Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Mol Ther Methods Clin Dev ; 32(2): 101257, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38779337

RESUMO

Mutations in the DYSF gene, encoding the protein dysferlin, lead to several forms of muscular dystrophy. In healthy skeletal muscle, dysferlin concentrates in the transverse tubules and is involved in repairing the sarcolemma and stabilizing Ca2+ signaling after membrane disruption. The DYSF gene encodes 7-8 C2 domains, several Fer and Dysf domains, and a C-terminal transmembrane sequence. Because its coding sequence is too large to package in adeno-associated virus, the full-length sequence is not amenable to current gene delivery methods. Thus, we have examined smaller versions of dysferlin, termed "nanodysferlins," designed to eliminate several C2 domains, specifically C2 domains D, E, and F; B, D, and E; and B, D, E, and F. We also generated a variant by replacing eight amino acids in C2G in the nanodysferlin missing domains D through F. We electroporated dysferlin-null A/J mouse myofibers with Venus fusion constructs of these variants, or as untagged nanodysferlins together with GFP, to mark transfected fibers We found that, although these nanodysferlins failed to concentrate in transverse tubules, three of them supported membrane repair after laser wounding while all four bound the membrane repair protein, TRIM72/MG53, similar to WT dysferlin. By contrast, they failed to suppress Ca2+ waves after myofibers were injured by mild hypoosmotic shock. Our results suggest that the internal C2 domains of dysferlin are required for normal t-tubule localization and Ca2+ signaling and that membrane repair does not require these C2 domains.

2.
Mitochondrial Commun ; 2: 14-20, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347884

RESUMO

While it has been shown that Ca2+ dynamics at the ER membrane is essential for the initiation of certain types of autophagy such as starvation-induced autophagy, how mitochondrial Ca2+ transport changes during the first stage of autophagy is not systemically characterized. An investigation of mitochondrial Ca2+ dynamics during autophagy initiation may help us determine the relationship between autophagy and mitochondrial Ca2+ fluxes. Here we examine acute mitochondrial and ER calcium responses to a panel of autophagy inducers in different cell types. Mitochondrial Ca2+ transport and Ca2+ transients at the ER membrane are triggered by different autophagy inducers. The mitophagy-inducer-initiated mitochondrial Ca2+ uptake relies on mitochondrial calcium uniporter and may decelerate the following mitophagy. In neurons derived from a Parkinson's patient, mitophagy-inducer-triggered mitochondrial Ca2+ influx is faster, which may slow the ensuing mitophagy.

3.
J Neural Eng ; 20(6)2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37988746

RESUMO

Objective.Glioblastoma (GBM) is the most common and lethal type of high-grade adult brain cancer. The World Health Organization have classed GBM as an incurable disease because standard treatments have yielded little improvement with life-expectancy being 6-15 months after diagnosis. Different approaches are now crucial to discover new knowledge about GBM communication/function in order to establish alternative therapies for such an aggressive adult brain cancer. Calcium (Ca2+) is a fundamental cell molecular messenger employed in GBM being involved in a wide dynamic range of cellular processes. Understanding how the movement of Ca2+behaves and modulates activity in GBM at the single-cell level is relatively unexplored but holds the potential to yield opportunities for new therapeutic strategies and approaches for cancer treatment.Approach.In this article we establish a spatially and temporally precise method for stimulating Ca2+transients in three patient-derived GBM cell-lines (FPW1, RN1, and RKI1) such that Ca2+communication can be studied from single-cell to larger network scales. We demonstrate that this is possible by administering a single optimized ultra-violet (UV) nanosecond laser pulse to trigger GBM Ca2+transients.Main results.We determine that 1.58µJµm-2is the optimal UV nanosecond laser pulse energy density necessary to elicit a single Ca2+transient in the GBM cell-lines whilst maintaining viability, functionality, the ability to be stimulated many times in an experiment, and to trigger further Ca2+communication in a larger network of GBM cells.Significance.Using adult patient-derived mesenchymal GBM brain cancer cell-lines, the most aggressive form of GBM cancer, this work is the first of its kind as it provides a new effective modality of which to stimulate GBM cells at the single-cell level in an accurate, repeatable, and reliable manner; and is a first step toward Ca2+communication in GBM brain cancer cells and their networks being more effectively studied.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Cálcio , Linhagem Celular , Neoplasias Encefálicas/tratamento farmacológico , Lasers , Linhagem Celular Tumoral
4.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958508

RESUMO

There are only a few studies devoted to the comparative and simultaneous study of the mechanisms of the length-dependent regulation of atrial and ventricular contractility. Therefore, an isometric force-length protocol was applied to isolated guinea pig right atrial (RA) strips and ventricular (RV) trabeculae, with a simultaneous measurement of force (Frank-Starling mechanism) and Ca2+ transients (CaT) or transmembrane action potentials (AP). Over the entire length-range studied, the duration of isometric contraction, CaT and AP, were shorter in the RA myocardium than in the RV myocardium. The RA myocardium was stiffer than the RV myocardium. With the increasing length of the RA and RV myocardium, the amplitude and duration of isometric contraction and CaT increased, as well as the amplitude and area of the "CaT difference curves" (shown for the first time). However, the rates of the tension development and relaxation decreased. No contribution of AP duration to the heterometric regulation of isometric tension was found in either the RA or RV myocardium of the guinea pig. Changes in the degree of overlap of the contractile proteins of the guinea pig RA and RV myocardium mainly affect CaT kinetics but not AP duration.


Assuntos
Fibrilação Atrial , Cálcio , Cobaias , Animais , Cálcio/metabolismo , Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Miocárdio/metabolismo , Ventrículos do Coração/metabolismo , Cálcio da Dieta/metabolismo , Contração Miocárdica/fisiologia
5.
Proc Natl Acad Sci U S A ; 120(28): e2210152120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37406102

RESUMO

Sepsis has emerged as a global health burden associated with multiple organ dysfunction and 20% mortality rate in patients. Numerous clinical studies over the past two decades have correlated the disease severity and mortality in septic patients with impaired heart rate variability (HRV), as a consequence of impaired chronotropic response of sinoatrial node (SAN) pacemaker activity to vagal/parasympathetic stimulation. However, the molecular mechanism(s) downstream to parasympathetic inputs have not been investigated yet in sepsis, particularly in the SAN. Based on electrocardiography, fluorescence Ca2+ imaging, electrophysiology, and protein assays from organ to subcellular level, we report that impaired muscarinic receptor subtype 2-G protein-activated inwardly-rectifying potassium channel (M2R-GIRK) signaling in a lipopolysaccharide-induced proxy septic mouse model plays a critical role in SAN pacemaking and HRV. The parasympathetic responses to a muscarinic agonist, namely IKACh activation in SAN cells, reduction in Ca2+ mobilization of SAN tissues, lowering of heart rate and increase in HRV, were profoundly attenuated upon lipopolysaccharide-induced sepsis. These functional alterations manifested as a direct consequence of reduced expression of key ion-channel components (GIRK1, GIRK4, and M2R) in the mouse SAN tissues and cells, which was further evident in the human right atrial appendages of septic patients and likely not mediated by the common proinflammatory cytokines elevated in sepsis.


Assuntos
Lipopolissacarídeos , Sepse , Humanos , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Nó Sinoatrial/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Sepse/induzido quimicamente , Sepse/metabolismo
6.
J Neurosci Res ; 101(10): 1633-1650, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37382058

RESUMO

Mild traumatic brain injury (mTBI) is a clinically highly heterogeneous neurological disorder, none of the existing animal models can replicate the entire sequelae. This study aimed to develop a modified closed head injury (CHI) model of repeated mTBI (rmTBI) for investigating Ca2+ fluctuations of the affected neural network, the alternations of electrophysiology, and behavioral dysfunctions. The transcranial Ca2+ study protocol includes AAV-GCaMP6s infection in the right motor cortex, thinned-skull preparation, and two-photon laser scanning microscopy (TPLSM) imaging. The CHI rmTBI model is fabricated using the thinned-skull site and applying 2.0 atm fluid percussion with 48-h interval. The neurological dysfunction, minor motor performance, evident mood, spatial working, and reference deficits we found in this study mimic the clinically relevant syndromes after mTBI. Besides, our study revealed that there was a trend of transition from Ca2+ singlepeak to multipeak and plateau, and the total Ca2+ activities of multipeaks and plateaus (p < .001 vs. pre-rmTBI value) were significantly increased in ipsilateral layer 2/3 motor neurons after rm TBI. In parallel, there is a low-frequency power shift from delta to theta band (p < .01 vs. control) in the ipsilateral layer 2/3 of motor cortex of the rmTBI mice, and the overall firing rates significantly increased (p < .01 vs. control). Moreover, rmTBI causes slight cortical and hippocampal neuron damage and possibly induces neurogenesis in the dentate gyrus (DG). The alternations of Ca2+ and electrophysiological characteristics in layer 2/3 neuronal network, histopathological changes, and possible neurogenesis may play concertedly and partially contribute to the functional outcome post-rmTBI.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Camundongos , Animais , Concussão Encefálica/patologia , Percussão , Modelos Animais de Doenças , Crânio/patologia , Lesões Encefálicas Traumáticas/complicações
7.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240302

RESUMO

The comparative differences in the fundamental mechanisms of contractility regulation and calcium handling of atrial and ventricular myocardium remain poorly studied. An isometric force-length protocol was performed for the entire range of preloads in isolated rat right atrial (RA) and ventricular (RV) trabeculae with simultaneous measurements of force (Frank-Starling mechanism) and Ca2+ transients (CaT). Differences were found between length-dependent effects in RA and RV muscles: (a) the RA muscles were stiffer, faster, and presented with weaker active force than the RV muscles throughout the preload range; (b) the active/passive force-length relationships were almost linear for the RA and RV muscles; (c) the value of the relative length-dependent growth of passive/active mechanical tension did not differ between the RA and RV muscles; (d) the time-to-peak and amplitude of CaT did not differ between the RA and RV muscles; (e) the CaT decay phase was essentially monotonic and almost independent of preload in the RA muscles, but not in the RV muscles. Higher peak tension, prolonged isometric twitch, and CaT in the RV muscle may be the result of higher Ca2+ buffering by myofilaments. The molecular mechanisms that constitute the Frank-Starling mechanism are common in the rat RA and RV myocardium.


Assuntos
Fibrilação Atrial , Ratos , Animais , Miocárdio , Ventrículos do Coração , Átrios do Coração , Contração Miocárdica/fisiologia , Cálcio/farmacologia
8.
Cells ; 12(3)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36766690

RESUMO

(1) Background: Apolipoprotein E (ApoE) is a critical plasma apolipoprotein for lipid transport and nonlipid-related functions. Humans possess three isoforms of ApoE (2, 3, and 4). ApoE2, which exhibits beneficial effects on cardiac health, has not been adequately studied. (2) Methods: We investigated the cardiac phenotypes of the humanized ApoE knock-in (hApoE KI) rats and compared to wild-type (WT) and ApoE knock-out (ApoE KO) rats using echocardiography, ultrasound, blood pressure measurements, histology strategies, cell culture, Seahorse XF, cardiomyocyte contractility and intracellular Ca2+ tests, and Western blotting; (3) Results: hApoE2 rats exhibited enhanced heart contractile function without signs of detrimental remodeling. Isolated adult hApoE2 cardiomyocytes had faster and stronger sarcomere contractility because of more mitochondrial energy generation and stimulation-induced fast and elevated intracellular Ca2+ transient. The abundant energy is a result of elevated mitochondrial function via fatty acid ß-oxidation. The fast and elevated Ca2+ transient is associated with decreased sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA2) and increased expression of cardiac ryanodine receptor 2 (RyR2) conducting a potent Ca2+ release from SR.; (4) Conclusions: Our studies validated the association of polymorphic ApoEs with cardiac health in the rat model, and revealed the possible mechanisms of the protective effect of ApoE2 against heart diseases.


Assuntos
Miócitos Cardíacos , Retículo Sarcoplasmático , Ratos , Humanos , Animais , Miócitos Cardíacos/metabolismo , Apolipoproteína E2/metabolismo , Apolipoproteína E2/farmacologia , Retículo Sarcoplasmático/metabolismo , Ecocardiografia
9.
Cell ; 185(22): 4082-4098.e22, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36198318

RESUMO

The mechanism that initiates autophagosome formation on the ER in multicellular organisms is elusive. Here, we showed that autophagy stimuli trigger Ca2+ transients on the outer surface of the ER membrane, whose amplitude, frequency, and duration are controlled by the metazoan-specific ER transmembrane autophagy protein EPG-4/EI24. Persistent Ca2+ transients/oscillations on the cytosolic ER surface in EI24-depleted cells cause accumulation of FIP200 autophagosome initiation complexes on the ER. This defect is suppressed by attenuating ER Ca2+ transients. Multi-modal SIM analysis revealed that Ca2+ transients on the ER trigger the formation of dynamic and fusion-prone liquid-like FIP200 puncta. Starvation-induced Ca2+ transients on lysosomes also induce FIP200 puncta that further move to the ER. Multiple FIP200 puncta on the ER, whose association depends on the ER proteins VAPA/B and ATL2/3, assemble into autophagosome formation sites. Thus, Ca2+ transients are crucial for triggering phase separation of FIP200 to specify autophagosome initiation sites in metazoans.


Assuntos
Autofagossomos , Cálcio , Animais , Autofagossomos/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Proteínas de Ciclo Celular/metabolismo
10.
Cells ; 11(18)2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36139365

RESUMO

The very large G protein-coupled receptor (VLGR1, ADGRV1) is the largest member of the adhesion GPCR family. Mutations in VLGR1 have been associated with the human Usher syndrome (USH), the most common form of inherited deaf-blindness as well as childhood absence epilepsy. VLGR1 was previously found as membrane-membrane adhesion complexes and focal adhesions. Affinity proteomics revealed that in the interactome of VLGR1, molecules are enriched that are associated with both the ER and mitochondria, as well as mitochondria-associated ER membranes (MAMs), a compartment at the contact sites of both organelles. We confirmed the interaction of VLGR1 with key proteins of MAMs by pull-down assays in vitro complemented by in situ proximity ligation assays in cells. Immunocytochemistry by light and electron microscopy demonstrated the localization of VLGR1 in MAMs. The absence of VLGR1 in tissues and cells derived from VLGR1-deficient mouse models resulted in alterations in the MAM architecture and in the dysregulation of the Ca2+ transient from ER to mitochondria. Our data demonstrate the molecular and functional interaction of VLGR1 with components in MAMs and point to an essential role of VLGR1 in the regulation of Ca2+ homeostasis, one of the key functions of MAMs.


Assuntos
Retículo Endoplasmático , Membranas Mitocondriais , Animais , Criança , Retículo Endoplasmático/metabolismo , Homeostase , Humanos , Camundongos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo
11.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142639

RESUMO

Male sex is one of the most important risk factors of atrial fibrillation (AF), with the incidence in men being almost double that in women. However, the reasons for this sex difference are unknown. Accordingly, in this study, we sought to determine whether there are sex differences in intracellular Ca2+ homeostasis in mouse atrial myocytes that might help explain male predisposition to AF. AF susceptibility was assessed in male (M) and female (F) mice (4-5 months old) using programmed electrical stimulation (EPS) protocols. Males were 50% more likely to develop AF. The Ca2+ transient amplitude was 28% higher in male atrial myocytes. Spontaneous systolic and diastolic Ca2+ releases, which are known sources of triggered activity, were significantly more frequent in males than females. The time to 90% decay of Ca2+ transient was faster in males. Males had 54% higher Na+-Ca2+ exchanger (NCX1) current density, and its expression was also more abundant. L-type Ca2+ current (ICaL) was recorded with and without BAPTA, a Ca2+ chelator. ICaL density was lower in males only in the absence of BAPTA, suggesting stronger Ca2+-dependent inactivation in males. CaV1.2 expression was similar between sexes. This study reports major sex differences in Ca2+ homeostasis in mouse atria, with larger Ca2+ transients and enhanced NCX1 function and expression in males resulting in more spontaneous Ca2+ releases. These sex differences may contribute to male susceptibility to AF by promoting triggered activity.


Assuntos
Fibrilação Atrial , Trocador de Sódio e Cálcio/metabolismo , Animais , Fibrilação Atrial/metabolismo , Cálcio/metabolismo , Quelantes/metabolismo , Ácido Egtázico/análogos & derivados , Feminino , Átrios do Coração/metabolismo , Humanos , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Retículo Sarcoplasmático/metabolismo , Caracteres Sexuais
12.
J Appl Physiol (1985) ; 133(3): 663-675, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35771221

RESUMO

Preload and afterload dictate the dynamics of the cyclical work-loop contraction that the heart undergoes in vivo. Cellular Ca2+ dynamics drive contraction, but the effects of afterload alone on the Ca2+ transient are inconclusive. To our knowledge, no study has investigated whether the putative afterload dependence of the Ca2+ transient is preload dependent. This study is designed to provide the first insight into the Ca2+ handling of cardiac trabeculae undergoing work-loop contractions, with the aim to examine whether the conflicting afterload dependency of the Ca2+ transient can be accounted for by considering preload under isometric and physiological work-loop contractions. Thus, we subjected ex vivo rat right-ventricular trabeculae, loaded with the fluorescent dye Fura-2, to work-loop contractions over a wide range of afterloads at two preloads while measuring stress, length changes, and Ca2+ transients. Work-loop control was implemented with a real-time Windkessel model to mimic the contraction patterns of the heart in vivo. We extracted a range of metrics from the measured steady-state twitch stress and Ca2+ transients, including the amplitudes, time courses, rates of rise, and integrals. Results show that parameters of stress were afterload and preload dependent. In contrast, the parameters associated with Ca2+ transients displayed a mixed dependence on afterload and preload. Most notably, its time course was afterload dependent, an effect augmented at the greater preload. This study reveals that the afterload dependence of cardiac Ca2+ transients is modulated by preload, which brings the study of Ca2+ transients during isometric contractions into question when aiming to understand physiological Ca2+ handling.NEW & NOTEWORTHY This study is the first examination of Ca2+ handling in trabeculae undergoing work-loop contractions. These data reveal that reducing preload diminishes the influence of afterload on the decay phase of the cardiac Ca2+ transient. This is significant as it reconciles inconsistencies in the literature regarding the influence of external loads on cardiac Ca2+ handling. Furthermore, these findings highlight discrepancies between Ca2+ handling during isometric and work-loop contractions in cardiac trabeculae operating at their optimal length.


Assuntos
Ventrículos do Coração , Coração , Animais , Fura-2 , Coração/fisiologia , Contração Miocárdica/fisiologia , Ratos
13.
Biomed Pharmacother ; 151: 113082, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35569350

RESUMO

10-Gingerol (10-Gin), an active ingredient extracted from ginger, has been reported to have beneficial effects on the cardiovascular system. However, its protective effects on myocardial ischemia (MI) and the underlying cellular mechanisms are still unclear. To investigate the protection conferred by 10-Gin against MI injury and its potential mechanisms in cardiomyocytes via patch-clamp and molecular biology techniques. A rat MI model was established using the subcutaneous injection of isoproterenol (85 mg/kg) administered on two consecutive days. 10-Gin was pre-administered to rats for seven days to assess its cardio-protection. The patch-clamp and IonOptix Myocam detection techniques were used to investigated 10-Gin's effects on L-type Ca2+ channels (LTCCs), Ca2+ transients and cell contractility in isolated rat cardiomyocytes. 10-Gin administration alleviated MI injury, improved cardiac function and myocardial histopathology, reduced myocardial infarct area, downregulated oxidative stress and Ca2+ levels, and decreased the expression of apoptotic factors. Importantly, 10-Gin led to an increase in phosphorylated Janus kinase 2 and signal transducer and activator of transcription 3 (JAK2 and STAT3, respectively) expressions. Furthermore, 10-Gin inhibited LTCCs in a concentration-dependent manner with a half-maximal inhibitory concentration of 75.96 µM. Moreover, 10-Gin administration inhibited Ca2+ transients and cell contractility. Our results suggest that 10-Gin exerts cardioprotective effects on MI in vivo and in vitro in connection with the inhibition of oxidative stress and apoptosis via activation of the JAK2/STAT3 signalling pathway, and regulation of Ca2+ homeostasis by LTCCs.


Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Animais , Apoptose , Catecóis , Doença da Artéria Coronariana/patologia , Álcoois Graxos , Homeostase , Janus Quinase 2/metabolismo , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo
14.
Biomedicines ; 10(3)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35327442

RESUMO

Intracellular calcium (Ca2+) is the central regulator of heart contractility. Indeed, it couples the electrical signal, which pervades the myocardium, with cardiomyocytes contraction. Moreover, alterations in calcium management are the main factors contributing to the mechanical and electrical dysfunction observed in failing hearts. So, simultaneous analysis of the contractile function and intracellular Ca2+ is indispensable to evaluate cardiomyocytes activity. Intracellular Ca2+ variations and fraction shortening are commonly studied with fluorescent Ca2+ indicator dyes associated with microscopy techniques. However, tracking and dealing with multiple files manually is time-consuming and error-prone and often requires expensive apparatus and software. Here, we announce a new, user-friendly image processing and analysis tool, based on ImageJ-Fiji/MATLAB® software, to evaluate the major cardiomyocyte functional parameters. We succeeded in analyzing fractional cell shortening, Ca2+ transient amplitude, and the kinematics/dynamics parameters of mouse isolated adult cardiomyocytes. The proposed method can be applied to evaluate changes in the Ca2+ cycle and contractile behavior in genetically or pharmacologically induced disease models, in drug screening and other common applications to assess mammalian cardiomyocyte functions.

15.
J Physiol ; 600(8): 1953-1968, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35156706

RESUMO

Dysferlin is an integral membrane protein of the transverse tubules of skeletal muscle that is mutated or absent in limb girdle muscular dystrophy 2B and Miyoshi myopathy. Here we examine the role of dysferlin's seven C2 domains, C2A through C2G, in membrane repair and Ca2+ release, as well as in targeting dysferlin to the transverse tubules of skeletal muscle. We report that deletion of either domain C2A or C2B inhibits membrane repair completely, whereas deletion of C2C, C2D, C2E, C2F or C2G causes partial loss of membrane repair that is exacerbated in the absence of extracellular Ca2+ . Deletion of C2C, C2D, C2E, C2F or C2G also causes significant changes in Ca2+ release, measured as the amplitude of the Ca2+ transient before or after hypo-osmotic shock and the appearance of Ca2+ waves. Most deletants accumulate in endoplasmic reticulum. Only the C2A domain can be deleted without affecting dysferlin trafficking to transverse tubules, but Dysf-ΔC2A fails to support normal Ca2+ signalling after hypo-osmotic shock. Our data suggest that (i) every C2 domain contributes to repair; (ii) all C2 domains except C2B regulate Ca2+ signalling; (iii) transverse tubule localization is insufficient for normal Ca2+ signalling; and (iv) Ca2+ dependence of repair is mediated by C2C through C2G. Thus, dysferlin's C2 domains have distinct functions in Ca2+ signalling and sarcolemmal membrane repair and may play distinct roles in skeletal muscle. KEY POINTS: Dysferlin, a transmembrane protein containing seven C2 domains, C2A through C2G, concentrates in transverse tubules of skeletal muscle, where it stabilizes voltage-induced Ca2+ transients and participates in sarcolemmal membrane repair. Each of dysferlin's C2 domains except C2B regulate Ca2+ signalling. Localization of dysferlin variants to the transverse tubules is not sufficient to support normal Ca2+ signalling or membrane repair. Each of dysferlin's C2 domains contributes to sarcolemmal membrane repair. The Ca2+ dependence of membrane repair is mediated by C2C through C2G. Dysferlin's C2 domains therefore have distinct functions in Ca2+ signalling and sarcolemmal membrane repair.


Assuntos
Domínios C2 , Proteínas de Membrana , Disferlina/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Músculo Esquelético/metabolismo , Sarcolema/metabolismo
16.
J Physiol ; 600(7): 1703-1730, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35081665

RESUMO

Smooth muscle cells (SMCs) of the guinea pig seminal vesicle (SV) develop spontaneous phasic contractions, Ca2+ flashes and electrical slow waves in a mucosa-dependent manner, and thus it was envisaged that pacemaker cells reside in the mucosa. Here, we aimed to identify the pacemaker cells in SV mucosa using intracellular microelectrode and fluorescence Ca2+ imaging techniques. Morphological characteristics of the mucosal pacemaker cells were also investigated using focused ion beam/scanning electron microscopy tomography and fluorescence immunohistochemistry. Two populations of mucosal cells developed spontaneous Ca2+ transients and electrical activity, namely basal epithelial cells (BECs) and subepithelial interstitial cells (SICs). Pancytokeratin-immunoreactive BECs were located on the apical side of the basement membrane (BM) and generated asynchronous, irregular spontaneous Ca2+ transients and spontaneous transient depolarisations (STDs). The spontaneous Ca2+ transients and STDs were not diminished by 10 µM nifedipine but abolished by 10 µM cyclopiazonic acid (CPA). Platelet-derived growth factor receptor α (PDGFRα)-immunoreactive SICs were distributed just beneath the basal side of the BM and developed synchronous Ca2+ oscillations and electrical slow waves, which were suppressed by 3 µM nifedipine and abolished by 10 µM CPA. In SV mucosal preparations in which some smooth muscle bundles remained attached, SICs and residual SMCs developed temporally correlated spontaneous Ca2+ transients. Neurobiotin injected into SICs spread not only to neighbouring SICs but also to neighbouring SMCs or vice versa. These results suggest that PDGFRα+ SICs electrotonically drive the spontaneous contractions of SV smooth muscle. KEY POINTS: In many visceral smooth muscle organs, spontaneous contractions are electrically driven by non-muscular pacemaker cells. In guinea pig seminal vesicles (SVs), as yet unidentified mucosal cells appear to drive neighbouring smooth muscle cells (SMCs). Two populations of spontaneously active cells are distributed in the SV mucosa. Basal epithelial cells (BECs) generate asynchronous, irregular spontaneous Ca2+ transients and spontaneous transient depolarisations (STDs). In contrast, subepithelial interstitial cells (SICs) develop synchronous Ca2+ oscillations and electrical slow waves. Pancytokeratin-immunoreactive (IR) BECs are located on the apical side of the basement membrane (BM), while platelet-derived growth factor receptor α (PDGFRα)-IR SICs are located on the basal side of the BM. Spontaneous Ca2+ transients in SICs are synchronised with those in SV SMCs. Dye-coupling between SICs and SMCs suggests that SICs act as pacemaker cells to drive the spontaneous contractions of SV smooth muscle.


Assuntos
Células Intersticiais de Cajal , Glândulas Seminais , Animais , Sinalização do Cálcio , Cobaias , Células Intersticiais de Cajal/fisiologia , Masculino , Contração Muscular , Músculo Liso/fisiologia , Miócitos de Músculo Liso/fisiologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Glândulas Seminais/fisiologia
17.
Cardiovasc Toxicol ; 21(9): 695-709, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33983555

RESUMO

Hyperglycaemia, a key metabolic abnormality in diabetes mellitus, is implicated in pathological cardiogenesis during embryological development. However, the underlying mechanisms and potential therapeutic targets remain unknown. We, therefore, studied the effect of hyperglycaemia on mouse embryonic stem cell (mESC) cardiac differentiation. The mESCs were differentiated via embryoid body (EB) formation and cultured under conditions with baseline (25 mM) or high (50 mM) glucose. Time-lapse microscopy images of pulsatile mESCs and Ca2+ transients were recorded. Biomarkers of cellular changes were detected using immunocytochemistry, terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay, and Western blot analyses. Differentiated, spontaneously beating mESCs stained positive for cardiac troponin T, α-actinin 2, myosin heavy chain, and connexin 43. Hyperglycaemia decreased the EB diameter and number of beating EBs as well as the cellular amplitude of contraction, the Ca2+ transient, and the contractile response to caffeine (1 mM), but had no effect on the expression of the sarco-endoplasmic reticulum calcium transport ATPase 2 (SERCA 2). Furthermore, hyperglycaemia decreased the expression of B cell lymphoma 2 (Bcl-2) and increased the expression of cytoplasmic cytochrome c and the number of TUNEL-positive cells, but had no effect on the expression of one of the mitochondrial fusion regulatory proteins, optic atrophy protein 1 (OPA1). Overall, hyperglycaemia suppressed the mESC cardiomyocyte-like differentiation and induced contractile dysfunction. The results are consistent with mechanisms involving abnormal Ca2+ handling and mitochondrial-dependent apoptosis, factors which represent potential therapeutic targets in developmental diabetic cardiac disease.


Assuntos
Apoptose/efeitos dos fármacos , Glicemia/metabolismo , Diferenciação Celular/efeitos dos fármacos , Glucose/toxicidade , Hiperglicemia/sangue , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Hiperglicemia/patologia , Hiperglicemia/fisiopatologia , Camundongos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
18.
Eur J Pharmacol ; 901: 174077, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33798601

RESUMO

This study investigated the hemodynamic effect of Bay 60-7550, a phosphodiesterase type 2 (PDE2) inhibitor, in healthy rat hearts both in vivo and ex vivo and its underlying mechanisms. In vivo rat left ventricular pressure-volume loop, Langendorff isolated rat heart, Ca2+ transient of left ventricular myocyte and Western blot experiments were used in this study. The results demonstrated that Bay 60-7550 (1.5 mg/kg, i. p.) increased the in vivo rat heart contractility by enhancing stroke work, cardiac output, stroke volume, end-diastolic volume, heart rate, and ejection fraction. The simultaneous aortic pressure recording indicated that the systolic blood pressure was increased and diastolic blood pressure was decreased by Bay 60-7550. Also, the arterial elastance which is proportional to the peripheral vessel resistance was significantly decreased. Bay 60-7550 (0.001, 0.01, 0.1, 1 µmol/l) also enhanced the left ventricular development pressure in non-paced and paced modes with a decrease of heart rate in non-paced model. Bay 60-7550 (1 µmol/l) increased SERCA2a activity and SR Ca2+ content and reduced SR Ca2+ leak rate. Furthermore, Bay 60-7550 (0.1 µmol/l) increased the phosphorylation of phospholamban at 16-serine without significantly changing the phosphorylation levels of phospholamban at 17-threonine and RyR2. Bay 60-7550 increased the rat heart contractility and reduced peripheral arterial resistance may be mediated by increasing the phosphorylation of phospholamban and dilating peripheral vessels. PDE2 inhibitors which result in a positive inotropic effect and a decrease in peripheral resistance might serve as a target for developing agents for the treatment of heart failure in clinical settings.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cardiotônicos/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Imidazóis/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Triazinas/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Cálcio/metabolismo , Hemodinâmica/efeitos dos fármacos , Técnicas In Vitro , Masculino , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação , Ratos , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Resistência Vascular/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos
19.
Biochem Biophys Res Commun ; 553: 99-106, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33765560

RESUMO

Spontaneous burst firing is a hallmark attributed to the neuronal network activity. It is known to be accompanied by intracellular calcium [Са2+]i oscillations within the bursting neurons. Studying mechanisms underlying regulation of burst firing is highly relevant, since impairment in neuronal bursting accompanies different neurological disorders. In the present study, the contribution of NMDA and GABA(A) receptors to the shape formation of spontaneous burst -was studied in cultured hippocampal neurons. A combination of inhibitory analysis with simultaneous registration of neuronal bursting by whole-cell patch clamp and calcium imaging was used to assess spontaneous burst firing and [Са2+]i level. Using bicuculline and D-AP5 we showed that GABA(A) and NMDA receptors effectively modulate burst plateau phase and [Са2+]i transient spike which can further affect action potential (AP) amplitudes and firing frequency within a burst. Bicuculline significantly elevated the amplitude and reduced the duration of both burst plateau phase and [Са2+]i spike resulting in an increase of AP firing frequency and shortening of AP amplitudes within a burst. D-AP5 significantly decreases the amplitude of both plateau phase and [Са2+]i spike along with a burst duration that correlated with an increase in AP amplitudes and reduced firing frequency within a burst. The effect of bicuculline was occluded by co-addition of D-AP5 revealing modulatory role of GABA(A) receptors to the NMDA receptor-mediated formation of the burst. Our results provide new evidence on importance of NMDA and GABA(A) receptors in shaping burst firing and Ca2+transient spikes in cultured hippocampal neurons.


Assuntos
Potenciais de Ação , Sinalização do Cálcio , Cálcio/metabolismo , Hipocampo/citologia , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Astrócitos/citologia , Bicuculina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Feminino , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
20.
Quant Imaging Med Surg ; 11(3): 998-1009, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33654672

RESUMO

BACKGROUND: Genetically encoded calcium indicators (GECIs), especially the GCaMP-based green fluorescence GECIs have been widely used for in vivo detection of neuronal activity in rodents by measuring intracellular neuronal Ca2+ changes. More recently, jRGECO1a, a red shifted GECI, has been reported to detect neuronal Ca2+ activation. This opens the possibility of using dual-color GECIs for simultaneous interrogation of different cell populations. However, there has been no report to compare the functional difference between these two GECIs for in vivo imaging. Here, a comparative study is reported on neuronal responses to sensory stimulation using GCaMP6f and jRGECO1a that were virally delivered into the neurons in the somatosensory cortex of two different groups of animals, respectively. METHODS: GCaMP6f and jRGECO1a GECI were virally delivered to sensory cortex. After 3-4 weeks, the animals were imaged to capture the spatiotemporal changes of neuronal Ca2+ and the hemodynamic responses to forepaw electrical stimulation (0.3 mA, 0.3 ms/pulse, 0.03 Hz). The stimulation-evoked neuronal Ca2+ transients expressed with GCaMP6f or jRGECO1a were recorded during the baseline period and after an acute cocaine administration (1 mg/kg, i.v.). RESULTS: Histology confirmed that the efficiency of jRGECO1a and GCaMP6f expression into the cortical neurons was similar, i.e., 34%±3% and 32.7%±1.6%, respectively. Our imaging in vivo showed that the hemodynamic responses to the stimulation were the same between jRGECO1a and GCaMP6f expressed groups. Although the stimulation-evoked fluorescence change (∆F/F) and the time-to-peak of the neuronal Ca2+ transients were not significantly different between these two indicators, the full-width-half-maximum (FWHM) duration of the ∆F/F rise in the jRGECO1a-expressed group (0.16±0.02 s) was ~50 ms or 46% longer than that of the GCaMP6f group (0.11±0.003 s), indicating a longer recovery time in jRGECO1a than in GCaMP6f transients (P<0.01). This is likely due to the longer off rate of jRGECO1a than that of GCaMP6f. After cocaine, the time-to-peak of Ca2+ transients was delayed and their FWHM duration was prolonged for both expression groups, indicating that these are cocaine's effects on neuronal Ca2+ signaling and not artifacts due to the property differences of the GCEIs. CONCLUSIONS: This study shows that both jRGECO1a and GCaMP6f have sufficient sensitivity for tracking single-stimulation-evoked Ca2+ transients to detect neuronal activities from the brain. Since these GECIs are emitted at the different wavelengths, it will be possible to use them together to characterize the activity of different cell types (e.g., neurons and astrocytes) to study brain activation and brain functional changes in normal or diseased brains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...