int ; 186: 114363, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729725

RESUMO

This study evaluates the impact of high-intensity ultrasound (HIU) on the physicochemical properties and in-vitro digestibility of Atlantic cod (Gadus morhua). Various ultrasound durations (0-60 min) were applied to assess changes in color attributes, total antioxidant capacity (TAC), total flavonoid content (TFC), total phenolic content (TPC), total protein content, and in-vitro protein digestibility (IVPD). Results indicated HIU maximumly increased TAC, TFC, TPC, and peptide content before digestion by 7.28 % (US60), 3.00 % (US30), 32.43 % (US10), and 18.93 % (US60), respectively. While HIU reduced total protein content, it enhanced IVPD by up to 12.24 % (US30). Color attributes electron microscopy reflected structural changes in the cod samples, suggesting the effectiveness of HIU in altering protein structures. These findings highlight HIU's potential as a non-thermal technique for improving the sensory and nutritional quality of Atlantic cod, offering valuable insights for the seafood processing industry and consumers.


Assuntos
Antioxidantes , Digestão , Manipulação de Alimentos , Gadus morhua , Valor Nutritivo , Alimentos Marinhos , Gadus morhua/metabolismo , Animais , Alimentos Marinhos/análise , Antioxidantes/análise , Antioxidantes/química , Manipulação de Alimentos/métodos , Fenóis/análise , Ondas Ultrassônicas , Flavonoides/análise , Nutrientes/análise , Paladar , Cor
14.
Bioresour Technol ; 403: 130882, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788805

RESUMO

This study successfully established Iron Sulfide-Mediated mixotrophic Partial Denitrification/Anammox system, achieving nitrogen and phosphorus removal efficiency of 97.26% and 78.12%, respectively, with COD/NO3--N of 1.00. Isotopic experiments and X-ray Photoelectron Spectroscopy analysis confirmed that iron sulfide enhanced autotrophic Partial Denitrification performance. Meanwhile, various sulfur valence states functioned as electron buffers, reinforcing nitrogen and sulfur cycles. Microbial community analysis indicated reduced heterotrophic denitrifiers (OLB8, OLB13) under lower COD/NO3--N, creating more niche space for autotrophic bacteria and other heterotrophic denitrifiers. The prediction of functional genes illustrated that iron Sulfide upregulated genes related to carbon metabolism, denitrification, anammox and sulfur oxidation-reduction, facilitating the establishment of carbon-nitrogen-sulfur cycle. Furthermore, this cycle primarily produced electrons via nicotinamide adenine dinucleotide and sulfur oxidation-reduction processes, subsequently utilized within the electron transfer chain. In summary, the Partial Denitrification/Anammox system under the influence of iron sulfide achieved effient nitrogen removal by expediting electron transfer through the carbon-nitrogen-sulfur cycle.


Assuntos
Carbono , Desnitrificação , Nitrogênio , Oxirredução , Enxofre , Enxofre/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Reatores Biológicos , Bactérias/metabolismo , Compostos Ferrosos/metabolismo , Compostos Ferrosos/química , Anaerobiose
15.
Mikrochim Acta ; 191(6): 343, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801537

RESUMO

A portable and integrated electrochemical detection system has been constructed for on-site and real-time detection of chemical oxygen demand (COD). The system mainly consists of four parts: (i) sensing electrode with a copper-cobalt bimetallic oxide (CuCoOx)-modified screen-printed electrode; (ii) an integrated electrochemical detector for the conversion, amplification, and transmission of weak signals; (iii) a smartphone installed with a self-developed Android application (APP) for issuing commands, receiving, and displaying detection results; and (iv) a 3D-printed microfluidic cell for the continuous input of water samples. Benefiting from the superior catalytic capability of CuCoOx, the developed system shows a high detection sensitivity with 0.335 µA/(mg/L) and a low detection limit of 5.957 mg/L for COD determination and possessing high anti-interference ability to chloride ions. Moreover, this system presents good consistency with the traditional dichromate method in COD detection of actual water samples. Due to the advantages of cost effectiveness, portability, and point-of-care testing, the system shows great potential for water quality monitoring, especially in resource-limited remote areas.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124475, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38772179

RESUMO

In recent years, with the rise of various machine learning methods, the Ultraviolet and Near Infrared (UV-NIR) spectral analysis has been impressive in the determination of intricate systems. However, the UV-NIR spectral analysis based on traditional machine learning requires independent training with tedious parameter tuning for different samples or tasks. As a result, training a high-quality model is often complicated and time-consuming. Large language model (LLM) is one of the cutting-edge achievements in deep learning, with the parameter size of the order of billion. LLM can extract abstract information from input and use it effectively. Even without any additional training, using only simple natural language prompts, LLM can accomplish tasks that have never been seen before in completely new domains. We look forward to utilizing this capability in spectral analysis to reduce the time-consuming and operational difficulties. In this study, we used UV-NIR spectral analysis to predict the concentration of Chemical Oxygen Demand (COD) in three different water samples, including a complex wastewater. By extracting the characteristic bands in the spectrum, we input them into LLM for concentration prediction. We compared the COD prediction results of different models on water samples and discussed the effects of different experiments setting on LLM. The results show that even with brief prompts, the prediction of LLM in wastewater achieved the best performance, with R2 and RMSE equal to 0.931 and 10.966, which exceed the best results of traditional models, where R2 and RMSE correspond to 0.920 and 11.854. This result indicates that LLM, with simpler operation and less time-consuming, has ability to approach or even surpass traditional machine learning models in UV-NIR spectral analysis. In conclusion, our study proposed a new method for the UV-NIR spectral analysis based on LLM and preliminary demonstrated the potential of LLM for application.

17.
Sci Rep ; 14(1): 12560, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821987

RESUMO

The textile dyeing and manufacturing industry is the major producer of significant amounts of wastewater that contain persistent substances such as azo dyes that require adequate remediation measures. Far ultraviolet at 222 nm light may provide an advantage for contaminants degradation as compared to conventional UV sources (254 nm). In this paper, the degradation of reactive black 5 (RB5) in artificial wastewater has been performed using a 222 nm Kr/Cl2 excimer source under direct photolysis and an advanced oxidation process using TiO2/H2O2. The solution pH, catalyst concentration, 222 nm intensity, initial concentration of dye, and addition of H2O2 influence the degradation rate constant. The molar absorption coefficient, quantum yield of RB5 at 222 nm and the electrical energy per order (EEO) from different treatment methods have been reported. RB5 shows 1.26 times higher molar absorption at 222 nm than at 254 nm. The EEO for excimer-222/H2O2 ( ∼ 13 kWh/m3) is five times lower than that of the excimer-222/TiO2 process, which makes the process energy efficient. The degradation of wastewater has been carried out at three distinct pH values (2, 6, and 10), and the pH level of 10 exhibited the highest degree of degradation. The degradation rate in the alkaline medium is 8.27 and 2.05 times higher than in the acidic or ambient medium. Since textile effluent is highly alkaline, this result is significant, as no neutralization of the wastewater is required, and direct treatment is possible. A possible degradation pathway has been established based on Fourier transform infrared spectroscopy (FTIR) and high resolution mass spectroscopy (HRMS) analysis. The phytotoxicity of the treated wastewater has also been evaluated for its suitability for reuse in agriculture. The study reveals that the excimer-222/H2O2 treated wastewater significantly enhanced the germination percentage of Raphanus sativus seed (97%) compared to dye wastewater-grown seeds (75%). This work offers crucial information for future studies on the direct and indirect photolysis of azo dyes, as well as insight into the process of RB5 degradation under Kr/Cl2 excimer radiation.

18.
Mar Drugs ; 22(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38786592

RESUMO

Malnutrition is one of the major factors of bone and cartilage disorders. Pacific cod (Gadus macrocephalus) processing waste is a cheap and highly promising source of bioactive substances, including collagen-derived peptides and amino acids, for bone and cartilage structure stabilization. The addition of these substances to a functional drink is one of the ways to achieve their fast intestinal absorption. Collagen hydrolysate was obtained via enzymatic hydrolysis, ultrafiltration, freeze-drying, and grinding to powder. The lyophilized hydrolysate was a light gray powder with high protein content (>90%), including collagen (about 85% of total protein) and a complete set of essential and non-essential amino acids. The hydrolysate had no observed adverse effect on human mesenchymal stem cell morphology, viability, or proliferation. The hydrolysate was applicable as a protein food supply or a structure-forming food component due to the presence of collagen fiber fragments. An isotonic fitness drink (osmolality 298.1 ± 2.1 mOsm/L) containing hydrolysate and vitamin C as a cofactor in collagen biosynthesis was prepared. The addition of the hydrolysate did not adversely affect its organoleptic parameters. The production of such functional foods and drinks is one of the beneficial ways of fish processing waste utilization.


Assuntos
Osso e Ossos , Cartilagem , Colágeno , Gadiformes , Hidrolisados de Proteína , Animais , Colágeno/metabolismo , Humanos , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Bebidas , Alimento Funcional , Hidrólise
19.
Heliyon ; 10(10): e30747, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38784537

RESUMO

Futsal is a high intensity team sport with intermittent actions of short duration, so it is necessary to include different training strategies to improve explosive actions. There is a gap in the scientific literature regarding training programs that improve the performance of young futsal players. The aim of this study was to determine the effects of different strength and velocity training programs on lower body physical performance in youth futsal players. Forty-two youth futsal players were divided into control group (CG, n = 14) and a strength intervention group (SG, n = 14), which included a weekly session for 8 weeks of eccentric strength training, plyometrics and core strengthening, and a velocity intervention group (VG, n = 14), which included a weekly session during 8 weeks of training with linear speed exercises and with change of direction, accelerations with resistance bands and core strengthening. SG significantly improved horizontal jump (HJ) (p:0.02), V-CUT (p:0.91) and change of direction deficit (CODD) (p:0.01). VG showed significant improvements in HJ (p:0.01), in 25 m sprint (p:0.01), in total repeated sprint ability time (p:0.01), in V-CUT (p:0.01) and in CODD (p:0.01). SG showed significant intergroup differences (p:0.01) in COD variables with respect to CG and VG. In conclusion, SG and VG showed significant improvements in lower body performance variables in youth futsal players. In addition, the SG has substantial changes in COD compared to the other two groups, so it has a greater effect.

20.
J Environ Manage ; 359: 120974, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701584

RESUMO

This study has carried out a systematic review of 36 scientific papers (reporting 63 case studies) published in the last 15 years about the treatment of industrial, agri-food and municipal wastewater in lagoons. A concentration of studies from a few countries (Italy, Algeria and Iran) and about municipal wastewater (70% of papers) was revealed by the bibliographic analysis. Aeration was supplied in more than 50% of case studies; the storage capacity of lagoons (adopted as a measure of size) was extremely variable (over seven orders of magnitude), while their depth was generally lower than a few metres. The efficiency of lagoon treatments at removing COD was in a wide range (25-98%). Very few studies analysed the energy intensity of treatments in lagoons. The meta-analysis applied to a further selection of 10 papers with 29 case studies revealed significant differences in pH and dissolved oxygen concentration, due to aeration or type of treated wastewater. Treatment efficiency was higher in aerated lagoons compared to non-aerated systems, and did not depend on the type of treated wastewater. Based on the analysis of the reviewed papers, an urgent research need on this topic arises, mainly due to the oldness of most analysed studies. Practical suggestions are given to optimise the depuration performances of lagoons: (i) application of intermittent and night aeration; (ii) reduced air flow rates; (iii) adaptation of microbial biomass to high contents of inhibiting compounds in wastewater; (iv) construction of baffles to keep the planned hydraulic retention time avoiding short-circuit; (v) integration of lagoons with other treatments (e.g., constructed wetlands); (vi) ferti-irrigation of crops with lagoon effluents rather than disposal into water bodies.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...