Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
1.
J Environ Sci (China) ; 148: 553-566, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095188

RESUMO

Organic matter (OM) derived from the decomposition of crop residues plays a key role as a sorbent for cadmium (Cd) immobilization. Few studies have explored the straw decomposition processes with the presence of minerals, and the effect of newly generated organo-mineral complexes on heavy metal adsorption. In this study, we investigated the variations in structure and composition during the rice straw decomposition with or without minerals (goethite and kaolinite), as well as the adsorption behavior and mechanisms by which straw decomposition affects Cd immobilization. The degree of humification of extracted straw organic matter was assessed using excitation-emission matrix (EEM) fluorescence and Ultraviolet-visible spectroscopy (UV-vis), while employing FTIR spectroscopy and XPS to characterize the adsorption mechanisms. The spectra analysis revealed the enrichment of highly aromatic and hydrophobic components, indicating that the degree of straw decomposition and humification were further intensified during incubation. Additionally, the existence of goethite (SG) accelerated the humification of OM. Sorption experiments revealed that the straw humification increased Cd adsorption capacity. Notably, SG exhibited significantly higher adsorption performance compared to the organic matter without minerals (RS) and the existence of kaolinite (SK). Further analysis using FT-IR spectroscopy and XPS verified that the primary mechanisms involved in Cd immobilization were complexion with -OH and -COOH, as well as the formation of Cd-π binds with aromatic C=C on the surface of solid OMs. These findings will facilitate understanding the interactions of the rice straw decomposing with soil minerals and its remediation effect on Cd-contaminated farmland.


Assuntos
Cádmio , Minerais , Oryza , Poluentes do Solo , Cádmio/química , Minerais/química , Oryza/química , Poluentes do Solo/química , Adsorção , Substâncias Húmicas/análise , Caulim/química
2.
J Environ Sci (China) ; 147: 630-641, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003078

RESUMO

Cadmium (Cd) and arsenic (As) co-contamination has threatened rice production and food safety. It is challenging to mitigate Cd and As contamination in rice simultaneously due to their opposite geochemical behaviors. Mg-loaded biochar with outstanding adsorption capacity for As and Cd was used for the first time to remediate Cd/As contaminated paddy soils. In addition, the effect of zero-valent iron (ZVI) on grain As speciation accumulation in alkaline paddy soils was first investigated. The effect of rice straw biochar (SC), magnesium-loaded rice straw biochar (Mg/SC), and ZVI on concentrations of Cd and As speciation in soil porewater and their accumulation in rice tissues was investigated in a pot experiment. Addition of SC, Mg/SC and ZVI to soil reduced Cd concentrations in rice grain by 46.1%, 90.3% and 100%, and inorganic As (iAs) by 35.4%, 33.1% and 29.1%, respectively, and reduced Cd concentrations in porewater by 74.3%, 96.5% and 96.2%, respectively. Reductions of 51.6% and 87.7% in porewater iAs concentrations were observed with Mg/SC and ZVI amendments, but not with SC. Dimethylarsinic acid (DMA) concentrations in porewater and grain increased by a factor of 4.9 and 3.3, respectively, with ZVI amendment. The three amendments affected grain concentrations of iAs, DMA and Cd mainly by modulating their translocation within plant and the levels of As(III), silicon, dissolved organic carbon, iron or Cd in porewater. All three amendments (SC, Mg/SC and ZVI) have the potential to simultaneously mitigate Cd and iAs accumulation in rice grain, although the pathways are different.


Assuntos
Arsênio , Cádmio , Carvão Vegetal , Magnésio , Oryza , Poluentes do Solo , Solo , Oryza/química , Cádmio/análise , Cádmio/química , Carvão Vegetal/química , Poluentes do Solo/análise , Arsênio/análise , Solo/química , Magnésio/química , Ferro/química , Recuperação e Remediação Ambiental/métodos
3.
Ecotoxicol Environ Saf ; 284: 116897, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39168085

RESUMO

Oil crops have the potential to remediate cadmium (Cd)-contaminated farmland while producing safe vegetable oil. However, it is currently unknown whether different oil crops can remediate varying levels of Cd contamination in farmland. This study assessed agricultural fields in southern China contaminated with Cd levels ranging from 0.42 to 10.3 mg/kg. Three representative oilseed crops winter rape, oil sunflower, and peanut were selected for field experiments under two rotation systems. The effects of different rotation systems on remediating various Cd contamination levels were compared to evaluate the feasibility and potential of a two oil crop rotation system. All three crops showed good tolerance to Cd without signs of biomass deficiency. The biomass produced by the rape-oil sunflower and rape-peanut rotation systems was 33.44-459.00 g/ha and 30.64-281.40 g/ha, respectively. The Cd concentration in the oil products obtained complied with existing national and international standards (0.05 mg/kg). The remediation efficiency of the rape-oil sunflower and rape-peanut rotation systems was 1.98-7.37 % and 1.21-4.94 %, respectively. However, the remediation efficiencies and enrichment capacities of both rotation systems were somewhat inhibited by heavy Cd contamination (10.3 mg/kg). Therefore, the agricultural model of rotating two oilseed crops can be implemented in Cd-contaminated farmland at all levels but is more suitable for light to moderate Cd contamination.

4.
Toxics ; 12(8)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39195634

RESUMO

Cadmium (Cd) contamination in agricultural soils has emerged as a significant concern, particularly due to its potential impact on plant-based food. Soil pH reductions can exacerbate Cd mobility, leading to excessive accumulation in crops. While liming has been demonstrated as an effective method to mitigate Cd accumulation in rice grains in acid soils of southern China, its efficacy in remediating acid soils in northern China remains unclear. In this study, a multi-year field experiment was conducted on farmland impacted by zinc ore smelting at coordinates of 33.92° N 112.46° E to investigate the use of limestone for controlling Cd accumulation in wheat and maize grains. The results indicated that applying 7.5 t ha-1 of limestone significantly raised the soil pH from 4.5 to 6.8 as anticipated. Different rates of limestone application (2.25, 4.45, and 7.50 t ha-1) reduced Cd bioavailability in the soil by 20-54%, and Cd accumulation in wheat grains by 5-38% and maize grains by 21-63%, without yield penalty. The remediation effects were sustained for at least 27 months, highlighting limestone as a promising ameliorant for smelting-affected farmland in northern China.

5.
Huan Jing Ke Xue ; 45(6): 3186-3195, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897742

RESUMO

This study primarily focused on the regional disparities in both water quality criteria and ecological risks attributed to cadmium presence within the surface waters of the Yangtze River Basin. In the initial phase, the long-term water quality criteria for cadmium were recalibrated in accordance with the guidelines outlined in China's "Water Quality Criteria for Freshwater Aquatic Organisms-Cadmium," accounting for the prevalent hardness distribution within the Yangtze River Basin's surface water. Subsequently, a more refined revision was undertaken considering the specific characteristics of the species residing within the Yangtze River Basin. This undertaking led to a comprehensive interpretation of the regional variations in both the distribution of long-term water quality criteria values and the risk quotient distribution of cadmium throughout the Yangtze River Basin. The incorporation of hardness and species-specific attributes resulted in a revised range of long-term water quality criteria for cadmium across different urban locales within the Yangtze River Basin. Notably, the recalibrated values ranged from 0.08 µg·L-1 as the lowest threshold to 0.75 µg·L-1 as the upper limit, signifying a tenfold differentiation. Correspondingly, the urban average annual risk quotient associated with cadmium exposure demonstrated a variation from 0.035 to 1.12, marking a significant 32-fold discrepancy between the lowest and highest values. It is essential to highlight that regions of paramount importance, such as the confluence area connecting the upper and middle stretches of the Yangtze River Basin and the intricate Dongting Lake system, exhibited noteworthy ecological risks attributed to cadmium presence. Consequently, further in-depth investigations into these critical regions are imperative for a comprehensive understanding of the associated risks.

6.
Huan Jing Ke Xue ; 45(6): 3649-3660, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897784

RESUMO

This research aimed to clarify the effects of exogenously applied chitosan on the physiological characteristics, antioxidant activities, and Cd accumulation of wheat (Triticum aestivum L.) seedlings under cadmium (Cd) stress and to identify the key indicators based on the partial least squares model. The wheat variety studied was Bainong207 (BN207), and Cd-stress was achieved by growing seedlings in a hydroponic culture experiment with 10 and 25 µmol·L-1 Cd2+ added to the culture solution. It was found that both Cd-stress at 10 and 25 µmol·L-1 significantly inhibited the chlorophyll content, photosynthesis, and biomass accumulation of wheat seedlings. Seedling roots became shorter and thicker, and the lateral roots decreased under Cd-stress. The Cd-stress also increased H2O2 and MDA accumulation and the degree of cell membrane lipid peroxidation and affected the activities of antioxidant enzymes such as superoxide dismutase (SOD) and peroxidase (POD). Under Cd stress, exogenous chitosan decreased the Cd content in the aboveground and underground parts of wheat by 13.22 %-21.63 % and 7.92 %-28.32 % and reduced Cd accumulation in the aboveground and underground parts by 5.37 %-6.71 % and 1.91 %-4.09 %, respectively. Whereas exogenous chitosan application significantly reduced the content of H2O2 in roots and aboveground parts of wheat by 38.21 %-47.46 % and 45.81 %-55.73 % and MDA content by 37.65 %-48.12 % and 29.87 %-32.51 %, it increased the activities of SOD and POD in roots by 2.78 %-5.61 % and 13.81 %-18.33 %, respectively. In summary, exogenous chitosan can improve the photosynthetic characteristics and antioxidant enzyme activities of wheat seedlings under Cd stress, reduce the content and accumulation of Cd in the root and aboveground parts of wheat, and alleviate the damage of lipid peroxidation to the cell membrane. All of these results provide the basal data for the application of exogenous chitosan to alleviate Cd toxicity to wheat seedlings.


Assuntos
Antioxidantes , Cádmio , Quitosana , Plântula , Triticum , Triticum/metabolismo , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Cádmio/toxicidade , Cádmio/metabolismo , Quitosana/metabolismo , Quitosana/farmacologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Antioxidantes/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
7.
Mar Pollut Bull ; 204: 116519, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850758

RESUMO

Microplastics (MPs) have become pervasive in marine ecosystems, exerting detrimental effects on marine life. The concurrent presence and interaction of MPs and heavy metals in aquatic environments could engender more insidious toxicological impacts. This study aimed to elucidate the potential impacts and underlying mechanisms of polystyrene microplastics (PS-MPs), cadmium (Cd), and their combined stress (MPs-Cd) on sea cucumbers (Apostichopus japonicus). It focused on the growth, Cd bioaccumulation, oxidative stress responses, immunoenzymatic activities, and metabolic profiles, specifically considering PS-MPs sizes preferentially ingested by these organisms. The high-dose MPs (MH) treatment group exhibited an increase in cadmium bioavailability within the sea cucumbers. Exposure to PS-MPs or Cd triggered the activation of antioxidant defenses and immune responses. PS-MPs and Cd exhibited a synergistic effect on lysozyme (LZM) activity. A total of 149, 316, 211, 197, 215, 619, 434, and 602 differentially expressed metabolites were identified, distinguishing the low-dose MPs (ML), high-dose MPs (MH), low-dose Cd (LCd), low-dose MPs and low-dose Cd (MLLCd), high-dose MPs and low-dose Cd (MHLCd), high-dose Cd (HCd), low-dose MPs and high-dose Cd (MLHCd), high-dose MPs and high-dose Cd (MHHCd) groups, respectively. Metabolomic analyses revealed disruptions in lipid metabolism, nervous system function, signal transduction, and transport and catabolism pathways following exposure to PS-MPs, Cd, and MPs-Cd. Correlation analyses among key differentially expressed metabolites (DEMs) underscored the interregulation among these metabolic pathways. These results offer new perspectives on the distinct and synergistic toxicological impacts of microplastics and cadmium on aquatic species, highlighting the complex interplay between environmental contaminants and their effects on marine life.


Assuntos
Cádmio , Microplásticos , Poliestirenos , Poluentes Químicos da Água , Cádmio/toxicidade , Animais , Microplásticos/toxicidade , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Stichopus , Estresse Oxidativo , Adaptação Fisiológica
8.
Plant Physiol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917222

RESUMO

Wheat (Triticum aestivum L.) is one of the most important crops worldwide and a major source of human Cd intake. Limiting grain Cd concentration (Gr_Cd_Conc) in wheat is necessary to ensure food safety. However, the genetic factors associated with Cd uptake, translocation, distribution, and Gr_Cd_Conc in wheat are poorly understood. Here, we mapped quantitative trait loci (QTL) for Gr_Cd_Conc and its related transport pathway using a recombinant inbred line (RIL_DT) population derived from two Polish wheat varieties (dwarf Polish wheat [DPW] and tall Polish wheat [TPW]). We identified 29 novel major QTLs for grain and tissue Cd concentration; 14 novel major QTLs for Cd uptake, translocation, and distribution; and 27 major QTLs for agronomic traits. We also analyzed the pleiotropy of these QTLs. Six novel QTLs (QGr_Cd_Conc-1A, QGr_Cd_Conc-3A, QGr_Cd_Conc-4B, QGr_Cd_Conc-5B, QGr_Cd_Conc-6A and QGr_Cd_Conc-7A) for Gr_Cd_Conc explained 8.16-17.02% of the phenotypic variation. QGr_Cd_Conc-3A, QGr_Cd_Conc-6A and QGr_Cd_Conc-7A pleiotropically regulated Cd transport; three other QTLs were organ-specific for Gr_Cd_Conc. We fine-mapped the locus of QGr_Cd_Conc-4B and identified the candidate gene as Cation/Ca exchanger 2 (TpCCX2-4B), which was differentially expressed in DPW and TPW. It encodes an endoplasmic reticulum membrane/plasma membrane-localized Cd efflux transporter in yeast. Overexpression of TpCCX2-4B reduced Gr_Cd_Conc in rice. The average Gr_Cd_Conc was significantly lower in TpCCX2-4BDPW genotypes than in TpCCX2-4BTPWgenotypes of the RIL_DT population and two other natural populations, based on a KASP marker derived from the different promoter sequences between TpCCX2-4BDPW and TpCCX2-4BTPW. Our study reveals the genetic mechanism of Cd accumulation in wheat and provides valuable resources for genetic improvement of low-Cd-accumulating wheat cultivars.

9.
Biosci Rep ; 44(6)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38828664

RESUMO

Increasing cadmium (Cd) pollution has negative effects on quinoa growth and production. Gamma-aminobutyric acid (GABA) confers plants with stress resistance to heavy metals; however, the mechanism remains unclear. We explored the effects of exogenous GABA on the physiological characteristics, antioxidant capacity, and Cd accumulation of quinoa seedlings under Cd stress using hydroponic experiments. Partial least-squares regression was used to identify key physical and chemical indices of seedlings affecting Cd accumulation. Compared with those of the CK group, exposure to 10 and 25 µmol·L-1 Cd significantly reduced the photosynthetic pigment contents, photosynthesis, and biomass accumulation of quinoa seedlings; resulted in shorter and thicker roots; decreased the length of the lateral roots; decreased the activities of superoxide dismutase (SOD) and peroxide (POD); and increased H2O2 and malondialdehyde (MDA) contents. Exogenous GABA reduced the Cd content in the stem/leaves and roots of quinoa seedlings under Cd stress by 13.22-21.63% and 7.92-28.32%, decreased Cd accumulation by 5.37-6.71% and 1.91-4.09%, decreased the H2O2 content by 38.21-47.46% and 45.81-55.73%, and decreased the MDA content by 37.65-48.12% and 29.87-32.51%, respectively. GABA addition increased the SOD and POD activities in the roots by 2.78-5.61% and 13.81-18.33%, respectively, under Cd stress. Thus, exogenous GABA can reduce the content and accumulation of Cd in quinoa seedlings by improving the photosynthetic characteristics and antioxidant enzyme activity and reducing the degree of lipid peroxidation in the cell membrane to alleviate the toxic effect of Cd stress on seedling growth.


Assuntos
Antioxidantes , Cádmio , Chenopodium quinoa , Peróxido de Hidrogênio , Plântula , Ácido gama-Aminobutírico , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Cádmio/metabolismo , Cádmio/toxicidade , Chenopodium quinoa/metabolismo , Chenopodium quinoa/efeitos dos fármacos , Chenopodium quinoa/crescimento & desenvolvimento , Ácido gama-Aminobutírico/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Malondialdeído/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fotossíntese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
10.
Environ Geochem Health ; 46(7): 222, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849580

RESUMO

In previous studies, iron-based nanomaterials, especially biochar (BC)-supported sulfidized nanoscale zero-valent iron (S-nZVI/BC), have been widely used for the remediation of soil contaminants. However, its potential risks to the soil ecological environment are still unknown. This study aims to explore the effects of 3% added S-nZVI/BC on soil environment and microorganisms during the remediation of Cd contaminated yellow-brown soil of paddy field. The results showed that after 49 d of incubation, S-nZVI/BC significantly reduced physiologically based extraction test (PBET) extractable Cd concentration (P < 0.05), and increased the immobilization efficiency of Cd by 16.51% and 17.43% compared with S-nZVI and nZVI/BC alone, respectively. Meanwhile, the application of S-nZVI/BC significantly increased soil urease and sucrase activities by 0.153 and 0.446 times, respectively (P < 0.05), improving the soil environmental quality and promoting the soil nitrogen cycle and carbon cycle. The results from the analysis of the 16S rRNA genes indicated that S-nZVI/BC treatment had a minimal effect on the bacterial community and did not appreciably alter the species of the original dominant bacterial phylum. Importantly, compared to other iron-based nanomaterials, incorporating S-nZVI/BC significantly increased the soil organic carbon (OC) content and decreased the excessive release of iron (P < 0.05). This study also found a significant negative correlation between OC content and Fe(II) content (P < 0.05). It might originate from the reducing effect of Fe-reducing bacteria, which consumed OC to promote the reduction of Fe(III). Accompanying this process, the redistribution of Cd and Fe mineral phases in the soil as well as the generation of secondary Fe(II) minerals facilitated Cd immobilization. Overall, S-nZVI/BC could effectively reduce the bioavailability of Cd, increase soil nutrients and enzyme activities, with less toxic impacts on the soil microorganisms.


Assuntos
Cádmio , Carvão Vegetal , Ferro , Microbiologia do Solo , Poluentes do Solo , Carvão Vegetal/química , Cádmio/química , Ferro/química , Oryza , Solo/química , Bactérias/metabolismo , Recuperação e Remediação Ambiental/métodos , RNA Ribossômico 16S , Biodegradação Ambiental
11.
Environ Res ; 259: 119459, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38942257

RESUMO

In situ immobilization is a widely used measure for passivating Cd-contaminated soils. Amendments need to be continuously applied to achieve stable remediation effects. However, few studies have evaluated the impact of consecutive application of amendments on soil health and the microecological environment. A field experiment was conducted in a Cd-contaminated paddy (available Cd concentration 0.40 mg kg-1) on the Chengdu Plain to investigate the changes in soil Cd availability and response characteristics of soil bacterial communities after consecutive application of rice straw biochar (SW), fly ash (FM) and marble powder (YH) amendments from 2018 to 2020. Compared with control treatment without amendments (CK), soil pH increased by 0.6, 0.5 and 1.5 under SW, FM and YH amendments, respectively, and the soil available Cd concentration decreased by 10.71%, 21.42% and 25.00%, respectively. The Cd concentration in rice grain was less than 0.2 mg kg-1 under YH amendment, which was within the Chinese Contaminant Limit in Food of National Food Safety Standards (GB2762-2022) in the second and third years. The three amendments had different effects on the transformation of Cd fractions in soil, which may be relevant to the specific bacterial communities shaped under different treatments. The proportion of Fe-Mn oxide-bound fraction Cd (OX-Cd) increased by 11% under YH treatment, which may be due to the promotion of Fe(III) and Cd binding by some enriched iron-oxidizing bacteria, such as Lysobacter, uncultured_Pelobacter sp. and Sulfurifusis. Candidatus_Tenderia and Sideroxydans were enriched under SW and FM amendments, respectively, and were likely beneficial for reducing Cd availability in soil through Cd immobilization. These results revealed the significance of the bacterial community in soil Cd immobilization after consecutive application of amendments and highlighted the potential of applying YH amendment to ensure the safe production of rice in Cd-contaminated soil.


Assuntos
Cádmio , Oryza , Microbiologia do Solo , Poluentes do Solo , Solo , Cádmio/análise , Poluentes do Solo/análise , Solo/química , Bactérias , Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Cinza de Carvão/análise , Agricultura/métodos
12.
J Hazard Mater ; 474: 134844, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38852252

RESUMO

With advances in plastic resource utilization technologies, polystyrene (PS) and sulfonated polystyrene (SPS) microplastics continue to be produced and retained in environmental media, potentially posing greater environmental risks. These plastics, due to their different physicochemical properties, may have different environmental impacts when compounded with other pollutants. The objective of this study was to investigate the combined toxic effects of PS and SPS on wheat using cadmium (Cd) as a background contaminant. The results demonstrated that Cd significantly impeded the normal growth of wheat by disrupting root development. Both PS and SPS exhibited hormesis at low concentrations and promoted wheat growth. Under combined toxicity, PS reduced oxidative stress and promoted the uptake of essential metal elements in wheat. Additionally, KEGG pathway analysis revealed that PS facilitated the repair of Cd-induced blockage of the TCA cycle and glutathione metabolism. However, high concentrations of SPS in combined toxicity not only enhanced oxidative stress and interfered with the uptake of essential metal elements, but also exacerbated the blocked TCA cycle and interfered with pyrimidine metabolism. These differences are related to the different stability (Zeta potential, Hydrodynamic particle size) of the two microplastics in the aquatic environment and their ability to carry heavy metal ions, especially Cd. The results of this study provide important insights into understanding the effects of microplastics on crops in the context of Cd contamination and their environmental and food safety implications.


Assuntos
Cádmio , Estresse Oxidativo , Poliestirenos , Triticum , Poliestirenos/toxicidade , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Microplásticos/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes do Solo/toxicidade
13.
Microorganisms ; 12(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38792702

RESUMO

The green and efficient remediation of soil cadmium (Cd) is an urgent task, and plant-microbial joint remediation has become a research hotspot due to its advantages. High-throughput sequencing and metabolomics have technical advantages in analyzing the microbiological mechanism of plant growth-promoting bacteria in improving phytoremediation of soil heavy metal pollution. In this experiment, a pot trial was conducted to investigate the effects of inoculating the plant growth-promoting bacterium Enterobacter sp. VY on the growth and Cd remediation efficiency of the energy plant Hybrid pennisetum. The test strain VY-1 was analyzed using high-throughput sequencing and metabolomics to assess its effects on microbial community composition and metabolic function. The results demonstrated that Enterobacter sp. VY-1 effectively mitigated Cd stress on Hybrid pennisetum, resulting in increased plant biomass, Cd accumulation, and translocation factor, thereby enhancing phytoremediation efficiency. Analysis of soil physical-chemical properties revealed that strain VY-1 could increase soil total nitrogen, total phosphorus, available phosphorus, and available potassium content. Principal coordinate analysis (PCoA) indicated that strain VY-1 significantly influenced bacterial community composition, with Proteobacteria, Firmicutes, Chloroflexi, among others, being the main differential taxa. Redundancy analysis (RDA) revealed that available phosphorus, available potassium, and pH were the primary factors affecting bacterial communities. Partial Least Squares Discriminant Analysis (PLS-DA) demonstrated that strain VY-1 modulated the metabolite profile of Hybrid pennisetum rhizosphere soil, with 27 differential metabolites showing significant differences, including 19 up-regulated and eight down-regulated expressions. These differentially expressed metabolites were primarily involved in metabolism and environmental information processing, encompassing pathways such as glutamine and glutamate metabolism, α-linolenic acid metabolism, pyrimidine metabolism, and purine metabolism. This study utilized 16S rRNA high-throughput sequencing and metabolomics technology to investigate the impact of the plant growth-promoting bacterium Enterobacter sp. VY-1 on the growth and Cd enrichment of Hybrid pennisetum, providing insights into the regulatory role of plant growth-promoting bacteria in microbial community structure and metabolic function, thereby improving the microbiological mechanisms of phytoremediation.

14.
Food Chem ; 452: 139549, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38762939

RESUMO

The prevention of pollution requires real-time monitoring of cadmium (Cd2+) concentration in the food, as it has a dramatic impact on poultry and can pose a threat to human health. Here, we fabricate a portable workstation integrating a microfluidic chip that facilitates real-time monitoring of Cd2+ levels in real samples by utilizing the Luminol-KMnO4 chemiluminescence (CL) system. Interestingly, Cd2+ can significantly enhance the CL signal, resulting in sensitive detection of Cd2+ in the range of 0-0.18 mg/L with the limit of detection (LOD) of 0.207 µg/L. Furthermore, a remote-controlled unit is integrated into the portable workstation to form a remote-controlled portable workstation (RCPW) performing automated point-of-care testing (POCT) of Cd2+. The as-prepared strategy allows remote control of RCPW to avoid long-distance transportation of samples to achieve real-time target monitoring. Consequently, this system furnishes RCPW for monitoring Cd2+ levels in real samples, thereby holding potential for applications in preventing food pollution.


Assuntos
Cádmio , Contaminação de Alimentos , Limite de Detecção , Medições Luminescentes , Cádmio/análise , Contaminação de Alimentos/análise , Medições Luminescentes/instrumentação , Medições Luminescentes/métodos , Animais , Luminescência , Testes Imediatos
15.
Ecotoxicol Environ Saf ; 277: 116380, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677068

RESUMO

The interaction between microplastics (MPs) and cadmium (Cd) poses a threat to agricultural soil environments, and their effects on plant growth and rhizosphere microbial community functions are not yet clear. In this study, energy sorghum was used as a test plant to investigate the effects of two types of MPs, polystyrene (PS) and polyethylene (PE), at different particle sizes (13 µm, 550 µm) and concentrations (0.1%, 1% w/w), and Cd, as well as their interactions, on the growth of sorghum in a soil-cultivation pot experiment. The results showed that the combined effects of MP and Cd pollution on the dry weight and Cd accumulation rate in sorghum varied depending on the type, concentration, and particle size of the MPs, with an overall trend of increasing stress from combined pollution with increasing Cd content and accumulation. High-throughput sequencing analysis revealed that combined MP and Cd pollution increased bacterial diversity, and the most significant increase was observed in the abundance-based coverage estimator (ACE), Shannon, and Sobs indices in the 13 µm 1% PS+Cd treatment group. Metagenomic analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways revealed that 19 groups of metabolic pathways, including microbial metabolism and methane metabolism, differed significantly under combined MP and Cd pollution. Hierarchical clustering results indicated that Cd treatment and combined MP and Cd treatment affected the abundances of sorghum rhizosphere soil nitrogen (N) and phosphorus (P) cycling genes and that the type of MP present was an important factor affecting N and P cycling genes. The results of this study provide a basis for exploring the toxic effects of combined MP and Cd pollution and for conducting soil environmental risk assessments.


Assuntos
Cádmio , Microplásticos , Rizosfera , Microbiologia do Solo , Poluentes do Solo , Sorghum , Sorghum/efeitos dos fármacos , Sorghum/microbiologia , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Microplásticos/toxicidade , Solo/química , Tamanho da Partícula , Bactérias/efeitos dos fármacos
16.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611714

RESUMO

Hepatic oxidative stress is an important mechanism of Cd-induced hepatotoxicity, and it is ameliorated by TMP. However, this underlying mechanism remains to be elucidated. To investigate the mechanism of the protective effect of TMP on liver injuries in mice induced by subchronic cadmium exposure, 60 healthy male ICR mice were randomly divided into five groups of 12 mice each, namely, control (CON), Cd (2 mg/kg of CdCl2), Cd + 100 mg/kg of TMP, Cd + 150 mg/kg of TMP, and Cd + 200 mg/kg of TMP, and were acclimatized and fed for 7 d. The five groups of mice were gavaged for 28 consecutive days with a maximum dose of 0.2 mL/10 g/day. Except for the control group, all groups were given fluoride (35 mg/kg) by an intraperitoneal injection on the last day of the experiment. The results of this study show that compared with the Cd group, TMP attenuated CdCl2-induced pathological changes in the liver and improved the ultrastructure of liver cells, and TMP significantly decreased the MDA level (p < 0.05) and increased the levels of T-AOC, T-SOD, and GSH (p < 0.05). The results of mRNA detection show that TMP significantly increased the levels of Nrf2 in the liver compared with the Cd group as well as the HO-1 and mRNA expression levels in the liver (p < 0.05). In conclusion, TMP could inhibit oxidative stress and attenuate Cd group-induced liver injuries by activating the Nrf2 pathway.


Assuntos
Cádmio , Fator 2 Relacionado a NF-E2 , Pirazinas , Masculino , Animais , Camundongos , Camundongos Endogâmicos ICR , Cádmio/toxicidade , Estresse Oxidativo , Fígado , RNA Mensageiro
17.
J Hazard Mater ; 469: 133862, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38432090

RESUMO

The precise mechanism behind the association between plants' reactions to cadmium (Cd) stress and brassinosteroid (BR) remains unclear. In the current investigation, Cd stress quickly increased the endogenous BR concentration in the rice roots. Exogenous BR also increased the hemicellulose level in the root cell wall, which in turn increased its capacity to bind Cd. Simultaneously, the transcription level of genes responsible for root Cd absorption was decreased, including Natural Resistance-Associated Macrophage Protein 1/5 (OsNRAMP1/5) and a major facilitator superfamily gene called OsCd1. Ultimately, the increased expression of Heavy Metal ATPase 3 (OsHMA3) and the decreased expression of OsHMA2, which was in charge of separating Cd into vacuoles and translocating Cd to the shoots, respectively, led to a decrease in the amount of Cd that accumulated in the rice shoots. In contrast, transgenic rice lines overexpressing OsGSK2 (a negative regulator in BR signaling) accumulated more Cd, while OsGSK2 RNA interference (RNAi) rice line accumulated less Cd. Furthermore, BR increased endogenous Gibberellic acid (GA) level, and applying GA could replicate its alleviative effect. Taken together, BR decreased Cd accumulation in rice by mediating the cell wall's fixation capacity to Cd, which might relied on the buildup of the GA.


Assuntos
Cádmio , Giberelinas , Oryza , Cádmio/metabolismo , Oryza/genética , Oryza/metabolismo , Brassinosteroides , Parede Celular/metabolismo , Raízes de Plantas/metabolismo
18.
Huan Jing Ke Xue ; 45(3): 1739-1748, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471885

RESUMO

Guangxi is a typical geological high background area in southwest China, where carbonates, black rock series, basic-ultrabasic rock mass, and metal deposits (mineralized bodies) exhibit strong weathering into loam, resulting in higher cadmium (Cd) content in the soil than that in other areas of China. In order to investigate the degree of influence of mining activities on topsoil environmental quality in the area with high geological background, we chose a mining area and control area in Hezhou for this research and systematically carried out a comparative study on Cd transport routes and transport flux density in topsoil. The results showed that the average atmospheric dry and wet deposition flux densities of Cd in the soil of the mining area and control area were 1.87 g·(hm2·a)-1 and 1.52 g·(hm2·a)-1, accounting for 61.5% and 60.3% of the total input flux density, respectively. The flux density of Cd in the soil by fertilization and irrigation was lower. Surface water infiltration was the main avenue of soil Cd output in both the mining area and control area, accounting for 75.4% and 86.6% of the total output flux density, respectively. The harvest output flux density in the mining area was higher than that in the control area, and the Cd content of rice planted in the mining area was higher than the standard, whereas that of maize was safe. On the whole, the net transport flux densities of soil Cd in the mining area and control area were -3.05 g·(hm2·a)-1 and -4.05 g·(hm2·a)-1, both of which showed Cd leaching in the soil. However, the points of high atmospheric deposition flux density and exceeding Cd content in rice were mainly distributed around the mining area, which may have posed a potential threat to the health of local residents. Therefore, it is suggested to control the soil Cd pollution through monitoring and planting structure adjustment.

19.
Huan Jing Ke Xue ; 45(3): 1812-1820, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471892

RESUMO

Heavy metal contamination of soil has become a hot issue of social concern due to its impact on the safety of agricultural products in recent years. Wheat is one of the most dominant staple food crops worldwide and has become a major source of toxic metals in human diets. Foliar application was considered to be a more efficient and economical method of heavy metal remediation. Field experiments were carried out in Cd-, As-, and Pb-contaminated farmland soils. The effects of foliar conditioners on the accumulation of Cd, As, and Pb in wheat grains were investigated after being sprayed with Zn (0.2% ZnSO4), Mg (0.4% MgSO4), and Mn (0.2% MnSO4) separately and in combination. Thus, the effective foliar conditioners were selected to block the accumulation of Cd, As, and Pb in wheat grains grown in combined heavy metal-contaminated farmland in north China. The results showed that, compared with that in the control, the Cd, As, and Pb contents in wheat grains of the Zn+Mg+Mn foliar treatment were significantly decreased by 18.96%, 23.87%, and 51.31%, respectively, and TFgrain/straw decreased by 14.62%, 27.73%, and 47.70%, respectively. Thus, spraying the compound foliar conditioner of Zn+Mg+Mn could effectively reduce heavy metal accumulation in wheat grains through inhibition translocation of those metals from stem leaves to grain. In addition, the results indicated that Cd and As were mainly distributed at the central endosperm (34.08%-37.08%), whereas Pb was primarily distributed at the pericarp and seed coat (27.78%) of the wheat grain. Compared with that in the control, spraying the compound foliar conditioner of Zn+Mg+Mn extremely decreased Cd and As accumulation in the aleurone layer of the wheat grain by 81.10% and 82.24%, respectively. Except for the pericarp, seed coat, and central endosperm layers, the Pb content in each grain layer was dramatically decreased by 42.85% to 91.15%. There was only a significant negative correlation between heavy metal content and Zn content in the aleurone layer (P2) of wheat flour. In summary, the accumulation of Cd, As, and Pb in wheat grains, especially in the aleurone layer, could be effectively reduced by foliar conditioner application at the jointing, booting, and early filling stages of wheat, separately. Furthermore, besides the foliar treatment, removing wheat bran to reduce Cd contamination in wheat grains is highly recommended to ensure the safe production of wheat.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Humanos , Cádmio/análise , Zinco , Chumbo , Fazendas , Farinha , Poluentes do Solo/análise , Triticum , Solo , Grão Comestível/química
20.
Chemosphere ; 354: 141672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479680

RESUMO

Cadmium (Cd) is classified as a heavy metal (HM) and is found into the environment through both natural processes and intensified anthropogenic activities such as industrial operations, mining, disposal of metal-laden waste like batteries, as well as sludge disposal, excessive fertilizer application, and Cd-related product usage. This rising Cd disposal into the environment carries substantial risks to the food chain and human well-being. Inadequate regulatory measures have led to Cd bio-accumulation in plants, which is increasing in an alarming rate and further jeopardizing higher trophic organisms, including humans. In response, an effective Cd decontamination strategy such as phytoremediation emerges as a potent solution, with innovations in nanotechnology like biochar (BC) and nanoparticles (NPs) further augmenting its effectiveness for Cd phytoremediation. BC, derived from biomass pyrolysis, and a variety of NPs, both natural and less toxic, actively engage in Cd removal during phytoremediation, mitigating plant toxicity and associated hazards. This review scrutinizes the application of BC and NPs in Cd phytoremediation, assessing their synergistic mechanism in influencing plant growth, genetic regulations, structural transformations, and phytohormone dynamics. Additionally, the review also underscores the adoption of this sustainable and environmentally friendly strategies for future research in employing BC-NP microaggregates to ameliorate Cd phytoremediation from soil, thereby curbing ecological damage due to Cd toxicity.


Assuntos
Carvão Vegetal , Metais Pesados , Nanopartículas , Poluentes do Solo , Humanos , Cádmio/análise , Biodegradação Ambiental , Metais Pesados/análise , Plantas , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA