Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(7): 114442, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38968070

RESUMO

Despite a growing interest in the gut microbiome of non-industrialized countries, data linking deeply sequenced microbiomes from such settings to diverse host phenotypes and situational factors remain uncommon. Using metagenomic data from a community-based cohort of 1,871 people from 19 isolated villages in the Mesoamerican highlands of western Honduras, we report associations between bacterial species and human phenotypes and factors. Among them, socioeconomic factors account for 51.44% of the total associations. Meta-analysis of species-level profiles across several datasets identified several species associated with body mass index, consistent with previous findings. Furthermore, the inclusion of strain-phylogenetic information modifies the overall relationship between the gut microbiome and the phenotypes, especially for some factors like household wealth (e.g., wealthier individuals harbor different strains of Eubacterium rectale). Our analysis suggests a role that gut microbiome surveillance can play in understanding broad features of individual and public health.


Assuntos
Microbioma Gastrointestinal , Fatores Socioeconômicos , Humanos , Honduras , Microbioma Gastrointestinal/genética , Feminino , Masculino , Adulto , Bactérias/classificação , Bactérias/genética , Filogenia , Pessoa de Meia-Idade
2.
Cell Rep ; 42(8): 112946, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37556325

RESUMO

Venezuelan equine encephalitis virus (VEEV) is an encephalitic alphavirus responsible for epidemics of neurological disease across the Americas. Low-density lipoprotein receptor class A domain-containing 3 (LDLRAD3) is a recently reported entry receptor for VEEV. Here, using wild-type and Ldlrad3-deficient mice, we define a critical role for LDLRAD3 in controlling steps in VEEV infection, pathogenesis, and neurotropism. Our analysis shows that LDLRAD3 is required for efficient VEEV infection and pathogenesis prior to and after central nervous system invasion. Ldlrad3-deficient mice survive intranasal and intracranial VEEV inoculation and show reduced infection of neurons in different brain regions. As LDLRAD3 is a determinant of pathogenesis and an entry receptor required for VEEV infection of neurons of the brain, receptor-targeted therapies may hold promise as countermeasures.


Assuntos
Encefalomielite Equina Venezuelana , Receptores de LDL , Animais , Camundongos , Encéfalo/patologia , Sistema Nervoso Central , Vírus da Encefalite Equina Venezuelana/fisiologia , Encefalomielite Equina Venezuelana/patologia , Receptores de LDL/fisiologia
3.
Cell Rep ; 39(9): 110904, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35617962

RESUMO

Despite SARS-CoV-2 being a "novel" virus, early detection of anti-spike IgG in severe COVID-19 patients may be caused by the amplification of humoral memory responses against seasonal coronaviruses. Here, we examine this phenomenon by characterizing anti-spike IgG responses in non-hospitalized convalescent individuals across a spectrum of COVID-19 severity. We observe that disease severity positively correlates with anti-spike IgG levels, IgG cross-reactivity against other betacoronaviruses (ß-CoVs), and FcγR activation. Analysis of IgG targeting ß-CoV-conserved and non-conserved immunodominant epitopes within the SARS-CoV-2 spike protein revealed epitope-specific relationships: IgG targeting the conserved heptad repeat (HR) 2 region significantly correlates with milder disease, while targeting the conserved S2'FP region correlates with more severe disease. Furthermore, a lower HR2-to-S2'FP IgG-binding ratio correlates with greater disease severity, with ICU-hospitalized COVID-19 patients showing the lowest HR2/S2'FP ratios. These findings suggest that HR2/S2'FP IgG profiles may predict disease severity and offer insight into protective versus deleterious humoral recall responses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Imunoglobulina G , Estações do Ano , Glicoproteína da Espícula de Coronavírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA