Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 646
Filtrar
1.
Clin Chim Acta ; 564: 119906, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39127296

RESUMO

Mycoplasma pneumoniae can cause respiratory infections and pneumonia, posing a serious threat to the health of children and adolescents. Early diagnosis of Mycoplasma pneumoniae infection is crucial for clinical treatment. Currently, diagnostic methods for Mycoplasma pneumoniae infection include pathogen detection, molecular biology techniques, and bacterial culture, all of which have certain limitations. Here, we developed a rapid, simple, and accurate detection method for Mycoplasma pneumoniae that does not rely on large equipment or complex operations. This technology combines the CRISPR-Cas12a system with recombinase polymerase amplification (RPA), allowing the detection results to be observed through fluorescence curves and immunochromatographic lateral flow strips.It has been validated that RPA-CRISPR/Cas12a fluorescence analysis and RPA-CRISPR/Cas12-immunochromatographic exhibit no cross-reactivity with other common pathogens, and The established detection limit was ascertained to be as low as 102 copies/µL.Additionally, 49 clinical samples were tested and compared with fluorescence quantitative polymerase chain reaction, demonstrating a sensitivity and specificity of 100%. This platform exhibits promising clinical performance and holds significant potential for clinical application, particularly in settings with limited resources, such as clinical care points or resource-constrained areas.


Assuntos
Sistemas CRISPR-Cas , Mycoplasma pneumoniae , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/isolamento & purificação , Humanos , Sistemas CRISPR-Cas/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Pneumonia por Mycoplasma/diagnóstico , Pneumonia por Mycoplasma/microbiologia
2.
Infect Dis (Lond) ; : 1-11, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264585

RESUMO

OBJECTIVE: Accurate and rapid identification of causative pathogens is essential to guide the clinical management of lower respiratory tract infections (LRTIs). Here we conducted a single-centre prospective study in 284 patients suspected of lower respiratory tract infections to evaluate the utility of a nucleic acid test based on highly multiplexed polymerase chain reaction (PCR) and CRISPR-Cas12a. METHODS: We determined the analytical and diagnostic performance of the CRISPR assay using a combination of reference standards, including conventional microbiological tests (CMTs), metagenomic Next-Generation Sequencing (mNGS), and clinical adjudication by a panel of experts on infectious diseases and microbiology. RESULTS: The CRISPR assay showed a higher detection rate (63.0%) than conventional microbiological tests (38.4%) and was lower than metagenomic Next-Generation Sequencing (72.9%). In detecting polymicrobial infections, the positivity rate of the CRISPR assay (19.4%) was higher than conventional microbiological tests (3.5%) and lower than metagenomic Next-Generation Sequencing (28.9%). The overall diagnostic sensitivity of the CRISPR assay (67.8%) was higher than conventional microbiological tests (41.8%), and lower than metagenomic Next-Generation Sequencing (93.2%). CONCLUSIONS: Considering the low cost, ease of operation, short turnaround time, and broad range of pathogens detected in a single test, the CRISPR assay has the potential to be implemented as a screening tool for the aetiological diagnosis of lower respiratory tract infections patients, especially in cases where atypical bacteria or coinfections are suspected.

3.
Talanta ; 281: 126795, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39236519

RESUMO

This study introduces a novel electrochemical biosensor for detecting Matrix Metalloproteinase-2 (MMP-2), a key biomarker in cancer diagnostics and tissue remodeling. The biosensor is based on a dual-amplification strategy utilizing T7 RNA polymerase isothermal amplification and CRISPR-Cas12a technology. The principle involves the release of a DNA template in the presence of MMP-2, leading to RNA synthesis by T7 RNA polymerase. This RNA activates CRISPR-Cas12a, which cleaves a DNA probe on the electrode surface, resulting in a measurable electrochemical signal.The biosensor demonstrated exceptional sensitivity, with a detection limit of 2.62 fM for MMP-2. This high sensitivity was achieved through the combination of transcriptional amplification and the collateral cleavage activity of CRISPR-Cas12a, which amplifies the signal. The sensor was able to detect MMP-2 across a wide dynamic range from 2 fM to 1 nM, showing a strong linear correlation between MMP-2 concentration and the electrochemical signal. In practical applications, the biosensor accurately detected elevated levels of MMP-2 in cell culture supernatants from HepG2 liver cancer cells, distinguishing them from normal LO2 liver cells. The use of an MMP-2 inhibitor confirmed the specificity of the detection. These results underscore the biosensor's potential for clinical diagnostics, particularly in early cancer detection and monitoring of tissue remodeling activities. The biosensor's design allows for rapid, point-of-care testing without the need for complex laboratory equipment, making it a promising tool for personalized healthcare and diagnostic applications.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125056, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39217955

RESUMO

The overexpression of vascular endothelial growth factor 165 (VEGF165) in cancer cells plays a pivotal role in promoting tumor metastasis by facilitating their excessively rapid proliferation and division. Hence, the development of analytical methods possessing high sensitivity and resistance to interference is imperative for the detection of VEGF165. Various types of aptasensors have been devised for VEGF165 detection; however, the performance of these biosensors can be influenced by non-target signals caused by conformational changes in unbound aptamers. The paper shows the creation of a precise and sensitive fluorescence biosensor designed to detect VEGF165 by using a VEGF165-specific split aptamer. Additionally, this biosensor employs nicking enzyme-assisted DNA walker coupling with CRISPR-Cas12a to achieve dual-signal amplification. The VEGF165 calibration curve shows a detection limit of 268 fM and has a broad linear range from 5 to 4000 nM. The fluorometric biosensor was utilized to detect VEGF165 in human serum and cellular homogenate samples, yielding good outcomes. The innovative design serves as proof of concept and demonstrates significant potential in detecting various targets.

5.
Anal Chim Acta ; 1324: 343040, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218584

RESUMO

BACKGROUND: Persistent infection with human papillomavirus (HPV) significantly contributes to the development of cervical cancer. Thus, it is urgent to develop rapid and accurate methods for HPV detection. Herein, we present an ultrasensitive CRISPR/Cas12a-based electrochemiluminescent (ECL) imaging technique for the detection of HPV-18 DNA. RESULT: The ECL DNA sensor array is constructed by applying black hole quencher (BHQ) and polymer dots (Pdots) co-labeled hairpin DNA (hpDNA) onto a gold-coated indium tin oxide slide (Au-ITO). The ECL imaging method involves an incubation process of target HPV-18 with a mixture of crRNA and Cas12a to activate Cas12a, followed by an incubation of the active Cas12a with the ECL sensor. This interaction causes the indiscriminate cleavage of BHQ from Pdots by digesting hpDNA on the sensor surface, leading to the restoration of the ECL signal of Pdots. The ECL brightness readout demonstrates superior performance of the ECL imaging technique, with a linear detection range of 10 fM-500 pM and a limit-of-detection (LOD) of 5.3 fM. SIGNIFICANCE: The Cas12a-based ECL imaging approach offers high sensitivity and a broad detection range, making it highly promising for nucleic acid detection applications.


Assuntos
Sistemas CRISPR-Cas , Técnicas Eletroquímicas , Medições Luminescentes , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Sistemas CRISPR-Cas/genética , Humanos , Técnicas Biossensoriais/métodos , DNA Viral/análise , DNA Viral/genética , Papillomavirus Humano 18/genética , Limite de Detecção , Ouro/química , Proteínas Associadas a CRISPR , Proteínas de Bactérias , Endodesoxirribonucleases
6.
Food Chem ; 463(Pt 1): 141088, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39241431

RESUMO

Salmo salar is one of the most popular salmon species due to its meaty texture and quality protein. Oncorhynchus mykiss, which has a muscle texture similar to that of Salmo salar and is less expensive, is often used as a substitute for Salmo salar. As Salmo salar and Oncorhynchus mykiss belong to the same subfamily of Salmonidae, traditional methods are ineffective in the specific detection of the two. In this study, we combined hue-change with CRISPR/Cas12a lateral flow assay to detect the Salmo salar adulteration. This method detected S. salar genomic DNA at a vLOD of 5 copies, and was able to accurately identify adulterated samples containing 5 % w/w Salmo salar within one hour. In addition, the detection of Salmo salar in processed food products was achieved with the naked-eye at a concentration range of 0 % âˆ¼ 70 % w/w, and the detection accuracy is between 93.3 % âˆ¼ 100 %.

7.
Food Microbiol ; 124: 104622, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39244373

RESUMO

Escherichia coli O157:H7 is a pathogenic serotype of Escherichia coli. Consumption of food contaminated with E. coli O157:H7 could cause a range of diseases. Therefore, it is of great importance to establish rapid and accurate detection methods for E. coli O157:H7 in food. In this study, based on LAMP and combined with the CRISPR/cas12a system, a sensitive and specific rapid detection method for E. coli O157:H7 was established, and One-Pot detection method was also constructed. The sensitivity of this method could stably reach 9.2 × 10° CFU/mL in pure culture, and the whole reaction can be completed within 1 h. In milk, E. coli O157:H7 with an initial contamination of 7.4 × 10° CFU/mL only needed to be cultured for 3 h to be detected. The test results can be judged by the fluorescence curve or by visual observation under a UV lamp, eliminating instrument limitations and One-Pot detection can effectively prevent the problem of false positives. In a word, the LAMP-CRISPR/cas12a system is a highly sensitive and convenient method for detecting E. coli O157:H7.


Assuntos
Sistemas CRISPR-Cas , Escherichia coli O157 , Microbiologia de Alimentos , Leite , Técnicas de Amplificação de Ácido Nucleico , Escherichia coli O157/genética , Escherichia coli O157/isolamento & purificação , Leite/microbiologia , Microbiologia de Alimentos/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Animais , Sensibilidade e Especificidade , Contaminação de Alimentos/análise , Técnicas de Diagnóstico Molecular/métodos
8.
Front Cell Infect Microbiol ; 14: 1454076, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39233906

RESUMO

Introduction: Mycobacterium tuberculosis, the causative agent of human tuberculosis, poses a significant threat to global public health and imposes a considerable burden on the economy. However, existing laboratory diagnostic methods for M. tuberculosis are time-consuming and have limited sensitivity levels. Methods: The CRISPR/Cas system, commonly known as the "gene scissors", demonstrates remarkable specificity and efficient signal amplification capabilities. Enzymatic recombinase amplification (ERA) was utilized to rapidly amplify trace DNA fragments at a consistent temperature without relying on thermal cyclers. By integrating of CRISPR/Cas12a with ERA, we successfully developed an ERA-CRISPR/Cas12a detection system that enables rapid identification of M. tuberculosis. Results: The sensitivity of the ERA-CRISPR/Cas12a fluorescence and lateral flow systems was 9 copies/µL and 90 copies/µL, respectively. Simultaneously, the detection system exhibited no cross-reactivity with various of respiratory pathogens and non-tuberculosis mycobacteria, demonstrating a specificity of 100%. The positive concordance rate between the ERA-CRISPR/Cas12a fluorescence system and commercial qPCR was 100% in 60 clinical samples. Meanwhile, the lateral flow system showed a positive concordance rate of 93.8% when compared to commercial qPCR. Both methods demonstrated a negative concordance rate of 100%, and the test results can be obtained in 50 min at the earliest. Discussion: The ERA-CRISPR/Cas12a system offers a rapid, sensitive, and specific method that presents a novel approach to laboratory diagnosis of M. tuberculosis.


Assuntos
Sistemas CRISPR-Cas , Mycobacterium tuberculosis , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Tuberculose/diagnóstico , Tuberculose/microbiologia , Recombinases/metabolismo , Recombinases/genética , Técnicas de Diagnóstico Molecular/métodos , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Proteínas Associadas a CRISPR/genética , Endodesoxirribonucleases
9.
Biosens Bioelectron ; 263: 116627, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39102774

RESUMO

The complex sample matrix poses significant challenges in accurately detecting heavy metals. In view of its superior performance for the biological adsorption of heavy metals, probiotic bacteria can be explored for functional unit to eliminate matrix interference. Herein, Lactobacillus rhamnosus (LGG) demonstrates a remarkable tolerance and can adsorb up to 300 µM of Hg2+, following the Freundlich isotherm model with the correlation coefficient (R2) value of 0.9881. Subsequently, by integrating the CRISPR/Cas12a system, a sensitive and specific fluorescent biosensor, "Cas12a-MB," has been developed for Hg2+ detection. Specifically, Hg2+ adsorbed onto LGG can specifically bind to the nucleic acid probe, thereby inhibiting the binding of the probe to LGG and the subsequent activation of the CRISPR/Cas12a system. Under optimal experimental conditions, with the detection time of 90 min and the detection limit of 0.44 nM, the "Cas12a-MB" biosensor offers a novel, eco-friendly approach for Hg2+ detection, showcasing the innovative application of probiotics in biosensor.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Lacticaseibacillus rhamnosus , Mercúrio , Probióticos , Mercúrio/análise , Mercúrio/química , Técnicas Biossensoriais/métodos , Probióticos/química , Lacticaseibacillus rhamnosus/isolamento & purificação , Lacticaseibacillus rhamnosus/genética , Adsorção , Limite de Detecção
10.
Biosens Bioelectron ; 263: 116631, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39111252

RESUMO

With significant advancements in understanding gene functions and therapy, the potential misuse of gene technologies, particularly in the context of sports through gene doping (GD), has come to the forefront. This raises concerns regarding the need for point-of-care testing of various GD candidates to counter illicit practices in sports. However, current GD detection techniques, such as PCR, lack the portability required for on-site multiplexed detection. In this study, we introduce an integrated microfluidics-based chip for multiplexed gene doping detection, termed MGD-Chip. Through the strategic design of hydrophilic and hydrophobic channels, MGD-Chip enables the RPA and CRISPR-Cas12a assays to be sequentially performed on the device, ensuring minimal interference and cross-contamination. Six potential GD candidates were selected and successfully tested simultaneously on the platform within 1 h. Demonstrating exceptional specificity, the platform achieved a detection sensitivity of 0.1 nM for unamplified target plasmids and 1 aM for amplified ones. Validation using mouse models established by injecting IGFI and EPO transgenes confirmed the platform's efficacy in detecting gene doping in real samples. This technology, capable of detecting multiple targets using portable elements, holds promise for real-time GD detection at sports events, offering a rapid, highly sensitive, and user-friendly solution to uphold the integrity of sports competitions.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Dopagem Esportivo , Interações Hidrofóbicas e Hidrofílicas , Dispositivos Lab-On-A-Chip , Sistemas CRISPR-Cas/genética , Dopagem Esportivo/prevenção & controle , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Camundongos , Humanos , Eritropoetina/genética , Eritropoetina/análise , Desenho de Equipamento , Proteínas Associadas a CRISPR/genética , Proteínas de Bactérias , Endodesoxirribonucleases
11.
Anal Chim Acta ; 1320: 343027, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142774

RESUMO

Single-nucleotide polymorphism (SNP) detection is critical for diagnosing diseases, and the development of rapid and accurate diagnostic tools is essential for treatment and prevention. Allele-specific polymerase chain reaction (AS-PCR) is widely used for detecting SNPs with multiplexing capabilities, while CRISPR-based technologies provide high sensitivity and specificity in targeting mutation sites through specific guide RNAs (gRNAs). In this study, we have integrated the high sensitivity and specificity of CRISPR technology with the multiplexing capabilities of AS-PCR, achieving the simultaneous detection of ten single-base mutations. As for Multi-AS-PCR, our research identified that competitive inhibition of primers targeting the same loci, coupled with divergent amplification efficiencies of these primers, could result in diminished amplification efficiency. Consequently, we adjusted and optimized primer combinations and ratios to enhance the amplification efficacy of Multi-AS-PCR. Finally, we successfully developed a novel nested Multi-AS-PCR-Cas12a method for multiplex SNPs detection. To evaluate the clinical utility of this method in a real-world setting, we applied it to diagnose rifampicin-resistant tuberculosis (TB). The limit of detection (LoD) for the nested Multi-AS-PCR-Cas12a was 102 aM, achieving sensitivity, specificity, positive predictive value, and negative predictive value of 100 %, 93.33 %, 90.00 %, and 100 %, respectively, compared to sequencing. In summary, by employing an innovative design that incorporates a universal reverse primer alongside ten distinct forward allele-specific primers, the nested Multi-AS-PCR-Cas12a technique facilitates the parallel detection of ten rpoB gene SNPs. This method also holds broad potential for the detection of drug-resistant gene mutations in infectious diseases and tumors, as well as for the screening of specific genetic disorders.


Assuntos
Sistemas CRISPR-Cas , Polimorfismo de Nucleotídeo Único , Sistemas CRISPR-Cas/genética , Humanos , Reação em Cadeia da Polimerase/métodos , Mutação , Mycobacterium tuberculosis/genética , Rifampina/farmacologia , Limite de Detecção , Reação em Cadeia da Polimerase Multiplex/métodos , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/genética , Proteínas de Bactérias , Endodesoxirribonucleases , Proteínas Associadas a CRISPR
12.
Pest Manag Sci ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096082

RESUMO

BACKGROUND: Peach brown rot caused by Monilinia fructicola severely affects the quality and yield of peach, resulting in large economic losses worldwide. Methyl benzimidazole carbamate (MBC) fungicides and sterol demethylation inhibitor (DMI) fungicides are among the most applied chemical classes used to control the disease but resistance in the target pathogen has made them risky choices. Timely monitoring of resistance to these fungicides in orchards could prevent control failure in practice. RESULTS: In the current study, we developed methods based on recombinase polymerase amplification (RPA) and CRISPR/Cas12a systems to detect MBC and DMI resistance based on the E198A mutation in the ß-tubulin (MfTub2) gene and the presence of the Mona element in the upstream region of the MfCYP51, respectively. For MBC resistance, RPA primers were designed that artificially incorporated PAM sites to facilitate the CRISPR/Cas12a reaction. Subsequently, specific tcrRNAs were designed based on the E198A mutation site. For the detection of the Mona element, we designed RPA primers M-DMI-F2/M-DMI-R1 that in combination with crRNA1 detected 'Mona' and distinguished resistant from sensitive strains. CONCLUSION: Both methods exhibited high sensitivity and specificity, requiring only a simple isothermal device to obtain results within 1 h at 37 °C. The FQ-reporter enabled visualization with a handheld UV or white light flashlight. This method was successfully used with purified DNA from lab cultures and crude DNA from symptomatic fruit tissue, highlighting its potential for on-site detection of resistant strains in orchards. © 2024 Society of Chemical Industry.

13.
Anal Chim Acta ; 1321: 343048, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39155100

RESUMO

BACKGROUND: It is estimated that over 50 % of human cancers are caused by mutations in the p53 gene. Early sensitive and accurate detection of the p53 gene is important for diagnosis of cancers in the early stage. However, conventional detection techniques often suffer from strict reaction conditions, or unsatisfied sensitivity, so we need to develop a new strategy for accurate detection of p53 gene with smart designability, multiple signal amplification in mild reaction conditions. RESULTS: In this study, CRISPR/Cas system is exploited in entropy-driven catalysis (EDC) and hybridization chain reaction (CHA) dual signal amplification sensing strategies. The products of both reactions can efficiently and separately activate CRISPR/Cas12a which greatly amplifies the fluorescent signal. The method has good linearity in p53 detection with the concentration ranged from 0.1 fM to 0.5 pM with ultra-low detection limit of 0.096 fM. It also showed good performance in serum, offering potentials for early disease detection. SIGNIFICANCE: The designed dual amplification dynamic DNA network system exhibits an ultra-sensitive fluorescence biosensing for p53 gene identification. The method is simple to operate and requires only one buffer for the experiment, and meanwhile shows smart designability which could be used for a wide range of markers. Thus, we believe the present work will provide a potential tool for the construction and development of sensitive fluorescent biosensors for diseases.


Assuntos
Sistemas CRISPR-Cas , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Sistemas CRISPR-Cas/genética , Humanos , Técnicas de Amplificação de Ácido Nucleico , Técnicas Biossensoriais/métodos , DNA/química , DNA/genética , Limite de Detecção , Genes p53 , Hibridização de Ácido Nucleico
14.
Biosens Bioelectron ; 263: 116635, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39116629

RESUMO

Epidermal growth factor receptor (EGFR) mutation status is pivotal in predicting the efficacy of tyrosine kinase inhibitor treatments against tumors. Among EGFR mutations, the E746-A750 deletion is particularly common and accurately quantifying it can guide targeted therapies. This study introduces a novel visual sensing technology using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system guided by ligation-initiated loop-mediated isothermal amplification (LAMP) to detect the del E746-A750 mutation in EGFR. Conventional LAMP primers were simplified by designing a pair of target-specific stem-loop DNA probes, enabling selective amplification of the target DNA. The CRISPR/Cas12a system was employed to identify the target nucleic acid and activate Cas12a trans-cleavage activity, thereby enhancing the specificity of the assay. Furthermore, the biosensor utilized high-performance nanomaterials such as triangular gold nanoparticles and graphdiyne, known for their large specific surface area, to enhance sensitivity effectively as a sensing platform. The proposed biosensor demonstrated outstanding specificity, achieving a low detection limit of 17 fM (S/N = 3). Consequently, this innovative strategy not only expands the application scope of CRISPR/Cas12a technology but also introduces a promising approach for clinical diagnostics in modern medicine.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Receptores ErbB , Técnicas de Amplificação de Ácido Nucleico , Técnicas Biossensoriais/métodos , Sistemas CRISPR-Cas/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Humanos , Receptores ErbB/genética , Técnicas Eletroquímicas/métodos , Limite de Detecção , Ouro/química , Nanopartículas Metálicas/química , Deleção de Sequência , Proteínas de Bactérias , Endodesoxirribonucleases , Técnicas de Diagnóstico Molecular , Proteínas Associadas a CRISPR
15.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125741

RESUMO

The Penicillium genus exhibits a broad global distribution and holds substantial economic value in sectors including agriculture, industry, and medicine. Particularly in agriculture, Penicillium species significantly impact plants, causing diseases and contamination that adversely affect crop yields and quality. Timely detection of Penicillium species is crucial for controlling disease and preventing mycotoxins from entering the food chain. To tackle this issue, we implement a novel species identification approach called Analysis of whole GEnome (AGE). Here, we initially applied bioinformatics analysis to construct specific target sequence libraries from the whole genomes of seven Penicillium species with significant economic impact: P. canescens, P. citrinum, P. oxalicum, P. polonicum, P. paneum, P. rubens, and P. roqueforti. We successfully identified seven Penicillium species using the target we screened combined with Sanger sequencing and CRISPR-Cas12a technologies. Notably, based on CRISPR-Cas12a technology, AGE can achieve rapid and accurate identification of genomic DNA samples at a concentration as low as 0.01 ng/µL within 30 min. This method features high sensitivity and portability, making it suitable for on-site detection. This robust molecular approach provides precise fungal species identification with broad implications for agricultural control, industrial production, clinical diagnostics, and food safety.


Assuntos
Genoma Fúngico , Penicillium , Penicillium/genética , Penicillium/classificação , Penicillium/isolamento & purificação , Sistemas CRISPR-Cas , Sequenciamento Completo do Genoma/métodos , Biologia Computacional/métodos , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/economia , Filogenia
16.
Front Plant Sci ; 15: 1448807, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148610

RESUMO

Introduction: Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a devastating disease worldwide. Previously, we successfully generated canker-resistant Citrus sinensis cv. Hamlin lines in the T0 generation. This was achieved through the transformation of embryogenic protoplasts using the ribonucleoprotein (RNP) containing Cas12a and one crRNA to edit the canker susceptibility gene, CsLOB1, which led to small indels. Methods: Here, we transformed embryogenic protoplasts of Hamlin with RNP containing Cas12a and three crRNAs. Results: Among the 10 transgene-free genome-edited lines, long deletions were obtained in five lines. Additionally, inversions were observed in three of the five edited lines with long deletions, but not in any edited lines with short indel mutations, suggesting long deletions maybe required for inversions. Biallelic mutations were observed for each of the three target sites in four of the 10 edited lines when three crRNAs were used, demonstrating that transformation of embryogenic citrus protoplasts with Cas12a and three crRNAs RNP can be very efficient for multiplex editing. Our analysis revealed the absence of off-target mutations in the edited lines. These cslob1 mutant lines were canker- resistant and no canker symptoms were observed after inoculation with Xcc and Xcc growth was significantly reduced in the cslob1 mutant lines compared to the wild type plants. Discussion: Taken together, RNP (Cas12a and three crRNAs) transformation of embryogenic protoplasts of citrus provides a promising solution for transgene-free multiplex genome editing with high efficiency and for deletion of long fragments.

17.
BMC Microbiol ; 24(1): 314, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187803

RESUMO

Pneumocystis jirovecii is a prevalent opportunistic fungal pathogen that can lead to life-threatening Pneumocystis pneumonia in immunocompromised individuals. Given that timely and accurate diagnosis is essential for initiating prompt treatment and enhancing patient outcomes, it is vital to develop a rapid, simple, and sensitive method for P. jirovecii detection. Herein, we exploited a novel detection method for P. jirovecii by combining recombinase polymerase amplification (RPA) of nucleic acids isothermal amplification and the trans cleavage activity of Cas12a. The factors influencing the efficiency of RPA and Cas12a-mediated trans cleavage reaction, such as RPA primer, crRNA, the ratio of crRNA to Cas12a and ssDNA reporter concentration, were optimized. Our RPA-Cas12a-based fluorescent assay can be completed within  30-40 min, comprising a 25-30 min RPA reaction and a 5-10 min trans cleavage reaction. It can achieve a lower detection threshold of 0.5 copies/µL of target DNA with high specificity. Moreover, our RPA-Cas12a-based fluorescent method was examined using 30 artificial samples and demonstrated high accuracy with a diagnostic accuracy of 93.33%. In conclusion, a novel, rapid, sensitive, and cost-effective RPA-Cas12a-based detection method was developed and demonstrates significant potential for on-site detection of P. jirovecii in resource-limited settings.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Pneumocystis carinii , Sensibilidade e Especificidade , Pneumocystis carinii/genética , Pneumocystis carinii/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Humanos , Pneumonia por Pneumocystis/diagnóstico , Pneumonia por Pneumocystis/microbiologia , Técnicas de Diagnóstico Molecular/métodos , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Proteínas Associadas a CRISPR/genética , DNA Fúngico/genética , Recombinases/metabolismo , Recombinases/genética , Proteínas de Bactérias
18.
Mol Ther Methods Clin Dev ; 32(3): 101304, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39193315

RESUMO

The viral genome titer is a crucial indicator for the clinical dosing, manufacturing, and analytical testing of recombinant adeno-associated virus (rAAV) gene therapy products. Although quantitative PCR and digital PCR are the common methods used for quantifying the rAAV genome titer, they are limited by inadequate accuracy and robustness. The clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a biosensor is being increasingly used in virus detection; however, there is currently no report on its application in the titer determination of gene therapy products. In the present study, an amplification-free CRISPR-Cas12a assay was developed, optimized, and applied for rAAV genome titer determination. The assay demonstrated high precision and accuracy within the detection range of 4 × 109 and 1011 vg/mL. No significant difference was observed between the Cas12a and qPCR assay results (p < 0.05, t test). Moreover, Cas12a exhibited similar activity on both single-stranded and double-stranded DNA substrates. Based on this characteristic, the titers of positive-sense and negative-sense strands were determined separately, which revealed a significant difference between their titers for an in-house reference AAV5-IN. This study presents the inaugural report of a Cas12a assay developed for the titer determination and composition analysis of the rAAV genome.

19.
Transgenic Res ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210187

RESUMO

In insect genome editing CRISPR/Cas9 is predominantly employed, while the potential of several classes of Cas enzymes such as Cas12a largely remain untested. As opposed to Cas9 which requires a GC-rich protospacer adjacent motif (PAM), Cas12a requires a T-rich PAM and causes staggered cleavage in the target DNA, opening possibilities for multiplexing. In this regard, the utility of Cas12a has been shown in only a few insect species such as fruit flies and the silkworm, but not in non-model insects such as the fall armyworm, Spodoptera frugiperda, a globally important invasive pest that defies most of the current management methods. In this regard, a more recent genetic biocontrol method known as the precision-guided sterile insect technique (pgSIT) has shown successful implementation in Drosophila melanogaster, with certain thematic adaptations required for application in agricultural pests. However, before the development of a controllable gene drive for a non-model species, it is important to validate the activity of Cas12a in that species. In the current study we have, for the first time, demonstrated the potential of Cas12a by editing an eye color gene, tryptophan 2,3-dioxygenase (TO) of S. frugiperda by microinjecting ribonucleoprotein complex into pre-blastoderm (G0) eggs. Analysis of G0 mutants revealed that all five mutants (two male and three female) exhibited distinct edits consisting of both deletion and insertion events. All five edits were further validated through in silico modeling to understand the changes at the protein level and further corroborate with the range of eye-color phenotypes observed in the present study.

20.
Sci Total Environ ; 951: 175712, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39181260

RESUMO

Insecticide resistance monitoring is essential for guiding chemical pest control and resistance management policies. Currently, rapid and effective technology for monitoring the resistance of tiny insects in the field is absent. Aphis gossypii Glover is a typical tiny insect, and one of the most frequently reported insecticide-resistant pests. In this study, we established a novel CRISPR/Cas12a-based rapid visual detection approach for detecting the V62I and R81T mutations in the ß1 subunit of the nAChR in A. gossypii, to reflect target-site resistance to imidacloprid. Based on the nAChR ß1 subunit gene in A. gossypii, the V62I/R81T-specific RPA primers and crRNAs were designed, and the ratio of 10 µM/2 µM/10 µM for ssDNA/Cas12a/crRNA was selected as the optimal dosage for the CRISPR reaction, ensuring that Cas12a only accurately recognizes imidacloprid-resistance templates. Our data show that the field populations of resistant insects possessing V62I and R81T mutations to imidacloprid can be accurately identified within one hour using the RPA-CRISPR/Cas12a detection approach under visible blue light at 440-460 nm. The protocol for RPA-CRISPR detection necessitates a single less than 2 mm specimen of A. gossypii tissues to perform RPA-CRISPR detection, and the process only requires a container at 37 °C and a portable blue light at 440-460 nm. Our research represents the first application of RPA-CRISPR technology in insecticide resistance detection, offers a new method for the resistance monitoring of A. gossypii or other tiny insects, helps delay the development of resistance to imidacloprid, improves the sustainability of chemical control, and provides theoretical guidance for managing pest resistance.


Assuntos
Afídeos , Sistemas CRISPR-Cas , Resistência a Inseticidas , Inseticidas , Neonicotinoides , Nitrocompostos , Animais , Resistência a Inseticidas/genética , Afídeos/efeitos dos fármacos , Afídeos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA