Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
1.
FASEB J ; 38(19): e70071, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39382025

RESUMO

The skeletal muscle satellite cells (SCs) mediate regeneration of myofibers upon injury. As they switch from maintenance (quiescence) to regeneration, their relative reliance on glucose and fatty acid metabolism alters. To explore the contribution of mitochondrial fatty acid oxidation (FAO) pathway to SCs and myogenesis, we examined the role of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme of FAO. CPT1A is highly expressed in quiescent SCs (QSCs) compared with activated and proliferating SCs, and its expression level decreases during myogenic differentiation. Myod1Cre-driven overexpression (OE) of Cpt1a in embryonic myoblasts (Cpt1aMTG) reduces muscle weight, grip strength, and contractile force without affecting treadmill endurance of adult mice. Adult Cpt1aMTG mice have reduced number of SC, impairing muscle regeneration and promoting lipid infiltration. Similarly, Pax7CreER-driven, tamoxifen-inducible Cpt1a-OE in QSCs of adult muscles (Cpt1aPTG) leads to depletion of SCs and compromises muscle regeneration. The reduced proliferation of Cpt1a-OE SCs is associated with elevated level of acyl-carnitine, and acyl-carnitine treatment impedes proliferation of wildtype SCs. These findings indicate that aberrant level of CPT1A elevates acyl-carnitine to impair the maintenance, proliferation and regenerative function of SCs.


Assuntos
Carnitina O-Palmitoiltransferase , Desenvolvimento Muscular , Músculo Esquelético , Regeneração , Células Satélites de Músculo Esquelético , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Camundongos , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Diferenciação Celular , Camundongos Endogâmicos C57BL , Ácidos Graxos/metabolismo , Masculino , Proliferação de Células
2.
Int J Biol Macromol ; 280(Pt 1): 135647, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39278449

RESUMO

Peroxisome proliferator activated receptors (PPARs) exert their roles in lipid metabolism and adaptive immunity by transactivating carnitine palmitoyltransferase 1 (CPT1). However, it remains unclear whether the PPAR-CPT1 signaling pathway exists in mollusks that only carry out innate immunity. This study cloned and characterized PPAR and CPT1 genes from Hyriopsis cumingii for the first time, designated as HcPPARs and HcCPT1s, respectively. The bioinformatics analysis revealed conservative molecular characteristics of these genes across species. Real-time quantitative PCR results indicated that higher expression levels of HcPPARs and HcCPT1s in the blood, mantle, and intestine suggested their potential involvement in lipid metabolism and innate immunity of mollusks. Treatments with agonists and inhibitors demonstrated a correlation in the expression of HcPPARs and HcCPT1s. Dual luciferase reporter assay identified regions with high transcriptional activities on promoters of HcCPT1s and potential binding sites for HcPPARs through prediction and mutation sites. These results suggested that the PPAR-CPT1 signaling might exist in H. cumingii. This research provides a necessary foundation for exploring the role of the PPAR-CPT1 signaling in innate immunity, and offers new theoretical evidence for the molecular regulatory mechanism of mollusks and the treatment of metabolic disorders and inflammatory diseases.

3.
J Pediatr Genet ; 13(3): 223-226, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39086449

RESUMO

Carnitine palmitoyltransferase 1A (CPT1A) deficiency is a type of fatty acid oxidation disorder in which long chain fatty acids cannot be transported into mitochondria for further processing and storage in our body. Typically, the patients present with lethargy, hypoglycemia, and raised serum transaminase levels before 2 years of age. Cholestatic jaundice as manifestation of this deficiency has been reported rarely; here, we report an adolescent male with CPT1A deficiency who developed prolonged cholestatic jaundice following a febrile illness.

4.
FEBS J ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949993

RESUMO

Cancer cells undergo metabolic adaptation to promote their survival and growth under energy stress conditions, yet the underlying mechanisms remain largely unclear. Here, we report that tripartite motif-containing protein 2 (TRIM2) is upregulated in response to glutamine deprivation by the transcription factor cyclic AMP-dependent transcription factor (ATF4). TRIM2 is shown to specifically interact with carnitine O-palmitoyltransferase 1 (CPT1A), a rate-limiting enzyme of fatty acid oxidation. Via this interaction, TRIM2 enhances the enzymatic activity of CPT1A, thereby regulating intracellular lipid levels and protecting cells from glutamine deprivation-induced apoptosis. Furthermore, TRIM2 is able to promote both in vitro cell proliferation and in vivo xenograft tumor growth via CPT1A. Together, these findings establish TRIM2 as an important regulator of the metabolic adaptation of cancer cells to glutamine deprivation and implicate TRIM2 as a potential therapeutic target for cancer.

5.
Int J Mol Sci ; 25(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39062992

RESUMO

[123I]ß-methyl-p-iodophenyl-pentadecanoic acid ([123I]BMIPP), which is used for nuclear medicine imaging of myocardial fatty acid metabolism, accumulates in cancer cells. However, the mechanism of accumulation remains unknown. Therefore, this study aimed to elucidate the accumulation and accumulation mechanism of [123I]BMIPP in cancer cells. We compared the accumulation of [123I]BMIPP in cancer cells with that of [18F]FDG and found that [123I]BMIPP was a much higher accumulation than [18F]FDG. The accumulation of [123I]BMIPP was evaluated in the presence of sulfosuccinimidyl oleate (SSO), a CD36 inhibitor, and lipofermata, a fatty acid transport protein (FATP) inhibitor, under low-temperature conditions and in the presence of etomoxir, a carnitine palmitoyl transferase I (CPT1) inhibitor. The results showed that [123I]BMIPP accumulation was decreased in the presence of SSO and lipofermata in H441, LS180, and DLD-1 cells, suggesting that FATPs and CD36 are involved in [123I]BMIPP uptake in cancer cells. [123I]BMIPP accumulation in all cancer cell lines was significantly decreased at 4 °C compared to that at 37 °C and increased in the presence of etomoxir in all cancer cell lines, suggesting that the accumulation of [123I]BMIPP in cancer cells is metabolically dependent. In a biological distribution study conducted using tumor-bearing mice transplanted with LS180 cells, [123I]BMIPP highly accumulated in not only LS180 cells but also normal tissues and organs (including blood and muscle). The tumor-to-intestine or large intestine ratios of [123I]BMIPP were similar to those of [18F]FDG, and the tumor-to-large-intestine ratios exceeded 1.0 during 30 min after [123I]BMIPP administration in the in vivo study. [123I]BMIPP is taken up by cancer cells via CD36 and FATP and incorporated into mitochondria via CPT1. Therefore, [123I]BMIPP may be useful for imaging cancers with activated fatty acid metabolism, such as colon cancer. However, the development of novel imaging radiotracers based on the chemical structure analog of [123I]BMIPP is needed.


Assuntos
Neoplasias do Colo , Iodobenzenos , Animais , Humanos , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Camundongos , Linhagem Celular Tumoral , Iodobenzenos/química , Antígenos CD36/metabolismo , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Radioisótopos do Iodo , Ácidos Oleicos/química , Miocárdio/metabolismo , Distribuição Tecidual , Proteínas de Transporte de Ácido Graxo/metabolismo , Fluordesoxiglucose F18/química , Fluordesoxiglucose F18/metabolismo , Ácidos Graxos
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167442, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39059593

RESUMO

Unlike humans and other mammals, zebrafish demonstrate a remarkable capacity to regenerate their injured hearts throughout life. Mitochondrial fatty acid ß-oxidation (FAO) contributes to major energy demands of the adult hearts under physiological conditions; however, its functions in regulating cardiac regeneration and the underlying mechanisms are not completely understood. Different strategies targeting FAO have yield mixed outcomes. Here, we demonstrated that pharmacological inhibition of mitochondrial FAO with mildronate (MD) caused lipid accumulation in zebrafish larvae and suppressed ventricle regeneration. MD treatment impeded cardiogenic factor reactivation and cardiomyocyte (CM) proliferation, and impaired ventricle regeneration could be rescued by exogenous l-carnitine supplementation. Moreover, compared with the ablated hearts of wild-type fish, ventricle regeneration, cardiogenic factor reactivation and CM proliferation were significantly blocked in the ablated hearts of carnitine palmitoyltransferase-1b (cpt1b) knockout zebrafish. Further experiments suggested that NF-κB signaling and increased inflammation may be involved in the impediment of ventricle regeneration caused by systemic mitochondrial FAO inhibition. Overall, our study demonstrates the essential roles of mitochondrial FAO in zebrafish ventricle regeneration and reaffirms the sophisticated and multifaceted roles of FAO in heart regeneration with regard to different injury models and means of FAO inhibition.


Assuntos
Ácidos Graxos , Ventrículos do Coração , Oxirredução , Regeneração , Peixe-Zebra , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Proliferação de Células/efeitos dos fármacos , Ácidos Graxos/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Metilidrazinas/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , NF-kappa B/metabolismo , Oxirredução/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
7.
Cancer Lett ; : 217082, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914306

RESUMO

Metastasis is the leading cause of death in ovarian cancer (OC), with anoikis resistance being a crucial step for detached OC cells survival. Despite extensive research, targeting anoikis resistance remians a challenge. Here, we identify argininosuccinate synthase 1 (ASS1), a key enzyme in urea cycle, is markedly upregulated in OC cells in detached culture and is associated with increased anoikis resistance and metastasis. Disruption of the AMP/ATP balance by elevated ASS1 activates AMPK and its downstream factor, CPT1A. Then, ASS1 enhances FAO, leading to higher ATP generation and lipid utilization. Inhibition of CPT1A reverses ASS1-induced FAO. Our study gives some new functional insights into OC metabolism and represents a shift from traditional views, expanding ASS1's relevance beyond nitrogen metabolism to fatty acid metabolism. It uncovers how ASS1-induced FAO disrupts the AMP/ATP balance, leading to AMPK activation. By identifying the ASS1/AMPK/CPT1A axis as crucial for OC anoikis resistance and metastasis, our study opens up new avenues for therapeutic interventions.

8.
J Mol Med (Berl) ; 102(8): 1037-1049, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38904677

RESUMO

Multiple theories have been proposed to explain the pathogenesis of early-onset preeclampsia (EOPE), and angiogenic dysfunction is an important part of this pathogenesis. Carnitine palmitoyltransferase (CPT1A) is a key rate-limiting enzyme in the metabolic process of fatty acid oxidation (FAO). FAO regulates endothelial cell (EC) proliferation during vascular germination and is also essential for ab initio deoxyribonucleotide synthesis, but its role in EOPE needs to be further elucidated. In the present study, we investigated its functional role in EOPE by targeting the circHIPK3/miR-124-3p/CPT1A axis. In our study, reduced expression of circHIPK3 and CPT1A and increased expression of miR-124-3p in placental tissues from patients with EOPE were associated with EC dysfunction. Here, we confirmed that CPT1A regulates fatty acid oxidative activity, cell proliferation, and tube formation in ECs by regulating FAO. Functionally, knockdown of circHIPK3 suppressed EC angiogenesis by inhibiting CPT1A-mediated fatty acid oxidative activity, which was ameliorated by CPT1A overexpression. In addition, circHIPK3 regulates CPT1A expression by sponging miR-124-3p. Hence, circHIPK3 knockdown reduced fatty acid oxidation in ECs by sponging miR-124-3p in a CPT1A-dependent manner and inhibited EC proliferation and tube formation, which may have led to aberrant angiogenesis in EOPE. Thus, strategies targeting CPT1A-driven FAO may be promising approaches for the treatment of EOPE. KEY MESSAGES: Decreased Carnitine palmitoyltransferase (CPT1A) expression in preeclampsia(PE). CPT1A overexpression promotes FAO activity and tube formation in ECs. CircHIPK3 can affect CPT1A expression and impaire angiogenesis of EOPE. CircHIPK3 regulates CPT1A expression by acting as a ceRNA of miR-124-3p in HUVECs. Confirming the effect of circHIPK3/miR-124-3p/CPT1A axis on EOPE.


Assuntos
Carnitina O-Palmitoiltransferase , Ácidos Graxos , MicroRNAs , Oxirredução , Pré-Eclâmpsia , MicroRNAs/genética , MicroRNAs/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Humanos , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/genética , Feminino , Gravidez , Ácidos Graxos/metabolismo , Proliferação de Células , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , RNA Circular/genética , RNA Circular/metabolismo , Placenta/metabolismo , Adulto , Células Endoteliais da Veia Umbilical Humana/metabolismo , Angiogênese
9.
Chem Biol Interact ; 399: 111119, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936533

RESUMO

Hepatic stellate cells (HSCs) are a major source of fibrogenic cells and play a central role in liver fibrogenesis. HSC activation depends on metabolic activation, for which it is well established that fatty acid oxidation (FAO) sustains their rapid proliferative rate. Studies have indicated that tanshinones inhibit HSC activation, however, the anti-fibrosis mechanisms of tanshinones are remain unclear. Herein, we reported that cryptotanshinone (CTS), a lipid-soluble ingredient of Salvia miltiorrhiza Bunge, exhibited the strongest inhibitory effects on HSC-LX2 proliferation and activation. CTS could induce lipocyte phenotype in mouse primary HSC and HSC-LX2. Transcriptomic sequencing and qPCR revealed that CTS regulated fatty acid metabolism and inhibited CPT1A and CPT1B expression. Target prediction suggested CTS regulates lipid metabolism by targeting STAT3. Mechanistically, the level of ATP and acetyl-CoA were reduced by the treatment of CTS, indicating that CTS could inhibit the level of FAO. Furthermore, CTS could inhibit the phosphorylation and nuclear translocation of STAT3. Additionally, CPT1A overexpression reversed the efficacy of CTS. Finally, CTS (40 mg/kg/day) attenuated CCl4-induced liver fibrosis and inhibited collagen production and HSC activation. Moreover, the results of immunofluorescence showed that α-SMA and p-STAT3 were co-located, and CTS could reduce the levels of p-STAT3 and α-SMA. In summary, CTS alleviated liver fibrosis by inhibiting the p-STAT3/CPT1A-dependent FAO both in vitro and in vivo, making it a potential candidate drug for the treatment of liver fibrosis.


Assuntos
Carnitina O-Palmitoiltransferase , Ácidos Graxos , Células Estreladas do Fígado , Cirrose Hepática , Oxirredução , Fenantrenos , Fator de Transcrição STAT3 , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fenantrenos/farmacologia , Fenantrenos/química , Animais , Fator de Transcrição STAT3/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Ácidos Graxos/metabolismo , Camundongos , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Oxirredução/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Proliferação de Células/efeitos dos fármacos , Humanos , Tetracloreto de Carbono , Linhagem Celular
10.
Cancer Lett ; 595: 217006, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38823763

RESUMO

Driver genomic mutations in tumors define specific molecular subtypes that display distinct malignancy competence, therapeutic resistance and clinical outcome. Although TP53 mutation has been identified as the most common mutation in hepatocellular carcinoma (HCC), current understanding on the biological traits and therapeutic strategies of this subtype has been largely unknown. Here, we reveal that fatty acid ß oxidation (FAO) is remarkable repressed in TP53 mutant HCC and which links to poor prognosis in HCC patients. We further demonstrate that carnitine palmitoyltransferase 1 (CPT1A), the rate-limiting enzyme of FAO, is universally downregulated in liver tumor tissues, and which correlates with poor prognosis in HCC and promotes HCC progression in the de novo liver tumor and xenograft tumor models. Mechanically, hepatic Cpt1a loss disrupts lipid metabolism and acetyl-CoA production. Such reduction in acetyl-CoA reduced histone acetylation and epigenetically reprograms branched-chain amino acids (BCAA) catabolism, and leads to the accumulation of cellular BCAAs and hyperactivation of mTOR signaling. Importantly, we reveal that genetic ablation of CPT1A renders TP53 mutant liver cancer mTOR-addicted and sensitivity to mTOR inhibitor AZD-8055 treatment. Consistently, Cpt1a loss in HCC directs tumor cell therapeutic response to AZD-8055. CONCLUSION: Our results show genetic evidence for CPT1A as a metabolic tumor suppressor in HCC and provide a therapeutic approach for TP53 mutant HCC patients.


Assuntos
Carcinoma Hepatocelular , Carnitina O-Palmitoiltransferase , Neoplasias Hepáticas , Mutação , Proteína Supressora de Tumor p53 , Humanos , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Animais , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Metabolismo dos Lipídeos/genética , Transdução de Sinais , Acetilcoenzima A/metabolismo , Regulação Neoplásica da Expressão Gênica , Masculino
11.
Cell Commun Signal ; 22(1): 283, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783346

RESUMO

BACKGROUND: In addition to functioning as a precise monitoring mechanism in cell cycle, the anaphase-promoting complex/cyclosome (APC/C) is reported to be involved in regulating multiple metabolic processes by facilitating the ubiquitin-mediated degradation of key enzymes. Fatty acid oxidation is a metabolic pathway utilized by tumor cells that is crucial for malignant progression; however, its association with APC/C remains to be explored. METHODS: Cell cycle synchronization, immunoblotting, and propidium iodide staining were performed to investigate the carnitine palmitoyltransferase 1 C (CPT1C) expression manner. Proximity ligation assay and co-immunoprecipitation were performed to detect interactions between CPT1C and APC/C. Flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium, inner salt (MTS) assays, cell-scratch assays, and transwell assays and xenograft transplantation assays were performed to investigate the role of CPT1C in tumor progression in vitro and in vivo. Immunohistochemistry was performed on tumor tissue microarray to evaluate the expression levels of CPT1C and explore its potential clinical value. RESULTS: We identified CPT1C as a novel APC/C substrate. CPT1C protein levels exhibited cell cycle-dependent fluctuations, peaking at the G1/S boundary. Elevated CPT1C accelerated the G1/S transition, facilitating tumor cell proliferation in vitro and in vivo. Furthermore, CPT1C enhanced fatty acid utilization, upregulated ATP levels, and decreased reactive oxygen species levels, thereby favoring cell survival in a harsh metabolic environment. Clinically, high CPT1C expression correlated with poor survival in patients with esophageal squamous cell carcinoma. CONCLUSIONS: Overall, our results revealed a novel interplay between fatty acid utilization and cell cycle machinery in tumor cells. Additionally, CPT1C promoted tumor cell proliferation and survival by augmenting cellular ATP levels and preserving redox homeostasis, particularly under metabolic stress. Therefore, CPT1C could be an independent prognostic indicator in esophageal squamous cell carcinoma.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase , Carnitina O-Palmitoiltransferase , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Humanos , Animais , Linhagem Celular Tumoral , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/genética , Metabolismo Energético/genética , Regulação para Cima , Progressão da Doença , Proliferação de Células , Camundongos Nus , Camundongos , Feminino , Masculino , Fase S , Camundongos Endogâmicos BALB C
12.
Nutrients ; 16(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38732501

RESUMO

Obesity can lead to excessive lipid accumulation in non-adipose tissues, such as the liver and skeletal muscles, leading to ectopic lipid deposition and damaging target organ function through lipotoxicity. FGF-21 is a key factor in regulating lipid metabolism, so we aim to explore whether FGF-21 is involved in improving ectopic lipid deposition. We observed the characteristics of ectopic lipid deposition in the liver and skeletal muscles of obesity-resistant mice, detected the expression of FGF-21 and perilipin, and found that obesity-resistant mice showed a decrease in ectopic lipid deposition in the liver and skeletal muscles and increased expression of FGF-21. After inhibiting the expression of FGF-21, a more severe lipid deposition in liver cells and skeletal muscle cells was found. The results indicate that inhibiting FGF-21 can exacerbate ectopic lipid deposition via regulating lipid droplet synthesis and decomposition, as well as free fatty acid translocation and oxidation. In conclusion, FGF-21 is involved in improving ectopic lipid deposition caused by obesity in the liver and skeletal muscles.


Assuntos
Fatores de Crescimento de Fibroblastos , Metabolismo dos Lipídeos , Fígado , Músculo Esquelético , Obesidade , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Músculo Esquelético/metabolismo , Fígado/metabolismo , Camundongos , Obesidade/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Perilipina-1/metabolismo , Gotículas Lipídicas/metabolismo
13.
Naunyn Schmiedebergs Arch Pharmacol ; 397(9): 7129-7139, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38652282

RESUMO

The clinical usage of doxorubicin (DOX) is hampered due to cardiomyopathy. Studies reveal that estrogen (E2) modulates DOX-induced cardiotoxicity. Yet, the exact mechanism is unclear. The objective of the current study is to evaluate the influence of E2 and more specifically its metabolite 2-methoxyestradiol (2ME) on cardiac remodeling and the reprogramming of cardiac metabolism in rats subjected to DOX cardiotoxicity. Seventy-two female rats were divided into groups. Cardiotoxicity was induced by administering DOX (2.5 mg/kg three times weekly for 2 weeks). In some groups, the effect of endogenous E2 was abolished by ovariectomy (OVX) or by using the estrogen receptor (ER) blocker Fulvestrant (FULV). The effect of administering exogenous E2 or 2ME in the OVX group was studied. Furthermore, the influence of entacapone (COMT inhibitor) on induced cardiotoxicity was investigated. The evaluated cardiac parameters included ECG, histopathology, cardiac-related enzymes (creatine kinase isoenzyme-MB (CK-MB) and lactate dehydrogenase (LDH)), and lipid profile markers (total cholesterol (TC), triglyceride (TG), and high-density lipoprotein (HDL)). The expression levels of key metabolic enzymes (glucose transporter-4 (GLUT4) and carnitine palmitoyltransferase-1B (CPT-1B)) were assessed. Our results displayed that co-treatment of E2 and/or 2ME with DOX significantly reduced DOX-induced cardiomyopathy and enhanced the metabolism of the heart through the maintenance of GLUT4 and CPT-1B enzymes. On the other hand, co-treatment of DOX with OVX, entacapone, or FULV increased the toxic effect of DOX by further reducing these important metabolic enzymes. E2 and 2ME abrogate DOX-induced cardiomyopathy partly through modulation of GLUT 4 and CPT-1B enzymes.


Assuntos
2-Metoxiestradiol , Cardiotoxicidade , Carnitina O-Palmitoiltransferase , Doxorrubicina , Transportador de Glucose Tipo 4 , Ovariectomia , Animais , Feminino , Doxorrubicina/toxicidade , 2-Metoxiestradiol/farmacologia , Cardiotoxicidade/tratamento farmacológico , Carnitina O-Palmitoiltransferase/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Ratos , Ratos Wistar , Nitrilas/farmacologia , Nitrilas/toxicidade , Antibióticos Antineoplásicos/toxicidade , Estradiol/farmacologia , Estradiol/análogos & derivados , Miocárdio/metabolismo , Miocárdio/patologia , Catecóis
14.
J Nutr Biochem ; 128: 109626, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527560

RESUMO

Along with the increasing prevalence of obesity worldwide, the deleterious effects of high-calorie diet are gradually recognized through more and more epidemiological studies. However, the concealed and chronic causality whitewashes its unhealthy character. Given an ingenious mechanism orchestrates the metabolic adaptation to high-fat high-fructose (HFF) diet and connive its lipotoxicity, in this study, an experimental rat/mouse model of obesity was induced and a comparative transcriptomic analysis was performed to probe the mystery. Our results demonstrated that HFF diet consumption altered the transcriptomic pattern as well as different high-calorie diet fed rat/mouse manifested distinct hepatic transcriptome. Validation with RT-qPCR and Western blotting confirmed that SREBP1-FASN involved in de novo lipogenesis partly mediated metabolic self-adaption. Moreover, hepatic ACSL1-CPT1A-CPT2 pathway involved in fatty acids ß-oxidation, played a key role in the metabolic adaption to HFF. Collectively, our findings enrich the knowledge of the chronic adaptation mechanisms and also shed light on future investigations. Meanwhile, our results also suggest that efforts to restore the fatty acids metabolic fate could be a promising avenue to fight against obesity and associated steatosis and insulin resistance challenged by HFF diet.


Assuntos
Dieta Hiperlipídica , Ácido Graxo Sintase Tipo I , Frutose , Fígado , Obesidade , Proteína de Ligação a Elemento Regulador de Esterol 1 , Transcriptoma , Animais , Frutose/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Masculino , Fígado/metabolismo , Obesidade/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Lipogênese , Camundongos Endogâmicos C57BL , Ratos , Camundongos , Ratos Sprague-Dawley , Ácidos Graxos/metabolismo
15.
Cancer Biol Ther ; 25(1): 2329372, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38494680

RESUMO

Succinylation modification involves in the progression of human cancers. The present study aimed to investigate the role of CPT1A, which is a succinyltransferase in the progression of prostate cancer (PCa). CCK-8 was used to detect the cell viability. Seahorse was performed to evaluate the cell glycolysis. Luciferase assay was used to detect the transcriptional regulation. ChIP was performed to assess the binding between transcriptional factors with the promoters. Co-IP was used to assess the binding between proteins. We found that CPT1A was highly expressed in PCa tissues and cell lines. Silencing of CPT1A inhibited the viability and glycolysis of PCa cells. Mechanistically, CPT1A promoted the succinylation of SP5, which strengthened the binding between SP5 and the promoter of PDPK1. SP5 activated PDPK1 transcription and PDPK1 activated the AKT/mTOR signal pathway. These findings might provide novel targets for the diagnosis or therapy of prostate cancer.


Assuntos
Neoplasias da Próstata , Fatores de Transcrição , Masculino , Humanos , Fatores de Transcrição/metabolismo , Linhagem Celular , Transdução de Sinais , Neoplasias da Próstata/genética , Glicólise , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo
16.
Front Immunol ; 15: 1334882, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426112

RESUMO

Immunosuppression increases the risk of nosocomial infection in patients with chronic critical illness. This exploratory study aimed to determine the immunometabolic signature associated with nosocomial infection during chronic critical illness. We prospectively recruited patients who were admitted to the respiratory care center and who had received mechanical ventilator support for more than 10 days in the intensive care unit. The study subjects were followed for the occurrence of nosocomial infection until 6 weeks after admission, hospital discharge, or death. The cytokine levels in the plasma samples were measured. Single-cell immunometabolic regulome profiling by mass cytometry, which analyzed 16 metabolic regulators in 21 immune subsets, was performed to identify immunometabolic features associated with the risk of nosocomial infection. During the study period, 37 patients were enrolled, and 16 patients (43.2%) developed nosocomial infection. Unsupervised immunologic clustering using multidimensional scaling and logistic regression analyses revealed that expression of nuclear respiratory factor 1 (NRF1) and carnitine palmitoyltransferase 1a (CPT1a), key regulators of mitochondrial biogenesis and fatty acid transport, respectively, in natural killer (NK) cells was significantly associated with nosocomial infection. Downregulated NRF1 and upregulated CPT1a were found in all subsets of NK cells from patients who developed a nosocomial infection. The risk of nosocomial infection is significantly correlated with the predictive score developed by selecting NK cell-specific features using an elastic net algorithm. Findings were further examined in an independent cohort of COVID-19-infected patients, and the results confirm that COVID-19-related mortality is significantly associated with mitochondria biogenesis and fatty acid oxidation pathways in NK cells. In conclusion, this study uncovers that NK cell-specific immunometabolic features are significantly associated with the occurrence and fatal outcomes of infection in critically ill population, and provides mechanistic insights into NK cell-specific immunity against microbial invasion in critical illness.


Assuntos
COVID-19 , Infecção Hospitalar , Humanos , Estado Terminal , Infecção Hospitalar/epidemiologia , Células Matadoras Naturais , Ácidos Graxos
17.
Sci Rep ; 14(1): 6280, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491077

RESUMO

Amiodarone repositioning in cancer treatment is promising, however toxicity limits seem to arise, constraining its exploitability. Notably, amiodarone has been investigated for the treatment of ovarian cancer, a tumour known for metastasizing within the peritoneal cavity. This is associated with an increase of fatty acid oxidation, which strongly depends on CPT1A, a transport protein which has been found overexpressed in ovarian cancer. Amiodarone is an inhibitor of CPT1A but its role still has to be explored. Therefore, in the present study, amiodarone was tested on ovarian cancer cell lines with a focus on lipid alteration, confirming its activity. Moreover, considering that drug delivery systems could lower drug side effects, microfluidics was employed for the development of drug delivery systems of amiodarone obtaining simultaneously liposomes with a high payload and amiodarone particles. Prior to amiodarone loading, microfluidics production was optimized in term of temperature and flow rate ratio. Moreover, stability over time of particles was evaluated. In vitro tests confirmed the efficacy of the drug delivery systems.


Assuntos
Amiodarona , Nanopartículas , Neoplasias Ovarianas , Humanos , Feminino , Amiodarona/farmacologia , Amiodarona/uso terapêutico , Reposicionamento de Medicamentos , Microfluídica , Lipossomos/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia
18.
Biochem Biophys Rep ; 38: 101661, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38384389

RESUMO

After a meal, excess nutrients are stored within adipose tissue as triglycerides in lipid droplets. Previous genome-wide RNAi screens in Drosophila cells have identified mRNA splicing factors as being important for lipid droplet formation. Our lab has previously shown that a class of mRNA splicing factors called serine/arginine-rich (SR) proteins, which help to identify intron/exon borders, are important for triglyceride storage in Drosophila fat tissue, partially by regulating the splicing of the gene for carnitine palmitoyltransferase 1 (CPT1), an enzyme important for mitochondrial ß-oxidation of fatty acids. The CPT1 gene in Drosophila generates two major isoforms, with transcripts that include exon 6A producing more active enzymes than ones made from transcripts containing exon 6B; however, whether nutrient availability regulates CPT1 splicing in fly fat tissue is not known. During ad libitum feeding, control flies produce more CPT1 transcripts containing exon 6B while fasting for 24 h results in a shift in CPT1 splicing to generate more transcripts containing exon 6A. The SR protein 9G8 is necessary for regulating nutrient responsive CPT1 splicing as decreasing 9G8 levels in fly fat tissue blocks the accumulation of CPT1 transcripts including exon 6A during starvation. Protein kinase A (PKA), a mediator of starvation-induced lipid breakdown, also regulates CPT1 splicing during starvation as transcripts including exon 6A did not accumulate when PKA was inhibited during starvation. Together, these results indicate that CPT1 splicing in adipose tissue responds to changes in nutrient availability contributing to the overall control of lipid homeostasis.

19.
Environ Int ; 185: 108488, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38359550

RESUMO

Inorganic trivalent arsenic (iAsⅢ) at environmentally relevant levels has been found to cause developmental toxicity. Maternal exposure to iAsⅢ leads to enduring hepatic lipid deposition in later adult life. However, the exact mechanism in iAsⅢ induced hepatic developmental hazards is still unclear. In this study, we initially found that gestational exposure to iAsⅢ at an environmentally relevant concentration disturbs lipid metabolism and reduces levels of alpha-ketoglutaric acid (α-KG), an important mitochondrial metabolite during the citric acid cycle, in fetal livers. Further, gestational supplementation of α-KG alleviated hepatic lipid deposition caused by early-life exposure to iAsⅢ. This beneficial effect was particularly pronounced in female offspring. α-KG partially restored the ß-oxidation process in hepatic tissues by hydroxymethylation modifications of carnitine palmitoyltransferase 1a (Cpt1a) gene during fetal development. Insufficient ß-oxidation capacities probably play a crucial role in hepatic lipid deposition in adulthood following in utero arsenite exposure, which can be efficiently counterbalanced by replenishing α-KG. These results suggest that gestational administration of α-KG can ameliorate hepatic lipid deposition caused by iAsⅢ in female adult offspring partially through epigenetic reprogramming of the ß-oxidation pathway. Furthermore, α-KG shows potential as an interventive target to mitigate the harmful effects of arsenic-induced hepatic developmental toxicity.


Assuntos
Intoxicação por Arsênico , Arsênio , Arsenicais , Humanos , Adulto , Feminino , Arsênio/toxicidade , Arsênio/metabolismo , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Arsenicais/metabolismo , Intoxicação por Arsênico/metabolismo , Fígado , Suplementos Nutricionais , Epigênese Genética , Lipídeos
20.
Lipids Health Dis ; 23(1): 37, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308271

RESUMO

BACKGROUND: Interstitial fibrosis and tubular atrophy (IF/TA), a histologic feature of kidney allograft destruction, is linked to decreased allograft survival. The role of lipid metabolism is well-acknowledged in the area of chronic kidney diseases; however, its role in kidney allograft fibrosis is still unclarified. In this study, how lipid metabolism contributes to kidney allografts fibrosis was examined. METHODS: A comprehensive bioinformatic comparison between IF/TA and normal kidney allograft in the Gene Expression Omnibus (GEO) database was conducted. Further validations through transcriptome profiling or pathological staining of human recipient biopsy samples and in rat models of kidney transplantation were performed. Additionally, the effects of enhanced lipid metabolism on changes in the fibrotic phenotype induced by TGF-ß1 were examined in HK-2 cell. RESULTS: In-depth analysis of the GEO dataset revealed a notable downregulation of lipid metabolism pathways in human kidney allografts with IF/TA. This decrease was associated with increased level of allograft rejection, inflammatory responses, and epithelial mesenchymal transition (EMT). Pathway enrichment analysis showed the downregulation in mitochondrial LC-fatty acid beta-oxidation, fatty acid beta-oxidation (FAO), and fatty acid biosynthesis. Dysregulated fatty acid metabolism was also observed in biopsy samples from human kidney transplants and in fibrotic rat kidney allografts. Notably, the areas affected by IF/TA had increased immune cell infiltration, during which increased EMT biomarkers and reduced CPT1A expression, a key FAO enzyme, were shown by immunohistochemistry. Moreover, under TGF-ß1 induction, activating CPT1A with the compound C75 effectively inhibited migration and EMT process in HK-2 cells. CONCLUSIONS: This study reveal a critical correlation between dysregulated lipid metabolism and kidney allograft fibrosis. Enhancing lipid metabolism with CPT1A agonists could be a therapeutic approach to mitigate kidney allografts fibrosis.


Assuntos
Metabolismo dos Lipídeos , Fator de Crescimento Transformador beta1 , Humanos , Ratos , Animais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Metabolismo dos Lipídeos/genética , Rim/metabolismo , Fibrose , Aloenxertos/metabolismo , Aloenxertos/patologia , Ácidos Graxos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA